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Abstract. In computer aided manufacturing is necessary to have a numerical method capable
to obtain an approximation of the surface intersection curve inside a prescribed error
tolerance and with the lowest possible number of interpolation points. The marching methods
are the most widely used to compute the intersection curve of two surfaces. A marching
method builds a sequence of points that belong to the intersection curve. The resulting
intersection points are interpolated and an approximation of the intersection is obtained. A
method to control the error of a linear interpolation process in order to satisfy the prescribed
tolerance has been done, first for a constant step size and then for an adaptive step size,
making use of the normal curvatures and the osculating circle of the intersection curve on
each surface. Using the local differential geometry of both surfaces and their intersection, we
show in this work, the extension of these ideas to the general case of Hermite-interpolation,
making use of the subdivision property of polynomial Bézier curves with the de Casteljau
algorithm. Thus, we get a marching method with an appropriate adaptive step size and with
an effective and efficient control of Hermite-interpolation error. Numerical experiences in
practical cases are presented to show the properties of the method.
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1 INTRODUCTION

The problem of describing the intersection between two surfaces arises often in mechanical
engineering applications. For example, to model solids bounded by trimmed surfaces is
important to determine the surface intersection curves and in manufacturing the tool path is
calculated from the boundary representation of the geometric model composed by surfaces
and their intersections.

In general, there is no close form representation of surface intersection. Therefore, only
approximating methods are able to provide the intersection calculation. Numerical marching
methods are the most widely used to compute the intersection curves. The pre-processing step
of a marching method must serve to detect points on each one of the components of the
intersection. Beginning at these points, the method must build a sequence of points that
belong to the intersection curve™?. The resulting intersection points will be interpolated later,
so an approximation of the intersection is generated. Manufacturing applicacions make it
necesary to specify a tolerance so that the intersection curve will always be closer than the
tolerance from the approximation generated, for all points on the intersection curve.

We propose a marching method that provides a Hermite interpolant that approximates the
intersection of two surfaces, with an error inside a prescribed tolerance and with few
interpolation points. By assuming that the pre-processing step has already been succesfully
performed, our method generates at first a polygonal whose vertices are on the intersection
and whose maximal deviation from the real intersection is less than a prescribed tolerance. For
an optimal machining process it is desirable to reduce the number of interpolation points, the
vertices of the polygonal generated before. By using the differential geometry of the two
surfaces intersection and taking into account properties of the polynomia Bézier curves, one
achieves the desirable reduction to extend the usua linear interpolation and building a
Hermite interpolation with adaptive step size and remaining inside the prescribed tol erance.

2 CONTROL OF LINEAR INTERPOLATION ERROR

In this section a method is proposed to estimate and control the error of the linear
interpolation process of surface intersection. Without loss generality, we can consider that the
intersection curve is parametrized by arc length. Making use of the normal curvatures of the
intersection curve on each one of the intersecting surfaces, we can get an upper bound for the
curvature of the intersection curve.

Thus, let ¢(s) be the 3D intersection curve parametrized by arc length s, defined on

[s,,s, + As, ] and p(s) the 3D linear polynomial, defined on [s,,s, + As, | such that

p(s,)=c(s,), p(s, + As,)=c¢(s, + As,). (@)

It is known® that the interpolation error of p(s) in s isgiven by

C(S)—P(S)=%(s—s,)(s—sl —AS,)E(Z) @
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where 5(2):(c{z)(§1),c§2)(52),c§2)(§3)) with ¢, j=123 (in genera unknown) on
[s,,s, +As,] . A straightforward cal culation shows that

le(s) - p(s)| < g max |¢® (s)|(As,)? = g max & (s)(As,)? ©)

The curvature, « , of the intersection curve, ¢, of the two surfaces S* y S?, can be expressed
in terms of the normal curvatures, k%, y k% of the curveon S' and S?, respectively, with the
unit normals, N' y N?, to the two surfaces. In fact, by considering the Frenet system4 (t,n,b)
of the curve, we have

1 2
=t N XN @
IN'xN?|
As b =-nxt, we have, expanding the triple vector product,
kb:—KnX(NIXNZ)=in111N2_Klel )
IN'xN?| IN*xN?|
Therefore,
1 2 2 1 1 2 1 2
_ KN =k, N ‘ < Kol T K0 S‘K ‘-+‘K ‘ ©)
IN'xN?| IN'xN?| siné
since each one of the absolute values of the normal curvatures, |x,,|, can be upper bounded by
the maximum of the absolute values of the principal curvatures of the surface S', |x’|. If the
surfaces are not tangentid, i.e. if siné > ¢ >0, for some ¢ >0, we have
1 2
3 K 3—
C(S)—P(S)S8.(AS,)2=8K(AS,)21 (7)

that provides a safe way to estimate the error of the linear interpolation process of the two
surfaces intersection curve.

With the estimation obtained above, we can propose now a safe method to generate points
of the intersection, which being interpolated later, will provide a polygonal that approximates
the intersection with a given tolerance.

Let £ be an error tolerance, small enough, given, for example, by manufacturing criteria.
We find intersection points of the surfaces separated by a step size As constant and small
enough, such that
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Ass\/i . ®

We can imagine a circular segment with radius 1/x from point ¢(s) on the intersection
curve ¢ tangential to ¢ at c(s). We take the length of this circular segment as /, where

i< BE andi< ™.
3k 2K

)

As xl<r/2, we can choose real numbers Kand L, such that K>x, L</ and
KL=n/2. Thus, we have a circular quadrant with radius 1/K and length L from point from
point ¢(s) intheintersection curve ¢ tangential to ¢ at ¢(s), as can be seenin Figure 1.

n

4

Y

c(si) I t

Figure 1: Control of linear interpolation error

If we intersect the plane T defined by (P —c(s))-¢®(s)=YR where R> K, with ¢, this
procedure determines a polygonal which approximates the intersection curve with a safe error
tolerance not greater than &, whose vertices are on the intersection®.

3 ADAPTIVE HERMITE INTERPOLATION

For an optimal machinig process, it is possible to reduce the number of interpolation points
that participate in the building of the precedent polygonal, in order to obtain a Hermite
interpolant with adaptive step size and inside of the given tolerance. If p(s) isthe 3D Hermite

polynomial, defined on [s,, s, + As, | such that

PV (s,)=¢V(s,), p (s, +As,) = (s, +As,), j =00k, (10)
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where p = 2k +1 is the degree of the polynomial p. It is known®, that the interpolation error
of p(s) in s isgiven by,

me@ Wsnswmww, (11)

where ¢”* ( P(E), PV (E,), el (53)). with ¢,, j=12,3 (in general unknown) on
[s,,s, + As,] . We have that

kmmm max ¢ (5))(As, ). (12)

ﬂ@)
Given ¢ an error tolerance, taking ¢, < ¢, we find, firstly, a polygonal that approximates

the intersection curve with an error tolerance not greater than &., whose vertices are on the
intersection. Then, we select, from the intersection points found before, a sequence of points
belonging to the intersection according an adaptive step size given by As,, where, for
example,

\/(p+1)(p+1)2€ £ (13)

‘ (p+1)

i

A good approximation of As, is given adding, from the start point ¢(s,), the lengths of

consecutive segments of the polygonal found before. Using the subdivision property of the
polynomial Bézier curves, which can be carry out efficiently with the de Casteljau algorithm?®,
it is calculated, in each step, the distance from the segment of polynomia Bézier curve, p(s),

defined on [s,,s, + As, |, such that p(s,)=¢"(s,), p (s, + As,)=¢c (s, + As,), j =0k,
to the corresponding portion of the polygonal obtained before. If this distance is greater than
& —¢,., which could happen if As isnot small enough, we take asmaller As and we do again

the procedure until the distance is not greater than € —&_. Thiswill be areliable As , in order

to control the error by € and with an adaptive step size. There are several ways to choose this
initial step size As,. Since the aim is to have the lowest possible number of interpolation

points, could be, to take at first As, aslarge as the whole segment.
The knowledge of ¢ (s,)andc! (s, +As,), for j=0@1k alows to determine the
polynomial Bézier curve interpolant,

p(s) = iB;’ (s)b,, se [s, .8, +As, ] (14)

3090



J. M. Olivencia and L. E. Quiroz

B’ (s) = [p 16 +as, =) (s=s,) L sels,s, +As,] j=0)p, (15)

i) (as,y
arethe p +1 Bernstein polynomials of degree p inson [s,,s, + As,|. The p +1 coefficients

b,,j=00p, ae the Bézier points, that are found as the solutions of the system of
equations, for j =01k,

| |
¢ (s)=(as,) L (E-1Yby, ¢V (s, +As,) = (s, ) L (E-1Yb,_,. (16)
(o=7) ’ (o=} -
where Eb, =b,,,, E"E"=E"™", Ea=aE, E°=1 EE*=1.

It is perceived the necessity to know the local differential geometry of the interseccion of
two surfaces. Specificaly, if one wishes a cubic interpolant, one must know to calculate the
fourth-order derivative, at points of the intersection curve. This has been discussed by Ye et
al.%. For the sake of completeness, in the next secction it is showed how to proceed for
caculating these loca differential geometry properties of the intersection between two
surfaces.

4 DIFFERENTIAL GEOMETRY OF INTERSECTION CURVE

Given a 3D curve ¢ =c¢(s) parametrized by arc length s, from differential geometry of
curves?, we have that ¢® =t is the unit tangent vector of ¢(s) in s and ¢® =xn, where n
and x are the unit norma vector and the curvature, respectively, of ¢(s) in s. The unit
binormal vector b=txn is such that b® =, being 7 the torsion of ¢(s) in s. The
trihedron (t,n,b), constitutes an orthonormal ordered basis positively oriented, the Frenet
basis, which satisfy the system of differential equations, the Frenet equations,

t® =xm
n® =—x-1b. 17
b® =m

By differentiation with respect to s and expressing in terms of the Frenet basis we have
¢® =—x%t+xYn—xib, (18)
e =3kt + (K(Z) . K'S)‘I + (— 207 — 5z ® )) , (19)

and so on. Ye et al.® propose the following procedure to calculate the differential geometry of
the intersection curve of two surfaces: Given the intersecting surfaces S*(u,,v,) Y 8 (u,,v,),

3091



MECOM 2002 — First South-American Congress on Computational Mechanics

b=t (20)

is the unit tangent vector of the intersection curve, the sign depends of the tracing sense.
Naturally N*-N? = cosé6 , being 6 the angle that form the unit normal vectors N*, N2, of the
surfaces S*, S?, respectively. Moreover, bn+cb = aN' + SN?. Using the scalar product of
the first derivative of ¢ asacurve on the surface S’ by S! , S’ respectively, we obtain

u?

EI (1 I (1 SI . 21
F'u® +G’v,(1 =S, -c‘l” &

thus, we have u,@ , v,(l’ . Using the scalar product of the second derivative of ¢ as a curve on
the surface S’ by N, we obtain

K,’ﬂ:c(z) -N'=e (u(l) +2f"u; Wy® 4 g (v(l)) (22)

Since, ¢® =xm =a,N" + ,N?, we have that

oy, +(cos8) B, =¢? -N® =}
{ 1 ( )ﬂl (2) (2) n21 . (23)
(cosO)a, + Bi=c¢ N¥Y=xg
&)!
2
@ _ Ky _.K';l cosO 1, K2 Knl C0SO ‘2 ‘ @ ‘ (24)
sin“6 sin’6
Having calculated t, ¢® and « , it is now possible to calculate
@
n=——andb=txn. (25)
K
Using the scalar product of the second derivative of ¢ as a curve on the surface S’ by S, S/
respectively, we obtain
EI Gi
E'u® + F'v® =8 . —?”(u,(l)) —Eu®y® [F' 5 }V,(l))2
_ : (26)
F,u(z) +G'v(2) =S .c [F' E } (1)) G (1) (1) g(v(l))z
1 1 v 2 Il l 2 1

thus, we have u®, v . Using the scalar product of the third derivative of ¢ as a curve on the
surface ' by N', we obtain
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K, =c® N’ :3(‘3:”’(1)”’(2) + PO +u®y @y + g’v,‘l’v,(z))

_ . (27
+ S;um : NI (ui(l) )3 + $;mr : NI (ui(l) ) 2Vi(l) + 3S;4vv : Nlui(l) (vl(l))z + Slvvv : NI (vl(l))3'
Since, ¢® =—x?t+x®n + kb = —xt + a,N* + B,N?, we have that
a, +(cos8) B, =¢? -N@ =x, (28)
(cosO)ax, + B,=c® N®=x2’
So,
1 2 2 1
K., — K., COsS@ K., —K,, C0sS@
¢® = _x2¢ 4 D2 . .;2 NI 4 Dn2 : ;2 NZ2. (29)
sin“6 sin© 6
Now, it is possible to calculate
@,
=P gk ® —® ., (30)

Thus, we can continue the recursive processin this way.

S NUMERICAL EXPERIENCES

In this section we show the application of the proposed method, first in the calculation of
the intersection curve of two tensor product Bézier surfaces with a prescribed error tolerance.
One of the surfacesis given by the control points

b0,0:(01010): blyo:(l,o,l), b2,0:(2,0,1), b3‘o:(3,0,0),

boqlz(O,l,l), blvl:(l,l,o), b2,1:(2,1,0), b3'1:(3,l,1),

bo,2=(0,2,1), b1,2:(1,2,0), b2,2:(2,2,0), b3'2:(3,2,1),

b0,3:(0,3,0): b1,3:(1,3,l), b2,3:(2,3,1), b3,3:(3,3,0),
and the another Bézier surface is given by the control points

bovo:(-l,-l,-l), bl,o:(l,-l,-l),bz,o:(z,-l,-l), b3,o:(4,-l, l),

bo1=(-1, 1,-1), b11=(1, 1, 2), b21=(2, 1, 2), b31=(4, 1,-1),

bovzz(-l, 2,-1), blvzz(l, 2, 2), b2,2:(2, 2, 2), b3,2:(4, 2,-1),

bovgz(-l, 4, 1), bl,gz(l, 4,-1), b2y3:(2, 4,-1), b3’3:(4, 4, 1)
The intersection of the considered surfaces will be composed by five components, a closed
curve and four open curvesin the corners of one of the surfaces, asisrendered in the Figure 2.
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Figure 2: Intersection of two Bézier surfaces

To approximate the intersection, the interpolation process is performed, with the proposed
method, as follows. The maximum value of the absolute value of the principa curvatures of
the surfaces $* and §° is |k"| =1.1233 and |k?| =0.8779 respectively. The intersection angle

between the surfaces is not less than 20°. Since the surface intersection is not tangential, this
can be locally achieved by recursively subdivision of the intersecting surfaces. Now, let
£=0.05 the alowed error tolerance. Taking, ¢, <<e, we have, for the first step of the
proposed method, a constant step size and small enough as to guarantee the convergence of
the involved Newton-Raphson iteration. This first step yields a closed polygonal and four
congruent open polygonals, that approximate the intersection with a safe error tolerance not
greater than ¢,.

For adaptive cubic interpolation, the second step of the proposed method can use naturally
an adaptive step sizegiven by As, aslarge as the remainder of the actual segment. This second
step provides 8 interpolation points for the closed component of the intersection and 2
interpolation points for each one of the four open components (see Figure 3.8). By joining
with cubic Bézier curves each pair of consecutive pointsin each one of the components of the
intersection (see magnifications in Figures 3.b and 3.c), we obtain a closed cubic piecewise
interpolant and four open cubic piecewise interpolants whose distance to the composed
polygonal found in the first step is not greater than ¢ - &.. Thus, we obtain a confident adaptive
cubic interpolant (see Figure 3.d), that remains inside the prescribed error tolerance, £ = 0.05.
The Figure 4 shows the behavior of the error of the open interpolants and the Figure 5, the
behavior of the error of the closed interpolant.
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Figure 3: Adaptive cubic interpolation

Figure 4: Graphic of the errors of the adaptive cubic interpolation (one of the open components)
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Figure 5: Graphic of the errors of the adaptive cubic interpolation (the closed component)

We show now the application of the proposed method in the calculation of the intersection
curve of two tensor product Bézier surfaces with a prescribed error tolerance.
Now, one of the surfacesis given by the control points
bovo:(-l, 1,0),b1,o:(-3, 1,10), b2,0:(3, 1,10), b3,0:(1, 1, 0),
bovlz(-l, 6,0),[)1,1:(-3, 6,10), b2,1:(3, 6,10), b3,1:(1, 6, O),
bo2=(-1,11,0),b1,=(-3,11,10), b, =(3,11,10), b3 »=(1,11,10),
bo'3:(-l,16,0),b1,3:(-3,l6,10), b2,3:(3,16,10), b3,3:(1,16, 0),
and the another Bézier surface is given by the control points
bo'o:(-l,o, -4), blvo:(-6,6,-4),bzyo:(6,6, -4), b3vo:(6,0, -4),
bovlz(-G,O, 0), b1'1:(-6,6, 0), b211:(6,6, 0), b3,1:(6,0, 0),
bovzz(-G,O, 5),b1'2:(-6,6, 5), b2,2:(6,6, 5), b3'2:(6,0, 5),
b0q3:(-6,0,10),b1,3:(-6,6,10), b2,3:(6,6,10), b3'3:(6,0,10).
The intersection of the considered surfaces will be composed by one open component.
To approximate the intersection, the interpolation process is performed, with the proposed
method, as follows. The maximum value of the absolute value of the principal curvatures of

the surfaces S* and S? can be estimated as ‘kl‘:l.667 and ‘kz‘ =0.271 respectively. The

intersection angle between the surfaces is not less than 80°. Now, let £ = 0.1 the allowed error
tolerance. Taking, ¢, << &, we have, for the first step of the proposed method, a constant step
size and small enough as to guarantee the convergence of the involved Newton-Raphson
iteration. This first step yields a closed polygonal and four congruent open polygonals, that
approximate the intersection with a safe error tolerance not greater than &,.

For adaptive cubic interpolation, the second step of the proposed method can use naturally
an adaptive step size given by As, aslarge as the remainder of the actual segment. This second
step provides 5 interpolation points (see Figure 6). By joining with cubic Bézier curves each
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pair of consecutive points (see Figures 6), we obtain a cubic piecewise interpolant whose
distance to the composed polygonal found in the first step is not greater than € - . Thus, we
obtain a confident adaptive cubic interpolant (see Figure 6), that remains inside the prescribed
error tolerance, € = 0.1. The Figure 7 shows the behavior of the error of the interpolant.

Figure 6: Adaptive cubic interpolation

Figure 7: Graphic of the errors of the adaptive cubic interpolation
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6 CONCLUSIONS

The proposed method allows to control and adapt the step size, to get a prescribed error
tolerance, distributing the interpolation points in a suitable way. Since the method
contemplates an a posteriori control of the approximation error, it is possible to choose the
initial step size in several ways. For example relaxing, by a factor 3, the step size in the
second step of the algorithm, we obtain good results, diminishing the number of interpolation
points. The required information to control the approximation error is the local differentia
geometry of the intersection curve. This requires that the involved surfaces are differentiable
enough. Although in the numerical experiences we used cubic interpolants, it is clear that
higher degree interpolants can be used.
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