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Abstract. From an industrial point of view, knowledge of flow conditions in a metallurgi-
cal ladle is of fundamental importance for optimization of refining process. Three different
phases coexist in the ladle: two liquid phases, the molten metal and the slag, and a gaseous
phase, the argon injected through a nozzle located at the bottom of the ladle. The dispersed
gas phase induces a recirculating flow in the metal and generates turbulence in the plume
region. As a consequence of buoyancy, the slag has a tendency to stratify above the metal,
but there is also entrainment caused by the metal flow. Understanding flow conditions
in the slag region will help in the comprehension of various phenomena such as mixing,
slag emulsification, and chemical reactions between phases. To avoid difficulties due to
operating conditions, a water-air scaled physical model is frequently used to simulate the
argon and the metal (water and molten steel have similar kinematic viscosity), and the
slag is modelled using oil or kerosene. Since there are much more experimental data for
water-air models, we start simulating numerically this class of systems. In particular,
we analyzed the experimental data obtained by Castillejos and Brimacombe*. Numerical
calculations were made using the commercial code CFX. This program can predict the flow
in a turbulent multiphase system and allows us to establish which are the most important
physical phenomena that determine the behavior of the main variables in a metallurgical
ladle. We analyze which are the governing equations that properly describe the system and
present a detailed study of the water-air system. In addition, we show how the principal
characteristics of the flow are modified when the free surface and the slag are incorporated
into the model. The results obtained compare very well with experimental measurements
and this suggests that the effects included in the model are the most relevant in order to
suitably represent the ladle for technological purpose.
* A. H. Castillejos and J. K. Brimacombe, Metall. Trans., 18B, 659 (1987).
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1 INTRODUCTION

Three different phases coexist in the refining operations in a metallurgical ladle: the
molten metal, the slag and the argon injected to induce the stirring. Knowledge of
the flow conditions of the metal, particularly in the region where it is in contact with
slag, is very important for the industry. This information helps in the understanding of
various phenomena such as mixing, slag emulsification in the molten metal phase, and
chemical reactions between phases. Due to the high temperature operation conditions,
direct measurements of flow conditions in the ladle are hard to implement. For this reason,
a physical model of air and water is frequently used to simulate the real system.1

We simulated the water-air system numerically using the commercial code CFX-4.4.
This is a program for the prediction of laminar and turbulent flow, and heat transfer,
which includes features like multi-phase flow, combustion and particle transport. Flow
calculations in this software are based on the resolution of the Navier-Stokes equations
in either transient or stationary regimes. The code can solve free surface problems where
the grid moves to fit the free surface depending upon an assumed boundary condition of
constant pressure. An arbitrary number of phases may be specified. Phases are assumed
to form an inter-penetrating continuum whereby each phase occupies a certain volume
fraction of each control cell.

In this paper we analyze the effects that have to be included in the model in order to
properly describe this industrial process for optimization. We will limit our analysis to
the water-air system and the experiment we modelled is that of Ref. [2].

2 BALANCE EQUATIONS

Since we are only interested in a rather global information about gas phase, e.g. bubble
velocity and concentration, and not in how a bubble is deformed, and since the length
scale we want to resolve is larger than the scale in which phases are mixed, we chose
an Eulerian-Eulerian approach to describe the system. In this formulation each phase
is treated as an interpenetrating continuum, i.e., each phase is assumed present in each
control volume, and assigned a volume fraction equal to the occupied fraction of the
control volume.

Large bubbles can have a different velocity field from that of the continuous phase.
In this case each phase have its own movement equation and the interaction between
phases has to be modelled. This is the regime in which we are interested which is best
described by the so-called multi-fluid model: a separate solution field exists for each
phase and transported quantities interact via inter-phase transfer terms. Phases may
have different velocities, but they will have a tendency to equalize because of inter-phase
forces. Therefore, balance equations consist of equations corresponding to separate one-
phase systems plus some additional terms that take into account their interaction.

We label phases by Greek indices α, β, γ, . . . and denote the number of phases by
NP and the volume fraction of each phase by rα. In the incompressible case, the balance
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equations are3

∂rα

∂t
+ ∇ · (rαUα) = 0 , (1)

ρα
∂(rαUα)

∂t
+ ρα∇ · (rαUαUα) −∇ · (rαµα(∇Uα + (∇Uα)

T ))

= rα(Bα −∇pα) +

NP∑
β=1

c
(d)
αβ(Uβ − Uα) + Fα , (2)

NP∑
α=1

rα = 1 , (3)

pα = p1 = p , 2 ≤ α ≤ NP , (4)

where U denotes velocity, ρ density, µ viscosity, B body forces, and p pressure. Terms
containing coefficients c

(d)
αβ are the inter-phase drag forces and the terms Fα are any other

inter-phase non-drag forces.

3 TURBULENCE IN TWO-PHASE FLOW

The subject of multi-phase turbulence modelling is not as well developed as single-phase
turbulence modelling. There is no “industrial standard” model, like the single phase k–ε
model which is known to perform reasonably well to engineering accuracy in a wide range
of applications. Therefore, the model adopted is the simplest possible generalization of
the single-phase k–ε model to the multi-phase situation, with the only modification being
the possible inclusion of Sato’s model for bubble induced turbulence.

3.1 The multi-fluid k–ε model

In the simple unmodified multi-fluid k–ε model, individual phases are allowed to be de-
clared as turbulent or laminar. We assume that the eddy viscosity hypothesis holds for
each turbulent phase: molecular and turbulent diffusion of momentum is governed by an
effective viscosity

µαeff = µα + µTα , (5)

where

µTα = Cµρα
k2

α

εα

. (6)

Thus, the equations for the turbulent incompressible case are

∂rα

∂t
+ ∇ · (rαUα) = 0 , (7)
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ρα
∂(rαUα)

∂t
+ ρα∇ · (rαUαUα) −∇ · (rαµαeff (∇Uα + (∇Uα)

T ))

= rα(Bα −∇(pα +
2

3
ραkα)) +

NP∑
β=1

c
(d)
αβ(Uβ − Uα) + Fα , (8)

NP∑
α=1

rα = 1 , (9)

pα = p1 = p, 2 ≤ α ≤ NP , (10)

together with the equations for k and ε, which are practically the same as those corre-
sponding to single phase case.

ρα
∂(rαkα)

∂t
+ ραUα · ∇(rαkα) −∇ ·

((
µ +

µTα

σk

)
rα∇kα

)

= rα(Pα − ραεα) +

NP∑
β=1

c
(k)
αβ (kβ − kα) , (11)

and

ρα
∂(rαεα)

∂t
+ ραUα · ∇(rαεα) −∇ ·

((
µ +

µTα

σε

)
rα∇εα

)

= C1
εα

kα

Pα − C2ρα
ε2

α

kα

+

NP∑
β=1

c
(ε)
αβ(εβ − εα) , (12)

where the shear production Pα is

Pα = µeff∇Uα : (∇Uα + (∇Uα)
T ) . (13)

The constants used are Cµ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.22. The only

difference with the single phase case is the inclusion of the terms
NP∑
β=1

c
(k)
αβ (kβ − kα) and

NP∑
β=1

c
(ε)
αβ(εβ − εα), that interchange k and ε between the phases; however, since in our case

we are modelling water as turbulent and air as laminar these interchange terms are zero.

4 NUMERICAL MODELLING

The numerical results were obtained solving a system with the following characteristics:

• Two dimensional with axial symmetry.
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• Grids of 40x25, 80x50 and 160x100 rectangular elements.

• Isothermal and incompressible flow.

• Liquid phase (water) continuum and turbulent (k-e model).

• Gas phase (air) dispersed and laminar that can flow through the free surface.

• Air density depends only on hydrostatic pressure.

• Each phase has its own set of variables (multi-fluid model).

• Drag as well as non-drag forces are included.

• Deformable free surface.

The way in which the gas is dispersed in the ladle is governed by the buoyant force and
by the interaction with the liquid phase. The interaction between phases is due mainly to
drag forces which are originated by pressure and friction between phases and act in the
direction opposite to movement. However, not only drag forces but also non-drag forces
are important and have to be considered in this case. They are the virtual mass force,
the lift force, and the turbulent dispersion force.

The virtual mass force represents the force due to the inertia of a bubble, including
the surrounding liquid, when the bubble is accelerated. The lift force appears because a
bubble moving in a linear shear flow has an unsymmetrical pressure distribution on its
external boundary and then it is driven into the direction of largest relative velocity. The
lift force, therefore, acts perpendicular to the relative velocity. When the typical size of
the dispersed phase is of the order of the fluctuation length scale of the continuous phase,
the effect of diffusion should be considered. In the laminar case this situation appears
only when the phases are mixed at molecular level, which is not our case. However, when
the flow regime is turbulent, fluctuations of the continuous phase may be comparable with
the bubble size and diffusion may be important. This effect is usually taken into account
through a non-drag force called turbulent dispersion force, but other alternatives exist
as we will comment further on. Another effect that have to be taken into account is the
turbulence that can be generated behind the bubbles. This effect can transform a laminar
flow in a turbulent one or can increase an existing turbulence in the continuous phase.

All the effects mentioned are always present, although the relative importance of each
one depends on the size of the bubbles and on the degree of turbulence in the system.
In the literature, the drag force is always included to describe the interaction between
the phases, but sometimes some or all of the other effects are neglected. Our results
indicate that if we are interested in determining the velocity field of the liquid phase, we
may use drastic approximations of this kind; however, in order to properly describe the
gas velocity and volume fraction, non-drag forces have to be considered. Having a good
description not only of the velocity field of the continuous phase but also of the volume
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fraction of the dispersed phase will be of utmost importance in the description of the slag
emulsification phenomena.

We will start showing preliminary results, including non-drag effects, of one of the cases
studied in Ref. [2]. After that, will describe in more detail the way in which non-drag
effects are implemented as well as how the numerical results can be improved when the
influence of each effect is known.

In figure 1, streak lines representing the water velocity field and the air volume fraction
are shown. This case corresponds to a cylindric ladle with internal diameter of 500 mm
and height of water of 400 mm. The nozzle, with a diameter of 6.35 mm was located at
the center of the bottom of the ladle and the gas flow rate was 371 cm3/s at STP. There,
we can see how the air injected at the bottom of the ladle induce a recirculating flow in
the water.

Figure 1: Streak lines corresponding to the water phase (left) and volume fraction of the air phase (right)

The volume fraction of the air on the symmetry axis of the cylinder as a function of
vertical distance from the nozzle is shown in figure 2. We can see changes in the numerical
predictions when non-drag effects with typical coefficients are included.

Gas fraction on figure 2 is a good indicator in order to see if the dispersed phase is
correctly treated. If we have a good description of the volume fraction as a function of
height on the symmetry axis, the radial dependency will also be well described because
the gas flow rate is the same at any height. Consequently, lower gas volume fractions on
the symmetry axis correspond to more dispersed volume fractions in the radial direction.
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It is observed experimentally that after a given height from the nozzle, gas volume
fractions have a similar behavior even when gas flow rate, diameter of the nozzle and
bath depth are changed.
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Figure 2: Volume fraction of the air phase on the symmetry axis of the ladle.

When results are shown as in figure 2, comparison with experimental results seems to
be good at a first glance. However, when results are plotted in a log-log graphic like in
figure 5 of Ref. [2], things do not look so favorable (see figure 3) even including non-drag
effects.
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Figure 3: Volume fraction of the air phase on the symmetry axis of the ladle in a log-log graphic.

One of the weak points in the results of figure 3 is the difference with experiments near
the nozzle. This region is hard to be described correctly because bubbles are large and
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breakup and coalescence phenomena are important in this zone. Good modelling of these
phenomena requires the consideration of bubbles of different sizes and is beyond the scope
of this work (we are working with only one bubble size). Our primary interest is not in
the region near the nozzle but in the region in which the plume is completely developed
and where the bubble size distribution is more stable. As it can be seen in figure 3,
the main problem in the developed plume region is that numerical and experimental gas
fraction curves have different slopes. The slope of the gas fraction curve is a characteristic
of the system that is maintained in different plumes (see, e.g., fig. 5 of Ref. [2]) and it
should be desirable to reproduce this feature in numerical simulations. As we will show
in what follows, even when working with a unique bubble size, the gas fraction can be
well described when the influence of non-drag effects is taken into account.

4.1 Drag Force

In order to restrict the study to the non-drag forces, we will consider the same expression
for the drag force in all cases. The total drag per unit volume in the continuous phase is
usually written as

Dαβ = c
(d)
αβ(Uβ − Uα) . (14)

where

c
(d)
αβ =

3

4

CD

d
rβρα |Uβ − Uα| . (15)

For a particle of a given shape undergoing motion in a Newtonian incompressible fluid,
CD depends only on Reynolds number

Re =
ραUd

µα

, (16)

where µα is the molecular viscosity of the continuous phase. The function CD(Re) may
be determined experimentally, and is known as the drag curve. One of the most used
drag coefficient, although not completely realistic for bubbles, corresponds to the drag
experimented by a rigid and isolated sphere and is known as the standard drag curve.
There are several empirical expressions for this curve, depending on the flow Reynolds
number. One expression frequently used is that due to Schiller and Nauman4

CD =
24

Re
(1 + 0.15Re0.687) , (17)

which is valid in the range 0 ≤ Re ≤ 1000. This is the expression for CD that we will use
in this work.

4.2 Non-Drag Forces

Virtual Mass: The virtual mass force accounts for the effect of acceleration of the
liquid displaced by the bubbles, and can be modelled as

FV M
α = rβραCV M

(
DβUβ

Dt
− DαUα

Dt

)
. (18)
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Operators Dα,β/Dt denote the material derivatives corresponding to each phase. The
coefficient CV M is equal to 0.5 for individual spherical particles, but for bubbles its value
is much more lower. In our study we consider values of CV M up to 0.06.

In figure 4 we can see how the gas volume fraction is changed when the virtual mass
coefficient is varied. As it is expected, the inclusion of this force affects the gas volume
fraction mainly in the region near the nozzle where relative accelerations between phases
are larger.
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Figure 4: Axial gas fractions for different virtual mass coefficients

Lift: This force is given in terms of the slip velocity and of the curl of the continuous
phase velocity by

FL
α = rβραCL(Uβ − Uα) × (∇× Uα) . (19)

Here CL is 0.5 for inviscid flow around a sphere, but it can take values as lower as 0.01
for viscous flow.

In figure 5 we can see that a variation of the lift coefficient affects the values of the
volume fraction in the whole height of the bath. Also, the slope of the curve in a log-log
graphic is modified.

Recent studies indicate that CL depends on the Eötvös number and can take even
negative values for large bubbles.5 This is an important fact that should be taken into
account if bubbles of different sizes are considered.
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Figure 5: Axial gas fractions for different lift coefficients

Turbulent dispersion force: This force appears as a consequence of the increment
of diffusion due to turbulence. Since it is related with diffusion, it seems natural to
incorporate this effect as a diffusive term in the continuity equation as in Ref. [6]. However,
we preferred to model this phenomenon including a force in the moment equation,7 because
in this way, the contribution due to diffusion is included in the velocity variable.
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Figure 6: Axial gas fractions for different turbulent dispersion force coefficients

The expression that we used for the turbulent dispersion force is

Fα = −CTDραkα∇rα , (20)
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where CTD is a parameter that can be in the range 0.1 to 1.0.8 (For a recent discussion
about modelling this force see Ref. [9].)

Figure 6 shows that, like the lift force, a variation of the turbulent dispersion force
modifies the gas volume fraction over the whole height but the slope of the curve does
not change as much as when the lift force coefficient is varied.

4.3 Sato model

The Sato model takes into account the increment in the turbulence of the continuous
phase induced by the dispersed phase. Denoting the continuous phase by α and the
dispersed phase by β, the effective viscosity of the continuous phase is given by

µαeff = µα + µTα + µTβ . (21)

The extra bubble induced turbulence term µTβ is modelled by

µTβ = Cµbραrβd |Uβ − Uα| , (22)

where d is the bubble diameter and Cµb a constant usually equal to 0.6. The k and
ε equations are solved only for the continuous phase and the effective viscosity of the
dispersed phase is given as

µβeff = µαeff
ρβ

ρα

. (23)

As observed in figure 7 the influence of this effect is in the region near the nozzle, where
gas fraction and relative velocity are greater.

0.01 0.1

0.1

1

C
�b

= 0.0

C
�b

= 0.1

C
�b

= 1.0

Vertical distance fromnozzle [m]

G
a
s

vo
lu

m
e

fr
a
ct

io
n

Experimental data

Experimenta fit

Numerical simulation

(C
VM

= 0.04, C
L
= 0.05,

C
TD

= 0.5)

Figure 7: Axial gas fractions for different Sato coefficients
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4.4 Influence of bubble size

The more difficult region to be correctly described is the region near the nozzle. In this
region, bubbles are large and breakup and coalescence phenomena are important. As we
mentioned before, a good modelling of this effect is complicated and since our primary
interest is not in this region but in the region in which the plume is completely developed,
we work with just one bubble size to represent the gas.

Ref. 2 gives us a geometric mean diameter of bubbles. Usually, the volumetric mean
diameter is used to describe the interphase forces. However, in some cases the Sauter (or
volume-surface) mean diameter10 is also used because the quotient between the projected
area and the volume of the bubble appears in the derivation of the drag force.
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Figure 8: Axial gas fractions for different bubble diameters

Since there is not a unique criteria about which diameter should be used to represent
the bubble size distribution, we analyzed the sensitivity to variations in diameter. Figure
8 shows how the volume fraction is modified when the diameter is varied. From this figure,
it can be seen that when the same bubble size is used for all forces (drag and non-drag),
the results are better when the volumetric mean diameter is used (which in this case is
16mm).

5 ANALYSIS OF DIFFERENT AIR-WATER PLUMES

After taking into account how the different parameters modify the numerical results,
a better description of the system can be obtained. This is showed in figure 9 where
preliminary (fig. 3) and optimized results are compared.
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Figure 9: Axial gas fractions with optimized parameters

From an experimental point of view the system does not suffer substantial modifications
in its behavior when the gas flow rate, the nozzle diameter or bath depth are changed
(see fig. 5 of Ref. [2]) . So, it could be expected that the same coefficients of the non-drag
forces are good in all cases. Our results indicate that this is not the case when only one
bubble size is used. However, even with this restriction, a knowledge of the influence of
the non-drag forces on the gas volume fraction allows a good description of the behavior
of the system in all cases. For example, figure 10 shows a case where the experimental
conditions are the same as those of figure 3 but with a higher gas flow rate (1257 cm3/s
at STP). Curve (a) is the result of using the parameters of figure 9 and curve (b) was
obtained by modifying only the lift and the turbulent dispersion force coefficients.
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Figure 10: Axial gas fractions with optimized parameters for a case with a high gas flow rate
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6 DEFORMABLE FREE SURFACE AND THREE-PHASE SYSTEM

In order to obtain a more realistic description of a metallurgical ladle two more ingredients
have to be included. One of them is the treatment of the free surface and the other is the
inclusion of the slag in the simulation.

Figure 11: Streak lines (left) and volume fraction (right) when the free surface is deformable.

Figure 12: Streak lines (left) and volume fraction (right) corresponding to the water phase when coexists
with the kerosene and the air phases.
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Figure 11 shows how the free surface is deformed. Our results indicate that in the water-
air system the consideration of the free surface as deformable does not modify substantially
the solutions and a flat surface is a good approximation. In a graph as that of figure 9,
gas volume fractions with and without free surface are practically indistinguishable.

When the slag is included (we simulate a water-air-kerosene system) the velocity field
of the water is substantially modified as can be seen if we compare figure 1 with figure
12. Therefore, in order to make reasonable predictions about a real industrial ladle,
consideration of a three-phase system is unavoidable.

7 CONCLUSIONS

If we are interested not only in the continuous phase but also in the behavior of the
dispersed phases (gas or slag) in a gas stirred ladle, the effect produced by forces other
than drag cannot be neglected.

In this work we make a detailed analysis of how the gas fraction is modified when non-
drag effects are included. Our results indicate that the system can be described correctly
in a wide variety of conditions using a simplified model with a unique bubble size, by
adjusting a few parameters, such as lift and turbulent dispersion coefficients.

We also showed that the assumption of a flat free surface is a good approximation
which can be used with confidence. Preliminary results indicate that if we want to obtain
realistic values of the important variables in a real industrial metallurgical ladle, the
consideration of a three-phase system (gas, molten metal and slag) is mandatory.
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