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Abstract. The numerical solution of the Navier-Stokes equations with free surface when the
Reynolds number is very small (Re ¿ 1) requires the use of implicit time discretization. The
parabolic stability condition of explicit methods imposes severe restrictions on the time-step
making them too time consuming to be useful in practice. In the context of staggered grids, this
work presents a study of the numerical stability of implicit methods. This stability is directly
connected to the appropriate use of boundary conditions on the free surface and on rigid walls.
The boundary conditions must be discretized with care so that the resulting method does not
become conditionally stable. The stability results are derived for the model problem of the heat
equation, and then applied to Navier-Stokes equations examples.
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1 INTRODUCTION

The MAC method (Marker-And-Cell)1 is one of the first successful attempts to simulating
viscous, incompressible, transient flows with free surfaces. The MAC method is derived from
the discretization of the Navier-Stokes equations in primitive variables by finite differences on
an uniform staggered mesh. In two dimensions, the velocityu is approximated on the right
face of a grid cell, the velocityv is approximated on the top face of a grid cell, while the pres-
sure is approximated at the cell center. The free surface is represented by massless particles
that are passively carried by the flow velocities. Over the years several improvements on the
MAC method have been proposed in the literature. Firstly the calculation of the pressure on
the free surface have been improved, see,2–4 and more accurate methods for tracking the free
surface have been developed. Variations of the MAC method where those improvements have
been implemented include: SMAC,5 SUMMAC,2 ALE,6 SOLA-VOF,7 TUMMAC,8,9 GENS-
MAC10,11 and SIMAC.12 More recently other authors have used essentially the same MAC
ideas: to simulate the impact drop problem,13 for second order reconstruction of interfaces14

and in a Lagrangian-Eulerian technique for the simulation of tridimensional flows in arbitrary
domains.15 Two common features to all these techniques are the explicit time discretization of
the momentum equations by the Euler method and the use of a staggered grid. The use of an
explicit method implies that the parabolic linear stability restriction on the time step applies.
This restriction depends both on the Reynolds number and on the mesh spacing and is given by
the expression

δtvisc ≤ 0.5Re[(δx)−2 + (δy)−2]−1, (1)

whereδtvisc is the non-dimensional time-step resulting from the stability condition on the vis-
cous terms. For inertial flows (Re > 1) the stability condition does not impose a severe restric-
tion on the time step, and explicit methods will produce a numerical solution in a reasonable
time. However, in some applications involving non-Newtonian fluids, very low Reynolds num-
bers flows can be encountered.16,17 Reynolds numbers of order10−1 to 10−4 are easily found
in applications involving the flow of a polymer, eg. extrudate swell,18 injection moulding,19

jet buckling20 and container filling.20 For this class of problems an implicit method must be
used in order to overcome the parabolic stability restriction. Implicit time discretization of the
momentum equations can be derived, for instance, via the Euler implicit or the Crank-Nicolson
methods. To gain full advantage of the unrestricted stability usually enjoyed by these methods
the correct boundary conditions must be imposed on the free surface. In a previous work21 the
authors discussed how to impose implicit boundary conditions on the free surface and yet keep
the linear system arising from the implicit discretization of the momentum equations decoupled
from the system arising from the discretization of Laplace’s equation for the pressure. In this
paper we study the influence of the rigid walls boundary conditions on the stability of such
implicit methods. As it is usually the case in stability studies the analysis is performed for a
model problem. In this study our model problem will be the one dimension heat equation with
Dirichlet boundary conditions. In the next section we present a detailed account of the problem
and its discretization.
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2 MODEL PROBLEM AND DISCRETIZATION

The model problem is the one dimension heat equation:

ut = uxx, x ∈ [0, 1] and t > 0 (2)

with initial and Dirichlet boundary conditions given by:

u(x, 0) = f(x), u(0, t) = g(t) and u(1, t) = h(t). (3)

As we are only interested in studying the stability of the numerical methods for the Navier-
Stokes equations with boundary conditions on rigid walls where mainly the no-slip condition
apply, we can assume that in (3) both functionsg(t) andh(t) vanish identically. In fact the
value of the boundary condition, do not affect in any way the stability of the method. In order to
mimic the effects of the staggered grid discretization of the Navier-Stokes we shall approximate
the heat equation and its boundary conditions on the interval[0, 1] by the following three steps:

1. Discretize the interval[0, 1] by a set of equally spaced pointsxi = (i − 1/2)δx, i =
0, 1, . . . , m + 1 whereδx = 1/m;

2. At the internal pointsx1, x2, . . . , xm, approximate the heat equation (2) implicitly by
either the Euler implicit or by the Crank-Nicolson methods;

3. As the discretization pointsx0 andxm+1 do not coincide with the end points of the in-
terval [0, 1], interpolation must be used to eliminate the unknown values ofun

0 andun
m+1

from the equations obtained in step 2. Here we are using the notationun
i to denote an

approximation tou(xi, tn).

Figure 1 illustrates the staggered mesh we are using for solving (2).
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Figure 1: Staggered grid for solving (2) with boundary conditions (3), whereu(0, t) = u(1, t) = ub.

Linear interpolation is usually the choice for approximating the boundary values in step 3
above. The interpolation polynomial of degree one through the points(x0, u

l
0) and (x1, u

l
1),

wherel is a generic time level, is given by:

P1(x) =
1

δx

(
(x− x0)u

l
1 − (x− x1)u

l
0

)
. (4)
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Using now the boundary conditionu(0, t) = 0, we have that:

P1(0) = 0 =
1

δx

(
δx

2
(ul

1 + ul
0)

)
=

1

2
(ul

0 + ul
1). (5)

Analogous interpolation at the endx = 1 leads to the equation1
2
(ul

m+1 + ul
m) = 0. Hence the

equations for the unknownsul
0 andul

m+1 become

un
0 = −un

1 and un
m+1 = −un

m, (6)

in the explicit case, and

un+1
0 = −un+1

1 and un+1
m+1 = −un+1

m , (7)

in the implicit case. The finite difference discretization of equation (2) by the explicit method,
at the internal pointsx1, x2, . . . xm is,

un+1
i = σun

i+1 + (1− 2σ)un
i + σun

i−1, (8)

by the Euler implicit method is

−σun+1
i−1 + (1 + 2σ)un+1

i − σun+1
i+1 = un

i , (9)

and by Crank-Nicolson is

−σ

2
un+1

i−1 + (1 + σ)un+1
i − σ

2
un+1

i+1 =
σ

2
un

i−1 + (1− σ)un
i +

σ

2
un

i+1, (10)

whereσ = δx
δt2

. Observe that any one of the above methods (8), (9) or (10) with any one of the
boundary conditions (6) or (7) can be written in matrix form as:

Aun+1 = Bun + c (11)

whereA, B arem × m matrices,u = (u1, u2, . . . , um)T andc = (c1, c2, . . . , cm)T arem × 1
vectors, all of them defined by the particular choice of the method and boundary condition. The
numerical stability of the method will be determined by the eigenvaluesλ of the iteration matrix
M = A−1B. If those eigenvalues all have modulus smaller than one the method will be stable
and if at least one eigenvalue has modulus greater or equal to one the method will be unstable.
Note that the eigenvalues will depend on the parameterσ. When all the eigenvalues of the iter-
ation matrix have modulus less than one for allσ > 0 we say that the method is unconditionally
stable, if this is true only forσ on a finite interval we say the method is conditionally stable. In
the next section we shall analyze the stability of 6 different choices of method and boundary
condition, namely:

• Explicit method with explicit boundary conditions - conditionally stable forσ ∈ [0, 1
2
);
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• Euler implicit with explicit boundary conditions - unconditionally stable;

• Euler implicit with implicit boundary conditions - unconditionally stable;

• Crank-Nicolson with explicit boundary conditions - conditionally stable forσ ∈ [0, 2);

• Crank-Nicolson with implicit boundary conditions 1 - unconditionally stable;

• Crank-Nicolson with implicit boundary conditions 2 - unconditionally stable.

3 STABILITY ANALYSIS

The stability analysis of the above methods will be based on important theorems from lin-
ear algebra concerning the eigenvalues of a general matrix and tridiagonal matrices. Before
we go on to derive the stability results we will present these theorems. For general matrices,
important theorems to estimate the eigenvalues are the so called Gershgorin’s theorem. These
theorems give the geometrical location of the eigenvalues, i.e., the Gershgorin circle theorem
identifies a region in the complex plane that contains all the eigenvalues of a complex square
matrix. For tridiagonal matrices, we shall present a theorem that give an exact expression for
the eigenvalues, in special cases.

Theorem 1. LetA ∈ Cm×m. Then

σ(A) ⊆ SR =
m⋃

i=1

Ri, Ri =

{
z ∈ C : |z − aii| ≤

m∑

j=1,j 6=i

|aij|
}

, (12)

whereaij are the elements of the matrixA for i, j = 1, . . . , m andσ(A) is the set of the eigen-
values ofA called the spectrum ofA. The setsRi are called Gershgorin circles.

The proof of theorem 1 is presented in.22

Theorem 2. LetA ∈ Rm×m with A = E + F, andE andF symmetric matrices, then

λE
m + λF

i ≤ λA
i ≤ λE

1 + λF
i , (13)

whereλE
m ≤ λE

m−1 ≤ · · · ≤ λE
2 ≤ λE

1 .

See the proof of the theorem 2 in.23

Theorem 3. Consider the tridiagonal matrix of the form

M =




−α + b c 0 0 . . .
a b c 0 . . .

0
. .. .. . .. . 0

. . . 0 a b c

. . . 0 0 a −β + b




m×m

(14)
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Case 1: If α = β = 0, then the eigenvaluesλM
i of M are given by

λM
i = b + 2

√
ac cos(

iπ

m + 1
), i = 1, . . . , m. (15)

Case 2: If α = β =
√

ac 6= 0, then the eigenvaluesλM
i of M are given by

λM
i = b + 2

√
ac cos(

iπ

m
), i = 1, . . . , m. (16)

Case 3: If α = β = −√ac 6= 0, the eigenvaluesλM
i of M are given by

λM
i = b + 2

√
ac cos(

(i− 1)π

m
), i = 1, . . . , m. (17)

Details of the proof of this theorem are presented by Yueh in.24

Definition 1. Letλi be the eigenvalues of the matrixA. Then

|λA
max| = max{|λA

1 |, . . . , |λA
m|}, (18)

and
|λA

min| = min{|λA
1 |, . . . , |λA

m|}. (19)

Explicit method with explicit boundary conditions

In this case the matrices in (11) areA = I and

B =




1− 3σ σ 0 0 . . .
σ 1− 2σ σ 0 . . .

0
. .. . .. . .. 0

. . . 0 σ 1− 2σ σ

. . . 0 0 σ 1− 3σ




m×m

(20)

The matrixB above can be rewritten as

B = I + σB̃, (21)

where

B̃ =




−3 1 0 0 . . .
1 −2 1 0 . . .

0
. .. . .. .. . 0

. . . 0 1 −2 1

. . . 0 0 1 −3




m×m

(22)
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Theorem 4. The eigenvalues ofM = A−1B all have modulus smaller than 1 ifσ ∈ [0, 1
2
).

Proof: The matrixB̃ satisfies the assumptions of theorem 3, case 2 withα = β = 1, a =
c = 1 andb = −2. So its eigenvalues can be computed from (16) givingλB̃

i = −2 + 2 cos( iπ
m

)
for i = 1, . . . ,m. Hence, the eigenvalues of theB are given by

λB
i = 1− 2σ

(
1− cos(

iπ

m
)

)
= 1− 2σ

(
2 sin2(

iπ

2m
)

)
= 1− 4σ sin2(

iπ

2m
), (23)

for i = 1, . . . , m. As A = I, the eigenvalues ofM = A−1B are the same as in (23). The
eigenvalue of maximum modulus occurs fori = m, i.e., |λM

max| = |λM
m| =

∣∣1− 4σ sin2(π
2
)
∣∣ =

|1− 4σ|. Therefore,

|λM
max| = |1− 4σ| < 1 ⇒ σ <

1

2
. (24)

This turns out to be the well-known result, that the explicit method is stable forσ ∈ [0, 1
2
).

Euler implicit with explicit boundary conditions

For the case of Euler implicit with explicit boundary conditions the matricesA andB of (11)
become:

A =




1 + 2σ −σ 0 0 . . .
−σ 1 + 2σ −σ 0 . . .

0
.. . . .. . .. 0

. . . 0 −σ 1 + 2σ −σ

. . . 0 0 −σ 1 + 2σ




m×m

(25)

and

B =




1− σ 0 0 0 . . .
0 1 0 0 . . .

0
. .. . .. .. . 0

. . . 0 0 1 0

. . . 0 0 0 1− σ




m×m

(26)

The matrixA can be rewritten as
A = I + σÃ, (27)

where

Ã =




2 −1 0 0 . . .
−1 2 −1 0 . . .

0
.. . . .. . .. 0

. . . 0 −1 2 −1

. . . 0 0 −1 2




m×m

(28)
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Thus the iteration matrix isM = A−1B = (I + σÃ)−1B. If λM
i are the eigenvalues ofM, then 1

λM
i

are the eigenvalues ofM−1.
Now we may writeM−1 = B−1(I + σÃ) giving,

M−1 =




1+2σ
1−σ

−σ
1−σ

0 0 . . .

−σ 1 + 2σ −σ 0 . . .

0
. . . . .. .. . 0

. . . 0 −σ 1 + 2σ −σ

. . . 0 0 −σ
1−σ

1+2σ
1−σ




m×m

(29)

Theorem 5. The eigenvalues ofM = A−1B all have modulus smaller than 1.

Proof: To prove this theorem we shall show that the eigenvalues ofM−1 all have modulus
greater than 1. For this purpose we shall use the Gershgorin theorem 1 to find bounds for the
eigenvalues. From the form of the matrixM−1 we see thatR1 = Rm andR2 = . . . = Rm−1,
with

R1 =

{
z ∈ C :

∣∣∣∣z −
1 + 2σ

1− σ

∣∣∣∣ ≤
∣∣∣∣
−σ

1− σ

∣∣∣∣
}

, (30)

and
R2 = {z ∈ C : |z − (1 + 2σ)| ≤ | − σ|+ | − σ|} . (31)

We know from theorem 1 that any eigenvalue ofM−1 is in eitherR1 or R2. Let α be the real
number closest to the origin, defined by intersection of the boundary ofRi with the real line.
Consider first an eigenvalueλ which is inR2 then|λ− (1 + 2σ)| < r.
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.......... .....
..... ..........

..........
..........
..........
..........
..........
..........
..........
..........
..........
.

..

........
......................

Re(z)0

r

Im(z)

1 + 2σ

λ

α = 1

Figure 2: Gershgorin circleR2.

As σ > 0, the real numberα is given byα = 1 + 2σ − 2σ = 1. Any eigenvalue inR2 has,
obviously modulus greater thanα, hence|λ| > 1, see figure 2.

Let nowλ ∈ R1, there are two different cases:

• Case 1:σ < 1
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Figure 3: Gershgorin circleR1 for σ < 1.

In this case, the center of the Gershgorin circleR1 is c = 1+2σ
1−σ

, and the radiusr =
∣∣ −σ
1−σ

∣∣.
As σ < 1, c > 0 andr = σ

1−σ
. Thus,

α = c− r =
1 + 2σ

1− σ
− σ

1− σ
=

1 + σ

1− σ
> 1. (32)

Therefore any eigenvalueλ of M−1 which is inR1 will satisfy |λ| > 1 in this case, see
figure 3.

• Case 2:σ > 1

As σ > 1, we havec < 0 andr = σ
σ−1

. Thus,

α = c + r =
1 + 2σ

1− σ
+

σ

σ − 1
=

1 + σ

1− σ
< −1. (33)

Again any eigenvalueλ of M−1 in R1 will have its modulus greater than 1, see figure 4.
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Figure 4: Gershgorin circleR1 for σ > 1.

Euler implicit with implicit boundary conditions

For this case the matricesB = I andA is given by

A =




1 + 3σ −σ 0 0 . . .
−σ 1 + 2σ −σ 0 . . .

0
.. . . .. . .. 0

. . . 0 −σ 1 + 2σ −σ

. . . 0 0 −σ 1 + 3σ




m×m

(34)
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The matrixA can be rewritten as
A = I− σÃ, (35)

where

Ã =




−3 1 0 0 . . .
1 −2 1 0 . . .

0
.. . . .. . .. 0

. . . 0 1 −2 1

. . . 0 0 1 −3




m×m

(36)

Theorem 6. The eigenvalues ofM = A−1B all have modulus smaller than 1.

Proof: Note that the matrix̃A satisfies the conditions of theorem 3 case 2, hence its eigen-
values can be calculated as

λÃ
i = −2 + 2 cos(

iπ

m
) for i = 1, . . . ,m. (37)

From (35), the eigenvalues ofA are given by:

λA
i = 1− σ

(
−2 + 2 cos(

iπ

m
)

)
= 1 + 2σ

(
1− cos(

iπ

m
)

)

= 1 + 4σ

(
sin2(

iπ

2m
)

)
, i = 1, . . . , m.

(38)

From (38) we see that

|λA
i | > 1, ∀σ > 0 or

∣∣∣∣
1

λA
i

∣∣∣∣ < 1, ∀σ > 0, (39)

and we have proved that the eigenvalues of the iteration matrixM = A−1B satisfy

|λM
i | < 1, ∀σ > 0. (40)

Crank-Nicolson with explicit boundary conditions

For this case the matricesA andB are

A =




1 + σ −σ
2

0 0 . . .
−σ

2
1 + σ −σ

2
0 . . .

0
.. . . .. . .. 0

. . . 0 −σ
2

1 + σ −σ
2

. . . 0 0 −σ
2

1 + σ




m×m

(41)
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and

B =




1− 2σ σ
2

0 0 . . .
σ
2

1− σ σ
2

0 . . .

0
.. . . .. . . . 0

. . . 0 σ
2

1− σ σ
2

. . . 0 0 σ
2

1− 2σ




m×m

(42)

The matricesA andB can be rewritten as

A = I + σÃ, (43)

where

Ã =




1 −1
2

0 0 . . .
−1

2
1 −1

2
0 . . .

0
. . . . .. . .. 0

. . . 0 −1
2

1 −1
2

. . . 0 0 −1
2

1




m×m

(44)

and
B = I + σB̃, (45)

where

B̃ =




−2 1
2

0 0 . . .
1
2

−1 1
2

0 . . .

0
. .. . .. .. . 0

. . . 0 1
2

−1 1
2

. . . 0 0 1
2

−2




m×m

(46)

Theorem 7. The eigenvalues of the matrixM = A−1B satisfy:

1. |λM
i | < 1, i = 1, . . . , m if σ ∈ (0, 2);

2. |λM
i | ≥ 1, for somei if σ ∈ [2,∞).

Unfortunately the hypotheses of the theorem 3 are not satisfied for the matrixB̃, so it cannot
be used to find its eigenvalues.

We have not been able to fully prove theorem 7. All the numerical evidence obtained from
finding the eigenvalues ofM for several values ofσ andm, indicate that it is true. We have been
able to show item 1 of theorem forσ ∈ (0, 2

3
) only. The proof is given below.

Note that the matrixB can be written in the form:

B =




−σ 0 0 0 . . .
0 0 0 0 . . .

0
. .. . .. .. . 0

. . . 0 0 0

. . . 0 0 0 −σ




+




1− σ σ
2

0 0 . . .
σ
2

1− σ σ
2

0 . . .

0
.. . . .. . . . 0

. . . 0 σ
2

1− σ σ
2

. . . 0 0 σ
2

1− σ




= E + F (47)
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The eigenvalue ofF can be calculated from theorem 3 case 1 giving

λF
i = 1− σ

(
1− cos(

iπ

m + 1
)

)
, i = 1 . . . m. (48)

The eigenvalues of the matrixE are obviously given byλE
1 = λE

m = −σ and all the others
are zero. Therefore, using theorem 2 the eigenvalues ofB satisfy

1− σ

(
2− cos(

iπ

m + 1
)

)
≤ λB

i ≤ 1− σ

(
1− cos(

iπ

m + 1
)

)
. (49)

In the inequality 49 the left hand side is larger in absolute value than the right hand side, so
that, taking modulus we obtain

∣∣∣∣1− σ

(
2− cos(

iπ

m + 1
)

)∣∣∣∣ ≥ |λB
i | ≥

∣∣∣∣1− σ

(
1− cos(

iπ

m + 1
)

)∣∣∣∣ . (50)

The eigenvalue ofB of maximum modulus is obtained wheni = m, i.e,

|λB
i | ≤

∣∣∣∣1− σ

(
2− cos(

mπ

m + 1
)

)∣∣∣∣ . (51)

Therefore

|λB
max| ≤

∣∣∣∣1− σ

(
2− cos(

mπ

m + 1
)

)∣∣∣∣ . (52)

For the matrixA again theorem 3 case 1 gives

λA
i = 1 + σ

(
1 + cos(

iπ

m + 1
)

)
, i = 1 . . . m. (53)

The eigenvalue ofA of minimum modulus is obtained wheni = m, i.e,

|λA
min| =

∣∣∣∣1 + σ

(
1 + cos(

mπ

m + 1
)

)∣∣∣∣ . (54)

Thus as the matricesA andB are symmetric we have

|λM| ≤‖ M ‖2=‖ A−1B ‖2≤‖ A−1 ‖2‖ B ‖2=
|λB

max|
|λA

min|
=

∣∣∣∣∣
1− 2σ + σ cos( mπ

m+1
)

1 + σ + σ cos( mπ
m+1

)

∣∣∣∣∣ . (55)

Therefore ∣∣∣∣∣
1− 2σ + σ cos( mπ

m+1
)

1 + σ + σ cos( mπ
m+1

)

∣∣∣∣∣ < 1 ⇒ σ <
2

3
. (56)
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On the other hand, for item 2 we have only been able to prove it for largeσ. Indeed, for large
σ the eigenvalues ofM tend to the eigenvalues of the matrixM̃ = Ã−1B̃. Letλ be an eigenvalue
of M̃ with eigenvectorv, then

M̃v = λv or Ã−1B̃v = λv or B̃v = λÃv, (57)

henceλ is a root of the characteristic polynomialdet(B̃ − λÃ) = 0. Considering the matrices
Ã andB̃ and Gaussian elimination it is fairly straightforward to show thatdet(B̃ + 3Ã) = 0 or
λ = −3 is an eigenvalue of̃M.

Crank-Nicolson with implicit boundary conditions - 1

We recall that, in this case we are considering the Crank-Nicolson method with the implicit
boundary conditions (7), giving the matrices

A =




1 + 3
2
σ −σ

2
0 0 . . .

−σ
2

1 + σ −σ
2

0 . . .

0
.. . . .. . .. 0

. . . 0 −σ
2

1 + σ −σ
2

. . . 0 0 −σ
2

1 + 3
2
σ




m×m

(58)

and

B =




1− 3
2
σ σ

2
0 0 . . .

σ
2

1− σ σ
2

0 . . .

0
.. . . .. . . . 0

. . . 0 σ
2

1− σ σ
2

. . . 0 0 σ
2

1− 3
2
σ




m×m

(59)

The matricesA andB are rewritten again as

A = I + σÃ,

B = I− σB̃,
(60)

where

Ã = B̃ =




3
2

−1
2

0 0 . . .
−1

2
1 −1

2
0 . . .

0
.. . .. . .. . 0

. . . 0 −1
2

1 −1
2

. . . 0 0 −1
2

3
2




m×m

(61)

Theorem 8. The eigenvalues ofM = A−1B all have modulus smaller than 1.
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Proof: The matrices̃A andB̃ satisfy the assumptions of theorem 3 case 3, hence their eigen-
values can be computed from

λÃ
i = λB̃

i = 1 + cos(
(i− 1)π

m
), i = 1, . . . , m. (62)

Thus, the eigenvalues of theA andB are

λA
i = 1 + σ

(
1 + cos(

(i− 1)π

m
)

)
, i = 1, . . . , m, (63)

λB
i = 1− σ

(
1 + cos(

(i− 1)π

m
)

)
, i = 1, . . . , m, (64)

respectively. Obviously the eigenvectors ofA andB are the same, hence the eigenvalues of the
iteration matrixM = A−1B satisfy:

|λM
i | =

∣∣∣∣
λB

i

λA
i

∣∣∣∣ =

∣∣∣∣∣∣
1− σ

(
1 + cos( (i−1)π

m
)
)

1 + σ
(
1 + cos( (i−1)π

m
)
)

∣∣∣∣∣∣
< 1, ∀σ > 0, (65)

and this proves the theorem.

Crank-Nicolson with implicit boundary conditions - 2

This case is quite artificial, but we present it just to show how the implicit boundary condi-
tions can improve the overall stability of the numerical method. The Crank-Nicolson method is
applied with the implicit boundary condition

un+1
0 = −un+1

1 , un+1
m+1 = −un+1

m , un
0 = −un+1

1 and un
m+1 = −un+1

m . (66)

In this case, the matrices are given by

A =




1 + 2σ −σ
2

0 0 . . .
−σ

2
1 + σ −σ

2
0 . . .

0
.. . . .. . .. 0

. . . 0 −σ
2

1 + σ −σ
2

. . . 0 0 −σ
2

1 + 2σ




m×m

(67)

and

B =




1− σ σ
2

0 0 . . .
σ
2

1− σ σ
2

0 . . .

0
.. . . .. . . . 0

. . . 0 σ
2

1− σ σ
2

. . . 0 0 σ
2

1− σ




m×m

(68)
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Theorem 9. The eigenvalues ofM = A−1B all have modulus smaller than 1.

Proof: For this case we have only been able to prove stability forσ ∈ (0, 1), despite all the
numerical evidence that it is unconditionally stable. Note that the matrixA can be written in the
form:

A =




σ 0 0 0 . . .
0 0 0 0 . . .

0
.. . . . . . .. 0

. . . 0 0 0

. . . 0 0 0 σ




m×m

+




1 + σ −σ
2

0 0 . . .
−σ

2
1 + σ −σ

2
0 . . .

0
. .. .. . .. . 0

. . . 0 −σ
2

1 + σ −σ
2

. . . 0 0 −σ
2

1 + σ




m×m

= E + F

(69)
The eigenvalues of the matrixF are given by theorem 3 case 1

λF
i = 1 + σ

(
1 + cos(

iπ

m + 1
)

)
, i = 1 . . .m. (70)

The eigenvalues of the matrixE are obviously given byλE
1 = λE

m = σ and all the others are
zero. Therefore, using theorem 2 the eigenvalues ofA satisfy

1 + σ

(
1 + cos(

iπ

m + 1
)

)
≤ λA

i ≤ 1 + σ

(
1 + cos(

iπ

m + 1
)

)
+ σ. (71)

From equation (71) we deduced that

|λA
i | ≤

∣∣∣∣1 + σ

(
1 + cos(

iπ

m + 1
)

)
+ σ

∣∣∣∣ ≤
∣∣∣∣1 + σ

(
1 + cos(

mπ

m + 1
)

)
+ σ

∣∣∣∣ . (72)

Therefore

|λA
min| =

∣∣∣∣1 + σ

(
1 + cos(

mπ

m + 1
)

)∣∣∣∣ . (73)

For the matrixB again theorem 3 case 1 gives

λB
i = 1− σ

(
1− cos(

iπ

m + 1
)

)
, i = 1 . . . m. (74)

The eigenvalue ofB of maximum modulus is obtained wheni = m, i.e,

|λB
max| =

∣∣∣∣1− σ

(
1− cos(

mπ

m + 1
)

)∣∣∣∣ . (75)

Thus as the matricesA andB are symmetric we have

|λM| ≤‖ M ‖2=‖ A−1B ‖2≤‖ A−1 ‖2‖ B ‖2=
|λB

max|
|λA

min|
=

∣∣∣∣∣
1− σ + σ cos( mπ

m+1
)

1 + σ + σ cos( mπ
m+1

)

∣∣∣∣∣ < 1 ⇒ σ < 1.

(76)

Cassio M. Oishi and Jos´e A. Cuminato

45



4 NAVIER-STOKES TEST

We now test the significance of the stability results derived for the model problem described
in the previous section for solving the two-dimensional Navier-Stokes equations for free surface
flows. In dimensionless conservative form, the Navier-Stokes equations for incompressible
viscous Newtonian flows can be written as

ut +∇ ¦ (uu) = −∇p + Re−1∇2u + Fr−2g, (77)

∇ ¦ u = 0, (78)

wheret is time, u is the velocity vector field,p is pressure andg is the gravity field. The
non-dimensional parametersRe = LU/ν andFr = U/

√
gL are the Reynolds and Froude

numbers, respectively, whereL andU are appropriate length and the velocity scales, andν is
the kinematic viscosity of the fluid. To solve Eqs. (77) and (78) appropriate boundary condi-
tions need to be invoked. On solid boundaries (rigid walls), no-slip conditions apply, i.e, the
normal and tangential components of the velocity are taken to be zero. On the free surface,
it is necessary to impose conditions on the velocity and pressure. For two-dimensional flows,
these conditions, in the absence of surface tension, can be seen in.21 We use a test problem of
the flow of a fluid between two parallel plates, separated by a distanceL = 1m, with Re < 1
for which the analytical solution is given in.25 Two types of flow will be considered namely:
Hagen-Poiseuilleflow, in which the channel is initially full and there is no free surface, i.e.
confined flow; andFountainflow, in which the channel is initially empty and fluid is injected at
the channel’s entrance with a parabolic velocity profile. In this problem there is a free surface
moving along the channel. The spatial step used wasδx = δy = 0.05m and the velocity scale
wasU = 1.0m/s. More details of the parameters used in this simulation can be found in.21

The following methods were considered: the original explicit method10 with explicit boundary
conditions( GENSMAC); the modified GENSMAC scheme21 using the Euler implicit method
with explicit boundary conditions(GENSMAC-EI); the modified GENSMAC scheme using the
Crank-Nicolson method with explicit boundary conditions(GENSMAC-CN/EBC); the modi-
fied GENSMAC scheme using the Crank-Nicolson method with implicit boundary conditions
2(GENSMAC-CN/IBC); the semi-implicit scheme21 using the Euler implicit method with ex-
plicit boundary conditions(SI-EI); the semi-implicit scheme using the Crank-Nicolson method
with explicit boundary conditions(SI-CN/EBC) and the semi-implicit scheme using the Crank-
Nicolson method with implicit boundary conditions 2(SI-CN/IBC). In21 a modified GENSMAC
method was proposed. In that paper the authors showed that the Euler implicit method, ap-
plied in the GENSMAC formulation, is unconditionally stable for confined flows. However
for free surface flows, it is still subject to the parabolic-like stability condition, alike the ex-
plicit scheme. To overcome the stability problem for free surface flows, the authors developed
a semi-implicit(SI) scheme using the staggered grid, with new techniques for the treatment of
the free surface conditions. In this work, we implemented the Crank-Nicolson method for both
the modified GENSMAC and for the SI schemes proposed by Oishi et al.21 The stability of
the Crank-Nicolson method was studied for both explicit and implicit boundary conditions for
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confined and free surface flows. The type of implicit boundary condition applied was case 2.
The results of the GENSMAC-type and SI-type methods are displayed in Tables 1 and 2 for
free surface flows, and in Tables 3 and 4 for confined flows. In theses Tables, the relative error
(Er) (in the l2 norm and computed from the analytical solution presented in25), the time-step
(δt) and CPU time are displayed. Tables 1 and 2 show that GENSMAC-type methods are con-
ditionally stable for free surface flows. The instability showed up in this case, is not due to the
explicit or implicit treatment of the boundary conditions on rigid walls, but due to the explicit
techniques used in the free surface boundary conditions. As can be noted from Tables 1 and
2, GENSMAC-type schemes present similar results in all cases. The time-step used by these
methods is very small, consequently, the CPU time is high. The SI variations schemes are more
stable as can be seen in Tables 1 and 2. The SI-CN/EBC method is conditionally stable because
of the explicit boundary conditions, as it was proved in the previous section. Therefore, the
time-step used by SI-EI and SI-CN/IBC methods are larger than that of SI-CN/EBC method.
The SI schemes used total CPU times several orders of magnitude smaller than the CPU times
required by GENSMAC-type methods. For confined flows, the Crank-Nicolson method with
explicit boundary conditions is conditionally stable when implemented into the GENSMAC
and SI formulations. This fact was proved in the previous section. As displayed in the Tables
3 and 4, the time-step used by the explicit GENSMAC is the smallest of all others methods,
because of its stringent stability condition. The Euler implicit method with explicit boundary
conditions and the Crank-Nicolson method with implicit boundary conditions are uncondition-
ally stable for both GENSMAC and SI formulations. However, the numerical solutions of
the GENSMAC-CN/IBC and GENSMAC-EI were influenced by the order of accuracy of the
projection method used in the GENSMAC formulation,26 which is of first-order. The SI formu-
lations included improvements of the projection method used by GENSMAC method, and are
based on second-order projection methods.27 Therefore the SI-EI, SI-CN/EBC and SI-CN/IBC
are unconditionally stable and they produced the best results as can be seen in Tables 1–4.

5 DISCUSSION

We have discussed the stability of implicit methods for solving the incompressible Navier-
Stokes equations using staggered grids. A recent paper by Oishi et al.21 addressed issues
surrounding the use of implicit methods for free surface flows. However, their analysis did not
consider the stability of these schemes. This has been done in this paper. This work was in-
spired by our numerical observations of instabilities while experimenting with Euler implicit
and Crank-Nicolson methods. We showed that on staggered grids, depending on how the
boundary conditions are discretized, the Crank-Nicolson method can be conditionally stable.
The instability appears for large values of the time-step, when the explicit boundary conditions
are used in the Crank-Nicolson method. To our knowledge, the fact that the Crank-Nicolson
method with explicit boundary conditions is conditionally stable for staggered grids has never
been pointed out in the literature. For the model heat equation problem, the Crank-Nicolson
method with explicit boundary conditions is unstable forσ ≥ 2, and the same method with
implicit boundary conditions is stable for∀σ. The study of stability of the numerical schemes
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were carried out through the analysis of the eigenvalues of the iteration matrix. Using known22

and recent24 theorems, the eigenvalues were calculated exactly or bounded permitting the study
of stability. Unfortunately we have not been able to fully prove theorems 7 and 9 despite all
the numerical evidence indicating that those theorem are true. We have numerically calculated
the eigenvalues of the matrices in theorems 7 and 9 for many values ofσ and the results show
that they are valid. We are still trying to obtain a mathematically valid proof which we hope
to report at the time of the conference. The Navier-Stokes test problems were used to numer-
ically illustrated the behavior of the implicit methods and boundary conditions. The modified
GENSMAC using the Euler implicit method with explicit boundary conditions and the Crank-
Nicolson method with implicit boundary condition are all unconditionally stable for confined
flows. The semi-implicit formulations implementing the Crank-Nicolson method with implicit
boundary conditions and the Euler implicit method are unconditionally stable for confined flows
and free surface flows. These results provide evidence that the stability restrictions derived for
the model problem extend to the case of the Navier-Stokes equations.

Table 1: Results for the relative error (Er), the time-step (δt) and CPU time forfountainflow with Re = 0.1.

Method Er δt CPU time-(m:s)
GENSMAC 2.2915× 10−6 2.5× 10−5 104 : 40

GENSMAC-EI 2.2919× 10−6 8.75× 10−5 60 : 08
GENSMAC-CN/EBC 2.3012× 10−6 5.0× 10−5 89 : 26
GENSMAC-CN/IBC 8.5422× 10−6 5.0× 10−5 95 : 58

SI-EI 2.2977× 10−6 1.25× 10−2 3 : 20
SI-CN/EBC 2.2901× 10−6 5.0× 10−4 24 : 01
SI-CN/IBC 2.2916× 10−6 1.25× 10−2 3 : 05

Table 2: Results for the relative error (Er), the time-step (δt) and CPU time forfountainflow with Re = 0.01.

Method Er δt CPU time-(m:s)
GENSMAC 2.1915× 10−6 2.5× 10−6 875 : 16

GENSMAC-EI 2.2528× 10−6 8.5× 10−6 544 : 55
GENSMAC-CN/EBC 2.1919× 10−6 4.75× 10−6 770 : 26
GENSMAC-CN/IBC 8.2215× 10−6 4.75× 10−6 822 : 15

SI-EI 2.2958× 10−6 7.5× 10−4 25 : 54
SI-CN/EBC 2.2901× 10−6 5.0× 10−5 164 : 15
SI-CN/IBC 2.2915× 10−6 5.5× 10−4 33 : 48
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Table 3: Results for the relative error (Er), the time-step (δt) and CPU time forH.-Poiseuilleflow with Re = 0.1.

Method Er δt CPU time-(m:s)
GENSMAC 2.2800× 10−6 2.5× 10−5 104 : 31

GENSMAC-EI 5.2951× 10−2 1.25× 10−2 3 : 21
GENSMAC-CN/EBC 5.0281× 10−5 5.0× 10−4 13 : 26
GENSMAC-CN/IBC 1.0000× 10−3 1.25× 10−2 3 : 00

SI-EI 2.3059× 10−6 1.25× 10−2 3 : 19
SI-CN/EBC 2.2916× 10−6 5.0× 10−4 10 : 28
SI-CN/IBC 2.3000× 10−6 1.25× 10−2 3 : 05

Table 4: Results for the relative error (Er), the time-step (δt) and CPU time forH.-Poiseuilleflow with Re = 0.01.

Method Er δt CPU time-(m:s)
GENSMAC 2.1955× 10−6 2.5× 10−6 874 : 01

GENSMAC-EI 9.3205× 10−2 1.25× 10−2 3 : 00
GENSMAC-CN/EBC 3.8094× 10−5 4.0× 10−5 115 : 39
GENSMAC-CN/IBC 8.8891× 10−2 1.25× 10−2 3 : 09

SI-EI 2.0115× 10−6 1.25× 10−2 3 : 39
SI-CN/EBC 2.2916× 10−6 5.0× 10−5 80 : 20
SI-CN/IBC 2.2312× 10−6 1.25× 10−2 3 : 19
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