Mecénica Computacional Vol. XXI, pp. 2593-2605
S. R. Idelsohn, V. E. Sonzogni and A. Cardona (Eds.)
Santa Fe—Parana, Argentina, October 2002

COMPUTATIONAL MODEL FOR NON-ISOTHERMAL MELT
SPINNING FLOWS: THE LOW TAKE UP VELOCITY RANGE

Mariel L. Ottone, Marta B. Peirotti and Julio A. Deiber

Instituto de Desarrollo Tecnologico para la Industria Quimica
(INTEC-UNL-CONICET)
Giiemes 3450, 3000 Santa Fe, Argentina

e-mail: treoflu@ceride.gov.ar

Key words: Non-isothermal spinning flows, finite differences, stress and thermal fields,
rheometric extensional viscosity, process extensional viscosity.

Abstract. This work shows the interrelation between non-isothermal melt spinning flows and
the isothermal extensional flow described through rheometry. This analysis uses the iterative
numerical algorithm presented by Ottone and Deiber' for non-isothermal melt spinning flows
in the low take up velocity range. The results obtained for two take up velocities (1500 and
2500 m/min) are then shown in the extensional rheometric map composed by the lines of the
steady state rheometric extensional viscosity as function of the extensional rate at different
parametric temperatures. Then the search of scaling functions that allows one the formulation
of master curves relating both flows is analyzed and discussed.
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1 INTRODUCTION

Non-isothermal melt spinning flows at low take up velocities can be modeled by
considering a filament of polymer melt continuously drawn and simultaneously cooled with
air in order to obtain a solidified yam. In this sense all the filaments found in the spinneret are
assumed to achieve the same properties during the spinning process. These filaments compose
the synthetic fiber in the bobbin (Figure 1 shows a scheme for this operation involving one
filament only). Melt spinning is a basic non-isothermal process in the production of synthetic
fibers (see, for example, Denr™” and Schowalter4) and hence a model describing the velocity,
stress and temperature fields in a filament can be useful to control the quality of the final
product.

Recently, Oftone and Deiber' provided a computational algorithm based on finite
differences to obtain the axial velocity profile and the thermal and stress fields in the 2-D
domain of the filament. In this work, the perturbation analysis of the full spinning model
reported by Henson et al.” was considered. This model was formulated for the low speed
range (flow induced crystallization was not considered) through a regular perturbation
analysis that included the slenderness approximation associated to long fibers of very small
diameters. Therefore, apart from describing the relevant fields in the filament, it was also
predicted phenomena present in melt fiber-spinning process like the skin-core structure.
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Figure 1: Scheme of the melt spinning process involving one filament.

From the above analysis, it is clear that the radial and axial stress and temperature fields in
melt fiber spinning may be estimated within a consistent theoretical framework of a perturbed
2-D model that uses the slenderness approximation for the low speed range. For this purpose,
a robust numerical algorithm computing the resulting momentum and energy balances
coupled to constitutive equations is also available. In addition, this implies that the hybrid 1-D
fluid mechanics/2-D thermal models, as they are designated by Doufas and McHugh’, can be
avoided. In the hybrid models, approximations associated to the average of nonlinear terms
involving temperature and stresses are required.
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The purposes of the present work is to show that within the structure of the perturbed 2-D
model discussed above, one can look for the interrelation between the non-isothermal
spinning flow and the isothermal extensional flow described rigorously through rheometry.
For this task the iterative numerical algorithm proposed by Ottone and Deiber' is used. The
results obtained for two take up velocities (1500 and 2500 m/min) are then shown in the
extensional rheometric map composed by lines of the steady state rheometric extensional
viscosity versus the extensional rate at different parametric temperatures. Then the search of
scaling functions that allows one the formulation of master curves relating both flows is
analyzed and discussed.

The discrete non-isothermal melt spinning model is expressed in finite differences, which
involve the implicit tridiagonal algorithm for the temperature field and the explicit -implicit
backward differences for the stresses. Fine meshes can be generated to the required precision
(for instance, 100 radial nodes and axial step sizes of 10 m).

The relation between isothermal extensional flow and other flow kinematics, like shear
flows, has been of interest since the early stages of rheometry with the purpose of evaluating
the extensional viscosity (theometric function) through other simple kinematics attained
easily in experimental programs. At present, it is known that within the isothermal point of
view this target is difficult to achieve’. It is also clear that experimental data of the steady
state extensional viscosity of polymer melts at different temperatures are rather difficult to
obtain. Therefore, in this context of analysis, our results provide a new insight to this basic
problem when norrisothermal melt spinning flows are considered. The analysis can be done
only by using a constitutive model as a reference framework because the amount of
experimental data required for this purpose is not available. Thus, we use here the PhanThien
and Tanner viscoelastic constitutive equation, which is appropriate to describe extensional
flows. The study is carried out for polyethylene therephtalate (PET) which is a typical
polymer used in the commercial production of fibers.

2 BASIC EQUATIONS

In this section we present briefly the non-isothermal melt spinning model formulated for
the steady state regime, (a full description is already published'). Since the polymer is
considered incompressible, the mass balance implies,

(V-y)=0 )
where v is the velocity vector. The balance of momentum in the filament is expressed,
pyv-Vv=-Vp+V-1+pg )

where p is the polymer density, p is the pressure field, g is the gravity vector and 7 is the

extra stress tensor considered symmetric throughout this work. The energy balance in the
filament is,

pe,y-VI'=-V.-q+D:1 ©)
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where ¢, =a+bT is the polymer thermal capacity and 7 is the temperature field
(temperature T is expressed in °C throughout this work). In Eq. 3), ¢=—k; -VT s the heat

flux vector, k, is the thermal conductivity and D:7 is the mechanical power. This term

involves the rate of deformation tensor D= Vv+ﬂT )/ 2 which is a function of the fluid

kinematics v(r,z)=v_e_+v,e,, where v, and v, are the axial and radial components of the

ror?
velocity vector, respectively, in the cylindrical coordinate system.
To complete the formulation of the spinning model, the viscoelastic stress zp is required,

which is a part of the total extra stress tensor T=7 +7 ,where T =2n,D is associated to
5 =5 =

= =p =

retardation effects. In this sense, one expresses,
1)
T +A—1 =2AGD ()
=p  6t=r -

for the Phan-Thien and Tanner model (PTTM)® In Eq. (4),

ir :21 L7 -t L' -1 DnT
6t=P Dt=p — =p =p = =p Dt

Q)

is the GordomSchowalter™'® non-affine time-convective derivative, where the effect of the

thermal history is added through the term DinT/Dt. Also L=V-v—xD is the effective
velocity gradient tensor. We define 1, =1, (l—a)/ a and 1, = AG , hence the instantaneous
elastic response of the model can be obtained for o =1.""!

Since the rheological model gets the linear viscoelastic response at the asymptotic limit of
small shear rates, the relaxation time can be expressed A=A1, (T)/ K (T ,trr) where
Ao = Ay exp|—11.9755 + 6802 /(T +273)] as reported by Gregory and Watson.'? Here, the
PTTM considers a relaxation time that is a function of the stress tensor through the function
K =exp{§ trz/ GJ. In this context of analysis the relaxation modulus is also allowed to change

with temperature according to G =G,, (7/7,.) where T, is the reference temperature.

Rheometric characterizations of this rheological model were carried out by following the
same procedure described by Ottone and Deiber' to evaluate the rheological parameters of
the PET melt with experimental data reported by Gregory and Watson'? involving the shear
rate flow of a sample that had the same intrinsic viscosity as the PET used by George."* The
thermo-physical properties required above are also reported in our work.'®

The appropriate set of boundary conditions to solve Eqs (1) to (5) are taken directly from
Denn” and the numerical method used is that proposed by Ottone and Deiber. !

3 RHEOMETRIC AND PROCESS ELONGACIONAL VISCOSITIES
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To analyze the relation between non-isothermal melt spinning flows'>'® and the isothermal
extensional flow (the target of this work), we have to define the rheometric and process
extensional viscosities. While the first viscosity is a rheometric function under isothermal
conditions, the second one is obtained from the non-isothermal melt spinning process where a
radial averaged and axial varying temperature profile is obtained. Therefore, throughout the
rest of this work, the use of a super-index p to indicate any variable evaluated with the melt

spinning model is appropriate. It is also clear that the process variables 7,7, €7 and

TP cannot be placed in the theometric extensional map (the extensional viscosity 7, versus

the extensional rate € for different parametric temperatures 7 ) without further
considerations. For this task to be possible, the “equivalent rheometric variable”, designated
here with a super index (¥), should be defined. These properties allow one to plot the results
of the melt spinning process (trajectories) in the extensional rheometric map defined with the
true theometric variables 1, , € and TV

In this section we use a cylindrical coordinate system (z,r,0 ) placing the z-axis along the
filament from the maximum swelling to the take up roll (Figure 1). Also, it is should be
observed that the numerical method used involves a coordinate transformation defining new
variables (Z,£,0 ) with Z = z . Therefore, the extensional viscosity is expressed’,

n,(r.8)=——T ©

€

&

where €= is constant when steady rheometric conditions are achieved. In a similar way,

one can also define the process extensional viscosity,

V4
(TZZ _z'" )

-4

" ér)= 0

. ov, Y N
where the process extensional rate is obtained from €7 = E)ZZ] .In Eq. (7), T is the

equivalent rheometric temperature, which results from the extensional rheometric map with
the values of 1, y €7 .1t is understood that that temperature T"is different fom the process
temperature 77 that corresponds to values 7,7 and €7. Thus, the equivalent rhemetric

variables take the value from the extensional rheometric map and correlates with the other
two remaining process variables at the same axial position.
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It is also clear that we can obtain three different equivalent rheometric variables for the

melt spinning process: 7’ Y ne* y é . Consequently, the equivalent rheometric extensional
viscosity is,
zz r ¥
. T -7
nlrr.er)- ®
&r

and is obtained with 77 and £”. Finally, the equivalent rheometric extensional rate comes
from the extensional rheometric map with the values 77 and 7,7 as follows:

e*(rp,n”)=(avz J ©

oZ

where the process extensional viscosity is,

(TZZ _ T”"

n (e er)=t—2 (10)
€

One should observe that Eqs (7) and (10) refers to the same value of extensional viscosity but
they have associated different temperatures.
Once the interplay between process and extensional rheometric variables has been defined,

the search of master curves are carried out by using the thermal shift factor @7, which is

expressed,

6802. 1 ] an

(T +273)

for the PET. Thus, Eq. (11) can be used to find either the rheometric shift factor a; and

process shift factor a;# when data of Tand T # are available, respectively.

4 RESULTS AND DISCUSSION

Figures 2 and 3 show numerical predictions with the PTTM of the axial velocity v, and

the radial averaged temperature (T ) for two different take up velocties (1500 and 2500
m/min) to illustrate the data available in the search of the master curves proposed in this work.
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In previous works™® we also showed that good agreement between numerical results and
experimental data is obtained for take up velocitie s of 3000, 2000 and 1000 m/min.

Figure 4 shows trajectories of the melt spinning process in the extensional rheometric map
for the two take up velocities of Figures 2 and 3, when the equivalent rheometric extensional
rate is used (Eq. (9)). An interesting result can be obtained when the curves of Figure 4 are
presented through a master curve by using Eq. (11) to reduce the extensional rate at the
reference temperature. Thus, Figure 5 shows that the rheometric and process master curves
become superposed and that the melt spinning process should be within the range where the
theometric  extensional viscosity is increasing with extensional rate. The reference
temperature for these calculations is 295 °C.

Nevertheless, this is not necesarily the only master curve that can be achieved because we
have also defined other equivalent rheometric variables. For instance, Figure 6 shows
trajectories of the melt spinning process in the extensional rheometric map for the two take up
velocities of Figures 2 and 3, when the equivalent rheometric extensional viscosity is used
(Eq. (8)) and hence, Figure 7 shows that the rheometric and process master curves become
superposed again, but in this case the melt spinning process is within the range where the
rheometric extensionalviscosity is decreasing. From the two types of master curves discussed
above one should observe that the equivalent rheometric extensional viscosity is rather
difficult to interpret and further studies are required in this sense.

To complete the anlaysis involving the equations of the previous section, Figure 8 shows
trajectories of the melt spinning process in the extensional rheometric map for the two take up
velocities of Figures 2 and 3, when the equivalent rheometric temperature is used (Eq. (7))
and hence, Figure 9 shows that the rheometric and process master curves become superposed
again, but in this case the melt spinning process is within the same range as for the case in
which the equivalent rheometric extensional rate is used. This certainly indicates that both
reduction process to a master curve are similar.

Finally, Figure 10 shows that the rheometric and process master curves do not coincide
when the concept of equivalent rheometric temperature is not taken into account (Eq. (7)).
Although these master curves are obtained using Eq. (11) to reduce the extensional rate at the
reference temperature, one observes that the effect of different thermal histories become
evident. Thus, the rheometric extensional viscosity is higher than those of the process at
different take up velocities for the reported reference temperature. However, for low values of
extensional rate the three curves tend asymptotically to the Trouton value.
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Figure 2: Numerical predictions with the PTTM of the axial spinning velocity v, at two different take up
velocities for the PET melt.
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Figure 3: Numerical predictions with the PTTM of the average temperature <T > at two different take up

velocities for the PET melt.
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Figure 4: Trajectories of the melt spinning process (lines with symbols) in the extensional rheometric map (full
lines) for two take up velocities when the equivalent rheometric extensional rate is defined.
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Figure 5: Rheometric master curve (full line). Symbols belong to the reduced trajectories of the melt spinning

process in the extensional rheometric map (full lines) for two take up velocities when the equivalent theometric
extensional rate is defined.
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Figure 6: Trajectories of the spinning process (lines with symbols) in the extensional rheometric map (full lines)
for two take up velocities when the equivalent rheometric extensional viscosity is defined.
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Figure 7: Rheometric master curve (full line). Symbols belong to the reduced trajectories of the melt spinning
process in the extensional rheometric map for two take up velocities when the equivalent rheometric extensional
viscosity is defined
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Figure 8: Trajectories of the spinning process (lines with symbols) in the extensional rheometric map (full lines)
for two take up velocities when the equivalent rheometric temperature is defined.
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Figure 9: Rheometric master curve (full line). Symbols belong to the reduced trajectories of the melt spinning
process in the extensional rheometric map for two take up velocities when the equivalent rheometric temperature
is defined
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Figure 10: Rheometric master curve (full line). Symbols belong to the reduced trajectories of the melt spinning
process in the extensional rheometric map (full lines) for two take up velocities when the equivalent rheometric
temperature is defined.

5 CONCLUSIONS

Numerical results concerning velocity, temperature and stresses of non-isothermal melt
spinning flows can be placed as process trajectories in the rheometric extensional map
composed by the extensional viscosity 17, as function of the extensional rate ¢ for different
parametric temperatures 7. The interplay between these flows is possible when the equivalent
rheometric variables are defined in terms of the corresponding pair of process variables at
each axial position. The three cases considered yield coincident rheometric and process
master curves when the extensional rate is reduced with the appropriate thermal shift factor.
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