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Abstract.

We consider the approzimations of the vibration modes of an elastic thin structure
(shell or plate) in contact with a compressible fluid. We use the classical Naghdi model
over a reference domain and its approximation using the MITC/ finite element method
for the structure. The equations for the fluid are discretized with Raviart-Thomas ele-
ments, whereas a non conforming coupling is used on the fluid-solid interface. We report
numertcal experiments assessing the efficiency of this coupled scheme.
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1 INTRODUCTION

This paper deals with the numerical computation of the vibration modes of a fluid-
structure interaction problem in a 3D-domain. This is a very important engineering
problem (e.g. for treatment of noise in cars or planes). It is well known that a large
amount of work has been devoted to this subject (see for example [15]).

We have interested in one of problems of this kind: to compute elastoacoustic vibrations
when the structure an elastic shell and the fluid is ideal and compressible, both with small
displacements.

In the framework of thin solid structures, a big amount of work has been developed
during the last years by different communities under different points of view. There exist
two main ways of approximating shells problems: finite element methods that result from
the discretization of classical shells model (namely, two dimensional methods) (see [8, 9])
and methods based on “degenerating” a 3D solid finite element into a shell element using
some kinematical assumption in the thickness direction (see [1, 3])

For the present work, we consider one of the most important classical two-dimensional
shell models: Naghdi, which is based on Reissner-Mindlin hypotheses. To discretize this
we use MITC (Mixed Interpolation of Tensorial Component) finite element methods,
introduced by Bathe and Dvorkin in [2], that is very likely the most used in practice. For
this element, we can found some mathematical analysis when applied to Reissner-Mindlin
plate equations (see, for example, [12, 10, 11]). In particular, we use the low-order MITC4
method which is the most common isoparametric quadrilateral element of this family
of methods. The performance of this approach has been recently tested for vibration
problems of both, plates and shells, in [13].

To determining the vibration of the fluid, usually the pressure is chosen as primary vari-
able, however, for coupled systems, the displacement vector fields present some important
properties like; for example, compatibility and equilibrium through the fluid-structure in-
terface satisfy automatically. Though, it is well known that the displacement formulation
suffers from the presence of zero-frequency spurious modes with no physical meaning.
Nevertheless, an alternative approach has been introduced and analyzed in [4] to avoid
the spurious modes; it consists in the use of lowest-order Raviart-Thomas element. The
degrees of freedom of this element are located at the element faces and represent the
normal component of the field through them.

On the fluid-solid interface a non conforming coupling is used: the kinematic constraint
(i.e. equal normal displacement for fluid and shell) is imposed in a weak sense. In fact,
because of this, the fluid and shell meshes do not need to be compatible on the common
interface.

In this paper we consider the problem of computing the vibration modes of a shell in
contact with a fluid. In Section 2 we state the vibration coupled problem. In Section 3
we treat the particular case when the shell is a plate. Finally, in Section 4, we apply the
method to calculate the vibrations of a thin cylinder full of fluid.
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2 STATEMENT OF THE PROBLEM.

We consider the problem of determining the free vibration modes of a three-dimensional
cavity enclosing and ideal inviscid barotropic fluid. The walls of this cavity are all rigid,
except for one of them which is an elastic shell structure.

Let © be the three-dimensional domain occupied by the fluid. We consider that 0€ is
the union of the 2D surfaces I'g, ['y, ... , ['; and we assume that T’y is in contact with the
shell, whereas the remaining surfaces are perfectly rigid walls.

To describe the free small amplitude motions of the fluid, we consider the displacement
formulation; we denote by W = (W1, Wo, W3) the displacement fluid field.

For the shell structure, we assume that there exist a single chart ¢ that is a one-to-one
mapping, which transforms a 2D domain I' on the midsurface of the shell. Then, we
consider the Naghdi shell model, which is written in terms of the rotations © = (01, O,)
of the fibers initially normal to the shell midsurface and the three dimensional vector field
U = (Ui, Us, Us) that correspond to the displacement of the midsurface.

The space of kinematically admissible virtual displacements is denoted by ¢ and defined
by

U= {(U, ©,W): U, ©, W sufficienttly smooth and U -n = W - n} N Be,

where BC symbolically denotes the prescribed essential boundary conditions.

The governing formulation in the frequency domain for the free small amplitude mo-
tions of the coupled system is the following:

SP: Find w > 0 and 0 # (U,0,W) € U such that

a((U, o.W),(V, T, Z)) - wa((U, o.W),(V,T, Z)) V(V,T,Z) elU.

The bilinear form b(-, -) is given by

3
b((U,@,W),(V, T,Z)) ::/ps (ta“ﬂUan—l—tUgvg—i-%aaﬂ@aTﬁ) det(a)+/ peW -2
T Q

where ps and pr are the density of the shell and the fluid, respectively. Here, the matrix
(a®?) is the contravariant form of the first fundamental form of the midsurface of the shell
(see [8, 9] for further details); Greek indices range over 1 and 2, the convention of the
summation over the repeated indices up and down is used.

The bilinear form a(-, -) can be written as the sum of a term of the stiffness of the fluid
and other term of the stiffness of the shell; in this case, we also separate the latter in a
bending term D, a membrane term D™, and a shear term D?; i.e.,

a((U, o,W),(V,T, Z)) = AW, Z)+ t3D”((U, ), (v, T))
+tD™(U,V) + tkD* ((U, o), (v, T)),
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with k£ being a correction factor for the shear term and

AW, Z) = /chzdidein
Q

D(@:01.0:1) = [ st 0 1)@,

12

[ B0 0 V) @)
p((v.0),(v.1) = /F G0 (U, 0)05(V; T) y/det(a).

D™U,V)

Here, c is the sound speed in the fluid, the tensor Y, 7, and ¢ are the well known bending,
membrane, and shear strain operators, respectively (see, for instance [8]). The tensors
present in the stiffness term, E** and G*? correspond to the material properties and
depend on Young’s modulus and Poisson’s ratio for the structure, E and v, respectively.

The spectrum of SP consists of the frequency w = 0 and a sequence of finite multiplicity
positive frequencies converging to infinity. In the first case, the associated eingenfunctions
belong to an infinite-dimensional subspace that consists of pure rotational fluid motions
inducing neither variations of the pressure in the fluid nor vibrations in the shell. In fact,
they do not correspond to free vibrations modes of the fluid-shell system, but arise because
no irrotational constraint is imposed to fluid displacements. The rest of the spectrum are
strictly positive frequencies which correspond to actual vibration modes of the fluid-solid
sistem. Moreover, the corresponding fluid displacements are irootational.

According to [7, 4], to avoid typical spurious modes in the fluid-solid coupled system,
the approximation of the fluid displacement vector field is made by using Raviart-Thomas
element. This element discretize the whole vector field instead of each of its components
separately (see [5], for further details).

On the other hand, we use the MITC4 method for the shell structure. This method
is based on discretizing the bending and membrane terms using the usual isoparametric
quadratic finite elements and relaxing the shear term by using reduced integration.

Let us now specify these method in our context. Let {7,} be a family of partitions in
hexahedra of 2 and {7;}'} be a family of decomposition of T into convex quadrilaterals.
Note that, although each 7, induces a decomposition on I', a non compatible new mesh
{T}} could also used. Here h stands for the maximum diameter of the elements in K € 7,
or K € 7j, respectively. R

Let K be the unit square reference element. We denote by Q; ;(K) the space of poly-
nomials of degree less than or equal to 7 in the first variable and to j in the second one.
We set Qr(K) = Qri(K). We denote by Fi the bilinear mapping of K onto K, and we

set Q(K):={p: poFx € Q1(1?)}
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The space of admissible discrete displacement is
Up = {(Uhve)hyWh) © Unlk € QuK)?, Onlx € Qu(K)*, VK € T,

Wh|KERT(K), and/Uh-n:/Wh-n}ﬂBC,
F F

where RT(K) denote the lowest-order Raviart-Thomas hexahedron (whose degrees of
freedom are the fluxes through each of the six faces of K). Recall that BC denotes the
essential boundary conditions prescribed.

We have included weakly the kinematic interface constraint, because to do it strongly
is too stringent (see [7]). The integrals to do this are imposed on the fluid mesh faces in
contact with the shell.

Then, the discrete variational problem reads:

SPy: Find wy, > 0 and 0 # (U, On, Wy) € Uy, such that

an (U, O, W), (Vi Y, 7)) = wib(U, 00, W), (Vi Y, Z0)) ¥ (Vi T, Z0) € U

The bilinear form ay(-,-) is a perturbed form of a(-,-); more precisely, it comes from
introducing in the shear term D® a reduction operator ¢ — Ry with Rop|gx € Qo1 (K) X
Q10(K), VK € TT), (see, for example, [11]). Thus we obtain

ap ((Uh, O, Wh), (Vm Ty, Zh)) = A(Wh, Zh) + t3Db<(Uh, @h), (Vh, Th))
D™ (U, Vi) + thD; ((Uh, 1), (Va, Th)),
with

D; (U, ©n), (Vi Tw)) = /Q 6 (Re(Us. @h))a(Rgp(Vh,Th))ﬁ Jdet(a).

Let us emphasize that, for the shell structure, this MITCA4 finite element procedure is based
on meshes that are constructed in a reference 2D domain, and the numerical computations
require an extensive use of the chart ¢.

3 PLATE STRUCTURES

In this section, we consider that the shellis plane (i.e. a plate). The Reissner-Mindlin
formulation for plates can be seen as a special case of the Naghdi shell model, where
the plate transversal displacements terms appear separately from the in-plane terms.
Moreover, the in-plane motions do not interact with the fluid. Therefore they can be
solved separately. Thus the fluid-solid interaction can be expressed in terms only of
the plate transversal displacement, the fiber rotations and the fluid displacements. If we
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choose coordinate sistem which that the plate lies in the z, y plane, then the finite element
space is

Uy = {(Usn, 00, Wa):  Uslic € Qu(K), Onlic € Qu(K), VK €T,

Wh‘KERT(K), and/Uth/Wh'n}ﬂBC,
F F

and the computed free vibration modes are the solutions of the following problem (see
[10, 14]):
PPy: Find wy, > 0 and 0 # (Usy, O, Wy,) € UF such that:

t3&(®h, Th) + Iit/ R(VUgh - (")h) - R(VV;),}; — Th) + / pF02 div Wh div Zh
Q Q

t3
=wpp (t/ UspVap + ﬁ/ O - Th) + / peWh - Zy V(Van, Thy Zn) € Uy, -
Q Q Q

Here k := Ek/2(1 + v) is the shear modulus (with & a correction factor), meanwhile
the bilinear form « is defined by

2
&(@h, Th) = ﬁ/ﬂ |:ZJZI(1 - V)Eij(eh)é'i]’(’rh) + v div @h div Th s
where €;; denote the components of the linear strain tensor.

This coupled problem have been analyzed mathematically in [10], where tetrahedral
Raviart-Thomas elements for the fluid and MITC3 elements for the plate have been used.
These results have been extended to MITC4 and Raviart-Thomas hexahedra in [14]. In
both papers, optimal order error estimates have been obtained for the solution of PPy,
which are valid uniformly on the thickness parameter ¢.

As a test of the performance of this method, we have considered a steel 3D cavity
completely filled with water with all of its walls being perfectly rigid, except for one of
them which is a plate. The geometric parameter are given in Figure 1. The physical
parameters of plate and fluid are the following ones:

density of the plate: p, = 7700 kg/m?,
Young modulus: E = 1.44 x 10! Pa,
Poisson coefficient: v = 0.35,

density of the fluid: p, = 1000kg/m?,
e sound speed: ¢ =1430m/s,

Table 1 shows the frequencies of the three lowest-frequency vibration modes computed
on different meshes. Here, N stand for the number of layer of element for the fluid domain
in the vertical direction. The number of layers in the other two direction being 2N and
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Figure 1: 3D cavity filled with fluid.

3N. We also include more accurate values computed by extrapolating those obtained with
most refined meshes. The obtained results compare perfectly well with those in [5, 10, 14].

Table 2 shows the result obtained for the first frequency vibration mode, for plates
with different thicknesses. To allow for comparison we scale the frequencies. Note that
the convergence behaivors do not depend on the thicknesses.

Table 1: Vibration frequencies of a steel plate in contact with water.

Mode N=4 N=5 N=6 N=7 “exact”
w 7455411  744.6309 < 744.1355  743.8364  743.002848
Wo 1126.6920 1123.8563 1122.3137 1121.3828 1118.786303
w3 1354.1576 1351.3917 1349.8881 1348.9811 1346.471972

Table 2: Scaled lowest vibration frequency for plates of different thicknesses coupled with water.

Thickness N=4 N=5 N=6 N=7 “exact”
0.5 745.54 744.63 744.13 743.83 743.0028
0.05 74751 746.63 746.15 745.87 745.0697

0.005 747.53 T46.65 746.18 745.89 745.0913
0.0005 747.53 T746.65 746.18 745.89 745.0915

Figures 2 and 3 show the deformed plate and the fluid pressure for the two first modes
in Table 1.

4 SHELL STRUCTURES

In this section we present numerical results corresponding to the solution of problem
SP;,. We consider a thin cylinder clamped by both ends and full of fluid. We use the
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Figure 2: First modes of the fluid.

Figure 3: First modes of the plate.

same material properties as in the previous case; i.e., an steel structure full of water. The
height of the cylinder is 3.5 m, inner diameter length 2.0m, and thickness 0.1 m.

Table 3 shows the computed lowest vibration frequencies for the cylinder coupled with
the water. We denote by w, and w; the shell and fluid mode, respectively. This is the
same test chosen in [6, 5].

Figures 4 and 5 show the deformed cylinder and the fluid pressure for the vibration
modes in Table 3.

Table 3: First vibration mode for shell of different thickness coupled with water.

mode N=1 N=2 N=3 “exact”
Wy 2091.0483 1193.7631 1014.4395 856.0393927
wy 1199.2930 1169.1406 1162.4796 1155.7457583
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Figure 4: First vibration mode of the shell.
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Figure 5: First mode of the fluid.
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