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Abstract. In this work we present an optimization of a mesh generation technique for pipe
connections. Several stress analyses are made on these types of connections using a
commercial finite element code with meshes supplied by the user. To facilitate the generation
of these meshes a program was developed that generates a basic parameterized mesh
composed of quadrilateral superelements, which are refined for each analysis. The user must
specify the number of subdivisions in each superelement direction for each superelement. To
optimize this process, minimizing user interventions, we employ isotropic and anisotropic
refinement indicators. In the oil industry an important point is the analysis of the contact
pressures at the connections. In the numerical examples presented we can appreciate the
importance of the mesh refinement procedure to obtain accurate values of these pressures.
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1 INTRODUCTION

Although nowadays we have powerful CAD software that simplifies the generation of finite
element meshes, except for very simple cases the construction of these meshes can be a very
laborious and time consuming task. So, in general, an initial mesh is provided with a resolution
according to the user's experience and this mesh is used till the end of the analyses. Most
popular commercial codes have few tools, if any, to make automatic mesh refinements. So, It
is very infrequent to refine this initial mesh to verify the accuracy of the results. A simple
strategy could be to refine uniformly all the elements of the initial mesh, but this can be very
costly, especially in 3D problems. A more rational strategy consists in refine the regions of the
mesh that have more error. But to implement this adaptive refinement approach we need error
and refinement indicators, which are not, in general, provided by standard finite element codes.

The analysis of pipe connections is very important in the oil industry. Several numerical
studies are needed to evaluate the quality of these connections using finite element programs
with highly nonlinear capabilities. A preprocessor has been specifically developed for the
generation of the meshes needed to model pipe connections. This preprocessor generates a
basic parameterized mesh composed of quadrilateral superelements. The user must specify the
number of subdivisions in each superelement direction for each superelement.

To optimize the definition of a mesh with sufficient resolution a series of indicators have
been added to this preprocessor. In this work we describe the implementation of these
indicators and present some examples showing the improvement of the results.

2 MESH REFINEMENT INDICATORS

The discretization error is defined as the difference between the exact and finite element
solutions, i.e.

e  =   u - uh (1)

The specification of a local error in this manner is generally not convenient to identify the
overall quality of the solution. For this reason various ‘norms’ representing some integral
scalar quantity are often introduced to measure the error. A common measure is the ‘energy
norm’. The error in the energy norm is defined as
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where S is the first order strain differential operator which defines the strains εε as

εε  =  S u (3)

and where D is the matrix of elastic constants which relates the strain vector εε with the
stress vector σσ as

σσ  =  Dεε  =  DS u (4)

Then the error in the energy norm is
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The approximate displacements uh  gives an approximate stress field σσh as

σσh =
  DS uh (6)

Then the error in the energy norm can be written as
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The error in the energy norm can be evaluated by summing over all the elements as
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In an optimal constructed mesh the error is equally distributed over all the elements, this is
known as the principle of equidistribution of error 1,2,3. Following this principle the error must
be approximately equal on each element. Taking into account that for energy norms only the
square of these norms are additive, then for an optimal mesh of ne elements we must have for
each element an ideal mean error em

neem e≈ (9)

Then we can define for each element i a refinement ratio ξi  as

m

i
i e

e
=ξ (10)

which defines the elements to be refined when ξi >1.
It is found 4 that for an optimal mesh if the mesh is uniformly refined with the size of the

element, h, tending to zero while the polynomial degree p of the approximation is fixed the
following estimate can be established

pCh≤e (11)

To construct an optimal mesh we need a mesh-size function h(x,y) which predicts the
optimal mesh-size hnew for each element. If the current element size is hold , and we assume the
rate of convergence of the error to be optimal O(hp) then the predicted element size should be

hnew = hold / (ξi )
1/p

   ,           for  ξi >1 (12)

This expression can be used too when ξi<1 indicating that in some areas a coarser
subdivision is permissible.

It should be noted that the indicators could be limited only to certain regions of the mesh by
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limiting the sum in (8) to the elements in these regions.
These indicators are isotropic, since they do not give any preferential direction to the

refinement. But it is possible to obtain directional indicators that give for each element the
main directions of refinement, that is, how to the element must be stretched to minimize the
error of the approximation.

In the neighborhood of a point x0 the function u can be expressed by a Taylor’s series as
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where H is the Hessian matrix defined as
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Assuming that uh is a good approximation to the linear and constant part of the exact
solution, that is

)()()()( 000 xxxuxuxu −∇+≈ (16)

then we have

( ) )()()( 0002
1 xxxxxuuu h −−≈− H (17)

From this expression we can see that the error depends on the direction (x- x0), that is, there
exist directions where the error is maximum and others where the error is minimum. These
directions are associated with the eigenvectors of matrix H. But this matrix is not positive
definite, so it can not be used as a metric, then is convenient to use a tensor G defined as 5

tQQG Λ= (18)

where

[ ]21 dd=Q (19)

is the matrix of eigenvectors of matrix H and
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is the matrix of the absolute values of the eigenvalues λ1, λ2 of the Hessian matrix.
The direction d1 is associated with the direction of minimum curvature or minimum error,

and the direction d2 is associated with the direction of maximum curvature or maximum error.
So, ideally the element must be stretched along direction d1 to optimize the error distribution
on the mesh.

For elasticity problems the solution u =(u,v) is vectorial, so we use instead of G the next
tensor

2
t
21

t
1 HHHHG += (21)

where H1 = H(u) and H2 = H(v).

3 ERROR ESTIMATORS

Since the exact solution is unknown we must estimate the error of the finite element
solution uh. Here we adopt error estimators based on the use of post-processing techniques to
recover stress fields that are expected to be more precise than those obtained by direct
derivation of the finite element displacement fields.

Then we can replace the exact stress σ by the recovered stress σσ* to obtain an error
estimator e* in the energy norm as
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An easy way of obtaining a smoothed stress field for linear elements consists in averaging
nodal stresses from the elements connected at each node
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where n is the number of elements surrounding the node.
The recovered nodal values are influenced by the size of the elements attached to the node

and better results are obtained when these elements have similar sizes, especially in regions of
high gradients.
To obtain the directional indicators we must approximate the second derivatives of the
displacement field. In this case we proceed in two steps, first we obtain a smoothed field for
the first derivatives by nodal averaging of the centroidal derivatives of each element
surrounding the node, that is

Then we interpolate these values of nodal derivatives with the same nodal functions used for
displacements, and the second derivatives are obtained by deriving these fields at the element
center.
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4 NUMERICAL EXAMPLES

The connection analyzed consists of two pipes with threaded ends connected by a threaded
box. Due to symmetry only one half of the connection is modeled. In figure 1 we can see a
mesh for the complete model. Two loading cases are analyzed: make up and compression.
During make up the pipe is subjected to an axial displacement due to the adjustments during
the mounting of the connection and in the compression case the pipe is subjected to
compression forces in service.

Figure 1: Complete model.

One important point in the analysis of pipe connections is the study of the sealing, and for
this we must known the contact pressures developed in the zone of the seal. In figure 2 we can
see a detail of the region of the connection and in figure 3 we can see a detail of the region of
the seal.

Figure 2: Detail of the region of the connection.

Figure 3: Detail of the region of the sealing.
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In figure 4 we can see the variation of the refinement indicator ξi for the original mesh and
two refinements for make up loading. Only are indicated the elements that must be refined
(ξi>1), and all the mesh has been considered to equidistribute the error.

          
Figure 4: Refinement indicator for all the mesh. Detail in the region of the sealing.

In figure 5 we can see the variation of the refinement indicator ξi for the original mesh and
two refinements for make up loading. Only are indicated the elements that must be refined
(ξi>1), but in this case only the elements of the region of the seal has been considered to
equidistribute the error. The meshes obtained in this case are similar to those of the previous
case indicating a negligible influence of the error in other regions of the mesh for
equidistribution of the error in the region of the seal.

Of utmost importance is the distribution of the contact pressures in the region of the seal.
We can see in figure 6 the region considered for the analyses, and in figure 7 we can see the
variation of the distribution of these pressures with the refinements, and we can appreciate the
great influence of the refinements in this distribution.



����

#� �#����������
�����&��+
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

Figure 5: Refinement indicator for the region of the sealing.

Distance along
seal surface

Figure 6: Region for distribution of contact pressures.
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Figure 7: Variation of contact pressures with refinements.

Other region of interest is the zone of the threads where the refinement is important to
capture the necking effect when subject to traction at large deformations. In figure 8 the
refinement indicators for this region are shown.

Figure 8: Refinement indicators in the region of the threads.

In figure 9 the directions of minimum curvature weighted with the refinement indicator are
shown for the elements in the region of the seal for the coarse mesh and in figure 10 the same
indicators are shown for the refined mesh. The arrows indicate the direction of stretching of
the elements for an optimal distribution of the error in the mesh.

5 CONCLUSIONS

The results show that the use of mesh refinement is necessary to obtain a precise description
of the distribution of the contact pressure in the region of the seal. Much work is needed in
relation with the directional indicator to implement anisotropic refinement of the elements, that
is with different subdivisions of its sides. In the present implementation of the mesh refinement
procedure we have not made any changes to the data structures of the finite element solver. In
this sense the current implementation is solver independent, but for a complete automatic
implementation of adaptive mesh refinements the data structures of the solver should be
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modified.

Figure 9: Directional refinement indicators for the coarse mesh.

Figure 10: Directional refinement indicators for the refined mesh.
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