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Abstract. In order to solve large finite element problems, engineers and scientists have used
both supercomputers and cluster of workstations. Supercomputers have high acquisition and
maintenance costs, and has obsolescence in short period. Clusters of workstations are usually
associated with specific network hardware and software, and special  implementation
techniques are necessary. The aim of this work is to test the viability of obtaining high
performance computing using usual low cost PCs connected by low cost network hardware,
using neither special operational system nor special programming languages, Only resources
usually available in computing laboratories at research centers are used. Specifically, in this
work were used PCs with at least 700 MHz processors and 128 Mbytes of RAM, connected by
a 100 Mbit/s local network. All machines use windows 9x and the implementation was made
using FORTRAN 90 language.
An initial application implemented in this computational environment was a Finite Element
code for 3D Solid Mechanics analysis in linear elasticity, using 8-nodes 1-integration point
bricks with hourglass control, and a conjugated gradient solver using preconditioners.
Results of scalability of solution time with the number of PCs used and the size of the problem
are shown. Initial results show the viability of this approach, both in solution time and in size
of problem that can be solved.
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1 INTODUCTION

Numerical solution of Solid Mechanics, Fluid Mechanics and other Engineering fields
using the Finite Element Method demands frequently high performance computational
systems, with both high speed processors and large main and secondary memory systems for
large data structures storage.

An usual approach for this needs of computational power is the use of supercomputers with
several vector processors and shared memory. This is usually the most powerful solution, but
its acquisition and operational costs are extremely high, demanding special facilities, its
maintenance is complex and specialized and in few years its computational power is reached
and surpassed by much cheaper machines. Its use is only viable in open centers serving
several users. Besides, only optimized codes (with respect to vectorization and parallelization)
achieve acceptable performances.

Another approach is the use of conventional clusters of machines connected by high
performance networks and using specific operational systems, programming languages and
code libraries. These clusters seldom allow the use of each machine as an ordinary computer
for other common activities like text processing, graphic processing, code development and
test. The operational system management and programming techniques are much more
complex than those corresponding to single computers.

A new approach to high performance computing is the use of temporary clusters through
internet-based personal computers1. Following this approach, this work presents the first
results of a temporary cluster formed by ordinary computers, operational systems,
programming languages and network hardware used in scientific computing laboratories,
without specific components of software and hardware. By this way, operational and
maintenance costs are very low using standard non-expensive components, avoiding the need
of personal training in specific operational systems and programming languages and allowing
a full time use of the diferent computers, both as cluster for high performance numerical
processing and as isolated workstations for general computer activities.

Even if the performance of the solutions using common tools employed in high
performance computing is nor reached, initial results points that the use of temporary clusters
is very attractive for mid range computational problems, due to its good flexibility, easy
operation and low costs.

2 METHODOLOGY

For the implementation of the temporary cluster, it was used only common hardware and
software usually available in many scientific computing laboratories.

The workstations chosen to form the temporary cluster are mid range personal computers
with CPUs of Pentium III class (intel Pentium III, AMD Athlon Thunderbird) with
frequencies above 700 MHz, 128 Mbytes of main memory, hard discs of 10 Gbytes, 5400 rpm
and above. This class of computers has high computing power, standard components and low
cost, being usual in scientific laboratories for multiple purposes (text publishing, graphic
publishing, CAD, numerical analysis and code development).
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Each computer has a 10/100 Mbps standard Ethernet network card, and the cluster is
connected by a low cost Hub-Switch Encore ENH908-NWY+ with eight 10/100 Mbps ports.

The operational system used in each computer is the Microsoft Windows 98SE. Although
Linux has native support for clusters, the choice for Windows workstations is based in the fact
that it was the operational system used in the computers of CEMACOM laboratory were the
temporary cluster was implemented, and all personnel works with this operational system.
Then, no additional training is necessary for the use of temporary cluster under Windows
environment.

The programming language used for the temporary cluster implementation is FORTRAN
90/95, due to its high performance in numerical simulations, large use in scientific computing
and many numerical codes already implemented using this language. Besides, almost all
personnel in scientific computing laboratories use FORTRAN 90/95, being a natural choice
for easy portability of cluster routines to existing codes.

Although the chosen programming language has no native support for network
communication, no other language or library besides FORTRAN 90/95 was used to
implement the routines of message passing and synchronization necessary for cluster
operation. The information sharing among the several computers of the cluster was done
using two important features of the operational system: a) local folders and files can be shared
through the network for remote access; b) shared folders can be mapped as network units and
consequently seen by FORTRAN as normal local disk units. Then, to get information from or
to send information to a remote computer, FORTRAN reads or writes information in a file on
a mapped network unit, making the routines for data sharing and synchronization extremely
easy to be implemented and understood, since it corresponds to normal FORTRAN file
access.

To send data or messages to another computer corresponds to write data in a disc file. To
receive data or message from another computer corresponds to read data from a disc file. To
wait for a message corresponds to a continuous data reading from a given record of a disc file,
until other computer writes this record with the data or message waited.

A possible bottleneck in the performance of this approach is that sharing information allies
two classes of slow operations: network communication (limited by a bandwidth of 100 Mbps
for all simultaneous access to a given computer) and disk file access (which is one of the
slower operations in modern computers). These characteristics lead to cluster implementation
algorithms that minimize data sharing between computers in the cluster.

The network bandwidth available is shared by all the simultaneous accesses to a given
computer. If there is only one computer B accessing data from a computer A, the
communication occurs at full network bandwidth, 100 Mpbs. If there are two computers, B
and C, accessing data from a computer A simultaneously, the communication between A and
B, and A and C occurs at half network bandwidth, 50 Mbps. If there are three, four or five
computers accessing data from a same compute, communications occur at 1/3 (33,33 Mbps),
¼ (25 Mbps) or 1/5 (20 Mbps) of network bandwidth, respectively, causing network
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saturation and performance degradation. Otherwise, if computer B access data from computer
A, and computer D access data from computer C, and computer F access data from computer
E simultaneously, due to the presence of a switch connecting all computers, each
communication occurs at full network bandwidth (100 Mbps) and no network saturation or
performance degradation happens.

Considering these characteristics, the following cluster configuration was implemented:

Each computer has (n-1) mapped network units, where n is the number of computers in the
cluster. Though these network units data sharing occurs performed by FORTRAN file access.
This configuration is shown in figure 1.

Message passing and small data sharing is made by the computer that is sending the
message writing data in remote files mapped by network units for all computers present in the
cluster. This method, although implies in (n-1) writing operations for each message, avoid
bandwidth saturation, since the receiving message process is performed by a continuous file
reading operation by each computer in its own local disc unit. The time cost of multiplying
writing operations is acceptable once the amount of data to be written is small.

Figure 1: Typical configuration of a temporary cluster

Otherwise, large data sharing is done through an opposite approach: the computer that is
sharing data writes files in a local disc unit, and all other computers present at the cluster read
these files remotely through the network. Since the amount of data is large, the cost in time of
writing (n-1) files on all remote units is too heavy to be supported with efficiency. The
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waiting state for this case does not affect network bandwidth because it is done for a message
(small data) indicating that the file with large data is available, as described previously.

To maximize de use of network bandwidth, all large data readings are made by each
computer i in the following order: from computer i+1 to n and from computer 1 to i-1. This
rule to read a large amount of data is easy to implement and usually avoids the simultaneous
access of data from one computer by more than one other computer.

3 IMPLEMENTATION

The methodology described above was first implemented in a code for static analysis of 3D
linear elastic structures using hexahedral elements with 8 nodes, 1 point quadrature and
hourglass control2. The solver used is the conjugated gradients interative process, with
Cholesky and diagonal preconditioners3.

As the solver is responsible for more than 90% of the total solution time, most of the
parallelization effort was concentrated in this point. Conjugated-gradients is widely used in
parallel computers with sharing memory and can be easily adapted for distributed computing
due to low amount of data that must be shared among the different computers in each
interaction.

For ill-conditioned problems, the incomplete Cholesky’s factorization preconditioner
presents better performance when compared to diagonal preconditioner, both in total time of
solution and number of interations. As Cholesky’s preconditioner is composed by a forward-
substitution and a back-substitution over all equations, difficulties arise in the division of the
tasks over several computers in a distributed computing cluster and low memory saving in
this division, when compared to the memory used by a single computer solving alone the
system of equations.

The diagonal preconditioner is less efficient than incomplete Cholesky’s factorization with
respect to the number of interations for all kind of problems, but in terms of total time of
solution, it is slower only for ill-conditioned problems. Besides, the use of this preconditioner
allows a good task division among the computers present in the cluster, low memory
consumption and high scalability of the solver performance with the number of computers
used, both in time of solution and size of problem. A diagonal preconditioner was used in all
examples in this paper.

As the solver works directly over each equation of the system, the division of the task over
the cluster is based directly in the nodes (or group of equations) of the model. In a n-
computers cluster, each machine works over 1/n of the total set of nodes. Regarding elements,
each computer works over all elements connected to the set of nodes assigned to it, resulting
in more than 1/n of the total set of elements.

An algorithm of the conjugated gradient method4 with modifications for distributed
computing is shown in Figure 2, where, Kl is the stiffness matrix of each element l, b is the
nodal load vector, diag is the vector of global stiffness matrix diagonal terms, ug is the nodal
displacement vector, re is the residue vector, pr is the search vector, z is the preconditioned
residue vector and ugn, rn, prn and zn has the same meaning, but in inteaction n. Tole is the
tolerance obtained and Lim is the tolerance limit to stop the process.
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kk bbrtro .= For terms corresponding to all nodes of the model.
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Figure 2 – Algorithm of conjugated gradient with diagonal preconditioner for distributed computing.
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END

For j terms corresponding to all nodes of elements connected to
the set of nodes allocated to a given computer.

Point 1 of synchronization for the cluster
Large Data to be shared only with computers that have these
terms corresponding to nodes that belong to elements connected
to the set of nodes allocated to that computer. Matrix product
performed element by element

Point 2 of synchronization for the cluster: Small Data
rtz and ptkp must be added over all computers in cluster.

For all i terms corresponding to the set of nodes allocated to a
given computer.

For j terms corresponding to all nodes of elements connected to
the set of nodes allocated to a given computer.

For j terms corresponding to all nodes of elements connected to
the set of nodes allocated to a given computer.

For all i terms corresponding to the set of nodes allocated to a
given computer.

Point 3 of synchronization for the cluster: Small Data
rntrn and rnrn must be added over all computers in cluster.

For j terms corresponding to all nodes of elements connected to
the set of nodes allocated to a given computer.
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Considering that there are superposition of nodes and elements in the solver division of
tasks and that the data sharing through network (and disc file operations) are relatively slow,
the scalability of the solver with the number of computers will be less than 100% (1/n of the
solution time for a n-computers cluster).

4 RESULTS

As a first test it was used a thick square plate with sides of 4 length units and thickness of
0,8 length units, simply supported over all the lower surface perimeter and subjected to a 10
force units concentrated load applied in the center of the upper surface. Young modulus is 107

force units by surface unit, and Poisson constant is 0,3. The general shape of the problem is
despicted in Figure 3.

Figure 3 – Structure used in the performance tests.

This structure was modeled by successive meshes of elements with fixed aspect ratio of
1:1:1, given a family of examples with the same characteristics but increasing size. The use of
elements with this aspect ratio in a thick plate leads to a very well-conditioned system and
allows the maximum performance of the solver in number of interations. As the objective of
this work is to compare solutions using only one computer to those obtained using distributed
computing in temporary clusters, the choice of this family of examples seems to be adequated.
The family of examples and its characteristics are shown in Table 1.

Table 1 – Characteristics of the family of examples used

Example Mesh Number of
Elements

Number of
Nodes

Number of
Equations

Number of
Interations

PLATEX040 40 x 40 x 8 12800 15129 45387 189
PLATEX050 50 x 50 x 10 25000 28611 85833 236
PLATEX060 60 x 60 x 12 43200 48373 145119 283
PLATEX070 70 x 70 x 14 68600 75615 226845 331
PLATEX080 80 x 80 x 16 102400 111537 334611 377
PLATEX090 90 x 90 x 18 145800 157339 472017 425
PLATEX100 100 x 100 x 20 200000 214221 642663 471
PLATEX110 110 x 110 x 22 266200 283383 850149 518

4,0

0,8

4,0

10
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In order to evaluate the effect of the presence in temporary clusters of computers with
different computing power, two clusters with two computers each were configured with the
machines described below:
im700S: Intel mobile Pentium 700 MHz, RAM 128MB PC100, Hard disk 10 GB, 5400rpm
T1000S: AMD Athlon 1000 MHz, RAM 512MB PC133, Hard disk 40GB, 7200 rpm.
T1400S: AMD Athlon 1400 MHz, RAM 512MB PC133, Hard disk 40GB, 7200 rpm.

Network with speeds of 10 and 100 Mbps were used. Results are shown in Figure 4.
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Figure 4 – Solution time of clusters with computers of different power.

Since a uniform task division was used, the global performance is governed by the slowest
computer. This conclusion is confirmed by the identical performance reached by each cluster
tested, for both network speeds, although one cluster has a computer with 40% more
computing power than the other.

A similar conclusion could be stablished regarding the size of problem that can be solved
by a cluster, governed by the computer with the smallest RAM.

So, for performance sake, it is better to use only similar computers to form a temporary
cluster than try to use every computer available in a given laboratory, despite its
characteristics.
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The influence of the network speed is better understood observing Figure 5, where the total
solution time was converted in processing speed (Mflops) using the solution obtained with a
Cray T94 as comparison. T1333D computer has the following description:
T1333D: AMD Athlon 1333 MHz, RAM 256 MB PC266, Hard disk 20 GB, 7200 rpm.

Figure 5 shows that the slowest computer, im700S has an average computing speed of 151
Mflops, and a cluster of two identical computer (since in uniform task division, all computers
in a cluster are equivalent to the slowest one, im700S + T1000S = 2 x im700S) have an
average computing speed of 246 Mflops for 10 Mbps network and 279 Mflops for 100 Mbps
network, corresponding to 163% and 185% of the performance of a single computer,
respectively. A cluster of faster computers like T1333S (359 Mflops average speed) presents
496 Mflops for 10 Mbps network, and 646 Mflops for 100 Mbps network, corresponding to
138% and 180% of the performance of a single computer, respectively.
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Figure 5 – Computing speed of temporary clusters for different network speeds

These results point out that network speed must be compatible with the speed of each
computer in the cluster. An ordinary 10 Mbps network can be efficient for clusters made of
low end performance computers, but it is totally inadequate for clusters made of high speed
computers. The network bandwidth saturation with the increase of the number of computers
in a cluster must be considered in the choice of the network speed; this aspect is shown in
Figure 6.
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Figure 6 – Network saturation in a cluster of fast computers and slow network

For fast machines like T1333D, the use of a simple 10 Mbps hub for network connection is
worth only for 2 computers clusters. Three or more computers in the cluster lead to worse
performance in computing speed, being useful only to solve larger problems.

With a fast Ethernet network (100 Mbps) its is possible to form clusters that are efficient
both in computing speed and size of problem. Figure 7 shows temporary clusters made of 2
up to 5 computers, being the first 3 of one class (359 Mflops of average speed) and the last
two are slower (302 Mflops and 208 Mflops, respectively), with the characteristics shown
below.
T1333D: AMD Athlon 1333 MHz, RAM 256 MB PC266, Hard disk 20 GB, 7200 rpm.
T1333S: AMD Athlon 1333 MHz, RAM 256 MB PC133, Hard disk 20 GB, 7200 rpm.
i1000S: Intel Pentium III 1000 MHz, RAM 256 MB PC133, Hard disk 20 GB, 7200 rpm.

T1333S differs from T1333D by the use of SDR memory (PC133) instead of DDR
(PC266).
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Figure 7 – Temporary clusters of fast computers and fast Ethernet network

The clusters have the following average performance:
2 x T1333D: 646 Mflops or 180% of a single T1333D
3 x T1333D: 791 Mflops or 220% of a single T1333D
3 x T1333D + T1333S: 877 Mflops or 290% of a single T1333S
3 x T1333D + T1333S + i1000S: 744 Mflops or 358% of a single i1000S
The cluster with 4 computers presents the best performance in computing speed. The

cluster with 5 computers is worse because the fifth computer is much slower than the others,
and the slowest computer rules the cluster. An average computing speed of 877 Mflops was
reached, with 920 Mflops of peak. This performance is comparable to the result that can be
reached in a single processor of a CRAY T94 supercomputer currently available at  the
CESUP/UFRGS (from 700 up to 1000 Mflops).

Regarding efficiency of parallelization, clusters have the following values:
2 x T1333D: 646 Mflops / (2 x 359 Mflops) = 90,0%
3 x T1333D: 791 Mflops / (3 x 359 Mflops) = 73,4%
3 x T1333D + T1333S: 877 Mflops / (4 x 302 Mflops) = 72,6%
3 x T1333D + T1333S + i1000S: 744 Mflops / (5 x 208 Mflops) = 71,5%
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where the efficiency was calculated by the division of the average computing speed of the
cluster by n times the average computing speed of the slowest computer in the cluster. These
results show that it is possible that no network bandwidth saturation will occurs in clusters up
to 8 computers of that class. With 8 computers similar to T1333D and an efficiency of 60%,
an average computing speed of 1720 Mflops could be reached, which is almost twice the
average performance of a single processor of Cray T94 supercomputer.

The curves shown in Figure 7 represent only the problems that could be solved without
intense use of virtual memory (memory in disk, which is automatically allocated by the
operational system). Therefore, a computer with only 256 Mbytes of RAM (main memory)
solved problems up to 220000 equations. Larger problems could be solved by these machines,
but the performance would be 1/10th to 1/20th of that verified in smaller problems. The
descending final branch of the curves represent an intense use of virtual memory. So, how
much the cluster performance is better than a single computer performance depends on how
large is the problem to be solved. Huge problems can be 20 times faster in a cluster only by
the fact that in a single computer where practically the whole problem must be solved using
virtual memory (where disk performance rules) and in a cluster of several computers the
problem fits inside the main memory (RAM). All comparisons presented here consider
problems that does not use virtual memory intensively.
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Figure 8 – Performance of non-uniform cluster
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Computers with less computing power rule the cluster. It is possible to avoid this by
considering a non-uniform task distribution. In Figure 8 the task division for a 5 computers
cluster (the same of Figure 7) was pondered by the relative performance of each machine. As
the task of each machine is defined by the number of nodes allocated on it, it is extremely
easy to implement non-uniform task division. The uniform task division 5 computer cluster
has an average performance of 744 Mflops, and the non-uniform cluster has 895 Mflops,
around 20% more.

The slowest computer in the cluster has the larger memory (512 MB against 256 MB of the
others). So, with 850000 equations, the performance of the non-uniform cluster was worse
than the uniform one, due to the fact that computers with less memory carried bigger tasks,
using virtual memory more intensively.

5 CONCLUSIONS

The methodology used in the cluster implementation seems to have acceptable efficiency
for application to small clusters and problems of reasonable size. The implementation is easy
and the use of common programming language is a very desirable characteristic. The
possibility of using temporary clusters of low cost hardware make this approach very useful
for small research centers

Clusters of similar computers in speed and memory seem to be the best configuration.
Slow networks (10 Mbps) are bottleneck for clusters of mid range and more powerfull
computers, and fast Ethernet networks (100 Mbps) must be used. Clusters of high-end
machines probably will need 1 Gbps networks.

Non-uniform clusters are good alternatives to use all available computers in a given
laboratory, but the best configurations still seems to be clusters of equivalent computers.
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