MODELO HIDROLOGICO SUPERFICIAL Y SUBTERRANEO PARA LA SIMULACION DE SISTEMAS DE LLANURA.

Erik D. Zimmermann¹ y Gerardo A.Riccardi²

Key words modelo hidrológico superficial-subterráneo, llanura pampeana.

Abstract. Se describe un modelo matemático de simulación hidrológica cuasi-3D, apto para representar áreas de llanura, que contempla las interacciones entre los procesos de superficie, de la zona no saturada (ZNS) y de la zona saturada. En cada celda ó unidad de discretización espacial, el modelo SHALL3 puede cuantificar dinámicamente variables de estado (almacenamientos por intercepción, superficial, en el perfil del suelo y subterráneo) y flujos de intercambio (evapotranspiración, ascenso capilar, escurrimiento superficial, mantiforme y encauzado, a superficie libre y a través de constricciones, infiltración, percolación profunda y escurrimiento subterráneo). Cada una de estas variables puede conocerse con una adecuada resolución espacial y temporal. La estructura de la modelación permite la discretización del dominio espacial en "capas" de celdas superficiales y subterráneas, sobre las que se evalúa el intercambio de flujos horizontales, vinculadas por modelos de flujos verticales en la ZNS. Esta aptitud de conectar la hidrología de superficie con la subterránea, lo habilita para realizar predicciones acerca de evoluciones en los procesos hidrológicos provocados por acciones antrópicas a escala de cuenca y en el largo plazo. Se describen resultados de la puesta en operación y calibración del modelo en el sistema del Arroyo Ludueña (Santa Fe, Argentina).

INTRODUCCION

Como objetivos de esta investigación se han propuesto: (a) contar con herramientas tecnológicas capaces de predecir alteraciones en el comportamiento hidrológico frente a acciones de índole antrópica y (b) cuantificar el impacto que produciría un incremento generalizado del riego en los procesos hidrológicos de un sistema de llanura y en su vulnerabilidad frente a procesos de contaminación difusa A tal fin, se requirió de un modelo hidrológico capaz de simular el comportamiento en el largo plazo de los flujos y almacenamientos de los componentes superficial y subterráneo. El modelo que se presenta en este trabajo ha sido elaborado sobre la base de otros modelos desarrollados para operarse por eventos^[13] y en forma continua con parámetros concentrados^[14].

Este último fue calibrado en el sistema hidrológico del arroyoLudueña, provincia de Santa Fe, Argentina, y explotado bajo escenarios hipotéticos de riego, durante un período de veinte años^[17]. Como resultado de las simulaciones se detectó que el impacto más significativo se muestra en un aumento de los montos de percolación: el principal volumen de riego tiene por destino al acuífero freático lo que podría resultar en incrementos notables de los niveles freáticos. Este predominio del movimiento vertical de flujos de humedad refleja una situación típica en sistemas hidrológicos de llanura.

Del trabajo previo, se planteó la necesidad de conocer como se distribuían los efectos en el área del sistema de estudio. Se desarrolló, entonces, un modelo de parámetros distribuidos y de operación continua, que además contemple las componentes subterráneas y superficiales de flujos de agua, conjuntamente con los flujos verticales hacia el acuífero y la atmósfera. En esta primera del trabajo se presenta el modelo, denominado SHALL3 (Simulación Hidrológica de Areas de Llanura, versión 3), y los resultados derivados de su aplicación en el sistema del Arroyo Ludueña

FLUJOS VERTICALES DE AGUA Y VAPOR

Modelo de procesos hidrológicos en superficie

Los volúmenes interceptados por la vegetación son simulados mediante un almacenamiento temporal limitado por una capacidad máxima de intercepción fvmax. Dicha capacidad depende del tipo de cultivo. El almacenamiento se recarga con la precipitación no efectiva, entendiéndose por tal, aquella que no alcanza la superficie topográfica. La misma puede estimarse como la precipitación total afectada por el porcentaje de cobertura vegetal, pcv, que depende del área cultivada, fcu, por subcuenca ó celda, la cual constituye la unidad de discretización espacial en el modelo, y del desarrollo y tipo del cultivo, es decir de factores del tiempo y del cultivo fa_i . Y fi_i :

$$pcv = fcu * \sum_{i=1}^{N} fa_i * ft_i$$
 (1)

donde fcu es la razón entre el área cultivada y el área total de la celda, fa_i es la razón entre el área sembrada con un determinado cultivo i y el área sembrada total de la celda, ft_i es una función del tiempo que representa el grado de crecimiento del cultivo i y N la cantidad de

variedades sembradas en la celda. Finalmente, los volúmenes interceptados acumulados en el tiempo pueden expresarse como:

$$Int = min \left[fvmax, P * pcv \right] \tag{2}$$

donde *P* es la precipitación acumulada. El almacenamiento superficial se consideró como una capacidad máxima a abastecer una vez satisfecha la intercepción, de la siguiente manera:

$$AS = min \left[ASMax, P - Int \right] \tag{3}$$

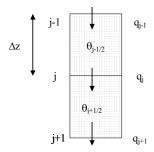
donde AS es el almacenamiento superficial y SMax la capacidad de almacenamiento de la cuenca.

Modelo de procesos hidrológicos en la ZNS.

El modelo está basado en la ecuación de Richards, para estimar la redistribución de humedad en la zona no saturada (ZNS) y los montos de agua intercambiados con la atmósfera y el acuífero. La resolución de la ecuación de Richards se realiza en términos de la humedad volumétrica θ , para conocer una de las variables del balance hidrológico de manera directa. Solamente está contemplado el flujo en la dirección vertical. La ecuación de movimiento, en el caso de flujo vertical, en términos de la humedad volumétrica y con una analogía a la ley de difusión de Fick, es:

$$q = -D(\theta) \frac{\partial \theta}{\partial z} - k(\theta) + \int_0^{zr} S(\theta) dz$$
 (4)

donde q es la velocidad de Darcy del flujo no saturado, θ la humedad volumétrica, z la coordenada vertical, z_r la profundidad radicular, $k(\theta)$ la conductividad hidráulica no saturada, $D(\theta)$ el coeficiente de difusividad del medio poroso, producto de la conductividad no saturada $k(\theta)$ por el gradiente de la curva de contenido de humedad y potencial matricial $(d\theta/d\Psi)$ y $S(\theta)$ un término fuente-sumidero que, en el caso de suelos cultivados, representa la tasa de extracción de agua por las raíces de las plantas. En la ecuación los signos se escogen de modo que q es positivo cuando el flujo es de dirección z positiva, además, z se toma como dirección positiva hacia arriba, un valor negativo de q denota flujo hacia abajo. La ecuación de continuidad establece para el flujo vertical, que:


$$\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} \tag{5}$$

El medio poroso no saturado es representado en forma discreta mediante un conjunto de celdas que se extienden verticalmente desde la superficie hasta el nivel freático. Se ha propuesto un esquema numérico de tipo explícito en diferencias finitas para resolver las ecuaciones diferenciales. El esquema es centrado en el espacio y progresivo en el tiempo. En los bordes de celdas se evalúan los flujos de intercambio y en los centros de celdas se estiman las humedades.

Para el esquema propuesto, se ha realizado un análisis de estabilidad y convergencia, contrastando sus resultados con problemas de solución analítica conocida y con otras técnicas y esquemas numéricos, validando su consistencia en todas las situaciones^[15]. Bajo este esquema de discretización (Fig. 1) la ecuación de momentum resulta:

$$q_j^n = -D(\theta_j^n) \frac{\theta_{j-1/2}^n - \theta_{j+1/2}^n}{\Delta z} - k(\theta_j^n)$$
 (6a)

$$\theta_{j}^{n} = \frac{\theta_{j+1/2}^{n} + \theta_{j-1/2}^{n}}{2}$$
 (6b)

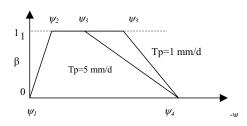


Figura 1. Discretización de la ZNS en celdas verticales

Figura 2. Función de extracción β .

La ecuación de continuidad resuelta para el término en el nivel n+1, es:

$$\theta_{j+1/2}^{n+1} = \theta_{j+1/2}^{n} - \frac{\Delta t}{\Delta z} (q_{j}^{n} - q_{j+1}^{n})$$
 (7)

donde j y n representan los índices de discretización espacial y temporal, respectivamente.

Para las *condiciones de contorno*, se plantea la resolución de las ecuaciones anteriores, con algunas de las incógnitas conocidas. La *imbibición* como condición de borde superior fue resuelta utilizando el esquema numérico como un modelo de infiltración. En la celda que constituye el contorno superior se debe cumplir con la siguiente condición:

$$q_{1}^{n} = max \left(-D(\theta_{1/2}^{n}) \frac{\theta_{s}^{n} - \theta_{1/2}^{n}}{\Delta z} - k(\theta_{1/2}^{n}); -i^{n} - \frac{AS^{n}}{\Delta t} \right)$$
(8)

donde i^n es la intensidad de lluvia *efectiva* y AS^n la lámina de almacenamiento superficial, ambos en el intervalo n de discretización temporal. El primer término de (8) representa la capacidad de infiltración y el segundo la disponibilidad de agua para infiltrarse. De esta manera se establece una *interacción* entre los procesos de superficie (intercepción y almacenamiento superficial) y los montos que potencialmente pueden infiltrarse durante los períodos de lluvia.

La desecación como condición de borde superior contempla a la lámina interceptada como primer almacenador que satisface la demanda de evaporación potencial y en segundo término la lámina almacenada superficialmente (si existen). Se establece una *interacción* entre procesos superficiales y subsuperficiales, pero para los períodos sin lluvia. Si los montos almacenados en superficie no alcanzan para cubrir la demanda se extrae agua del suelo por transpiración vegetal. El modelo utilizado para estimar la evapotranspiración real es el de Feddes y otros^[2]. El modelo limita la tasa de evapotranspiración máxima, la cual está vinculada a los parámetros atmosféricos, en función del potencialmátrico del suelo. Se asume una distribución homogénea de las raíces en el suelo y se propone que:

$$S(\psi) = \beta(\psi) S_{\text{max}} = \frac{\beta T_p}{z_r}$$
 (9)

donde T_p es la máxima tasa de evapotranspiración, S_{max} representa la tasa máxima de evapotranspiración por unidad de profundidad radicular, z_r la profundidad de raíces, $S(\Psi)$ la tasa real de S_{max} , $0 < \beta(\Psi) < 1$ una función de extracción (Fig. 2). La función β es nula por debajo de Ψ_1 debido a la deficiencia de oxígeno, y por encima de ψ_4 debido al elevado potencial de succión que se requiere para extraer el agua del suelo. Es máxima entre los valores de capacidad de campo ψ_2 , y el potencial ψ_3 . El potencial ψ_3 depende de la tasa máxima de evapotranspiración. Deeb Páez y Díaz Granados [5] presentan una familia de curvas que relacionan el parámetro β vs. el potencial matricial, bajo diferentes tasas de evapotranspiración máxima.

Como condición de borde inferior se consideró a las celdas incluidas en la capa acuífera con humedad de saturación: $\theta_m(t) = \theta_s$. El conjunto de celdas saturadas depende del nivel freático, y éste es actualizado dinámicamente en el modelo general.

Deben conocerse parámetros del suelo tales como las curvas de conductividad hidráulica vs. humedad volumétrica $k(\theta)$, potencial mátrico vs. humedad $\psi(\theta)$ y difusividad vs. humedad $D(\theta)$. En el presente trabajo se han adoptado las relaciones de Brooks-Corey: las que fueron ajustadas a resultados de ensayos de laboratorio sobre muestras de suelos de Oliveros, provincia. de Santa Fe, y representan características medias de muestras extraídas en horizontes A y B bajo diferentes condiciones de uso del suelo (pasturas naturales y explotación agrícola). Los lazos de histéresis entre secado y mojadura no se han tenido en cuenta.

FLUJOS HORIZONTALES DE AGUA

Los modelos de flujos horizontales, tanto el superficial como el subterráneo, se basan en esquemas de celdas^[4]. Estos modelos permiten simular el movimiento multidireccional mediante el intercambio de flujo entre celdas con cualquier dirección contenida en el plano, pero con leyes de intercambio unidimensionales. El flujo superficial puede ser propagado mediante un espectro de leyes de descarga desde la aproximación cinemática de la ecuación de momentum hasta una aproximación a la ecuación dinámica. Estas leyes permiten la simulación de tránsito por ríos, canales, valles de inundación, calles urbanas y redes de conductos cerrados. Para contemplar diversas alternativas puntuales de escurrimiento se incorporaron leyes de

descarga para puentes, sumideros, vertederos, embocaduras de conductos, cambios de sección y estaciones de bombeo. El flujo subterráneo es simulado mediante la ecuación deDarcy.

La estructuración de los modelos de flujos horizontales en esquemas de celdas permite la discretización del dominio espacial en "capas" de celdas homólogas, superficiales y subterráneas, vinculadas por los modelos de flujos verticales, previamente descriptos.

Las ecuaciones gobernantes consideradas para el movimiento de flujo en ambos modelos son de continuidad y distintas simplificaciones de la ecuación de cantidad de movimiento transformadas en formulaciones de descarga entre celdas.

Modelo de flujo superficial

La ecuación de continuidad se plantea para cada celda y se deriva a partir de la definición del incremento del volumen de agua almacenada desde consideraciones geométricas y desde condiciones de descarga:

$$A_{S_i} \frac{dz_i}{dt} = P_i + \sum_{k=1}^{j} Q_{k,i}$$
 (10)

 A_{Si} es el área superficial de la celda; z_i es la cota de agua en la celda i respecto a un plano de referencia; P_i es el intercambio externo de caudal en la celda i; $Q_{k,i}$ es el caudal entre celdas i y k. La sumatoria representa el intercambio de flujo de la celda genérica i con las vecinas.

Como leyes de descarga entre celdas, la versión actual del modelo contempla las siguientes:

Unión Cinemática: Se utiliza cuando la información del mecanismo hidrodinámico se propaga solamente hacia delante^[8]:

$$Q_{k,i}^{n} = K_{k,i} \sqrt{\frac{|z_{f_{k}} - z_{f_{i}}|}{\Delta I_{k,i}}}$$
 (11)

donde $K_{k,i}$ es el coeficiente de transporte y $K_{k,i} = 1/\eta A_{k,i} R_{k,i}^{2/3}$, $A_{k,i}$ y $R_{k,i}$ son el radio hidráulico y el área de la sección transversal, η el coeficiente de rugosidad de Manning, z_f representa cotas de fondo de cada celda y $\Delta l_{k,i}$ la distancia entre los centros de las celdas i y k. El supraíndice (n) indica la variable temporal.

Unión Río Simple: Se usa en escurrimientos con preponderancia de las fuerzas de gravedad, presión hidrostática y fricción^[4]:

$$Q_{k,i}^{n} = signo\left(z_{k}^{n} - z_{i}^{n}\right) \frac{K_{k,i}}{\sqrt{\Delta I_{k,i}}} \sqrt{|z_{k}^{n} - z_{i}^{n}|}$$
(12)

donde z_k y z_i representan las cotas del pelo de agua.

Unión tipo Vertedero: Representa vinculaciones con un límite físico como terraplenes, rutas, vías, etc. La fórmula utilizada es la de vertederos de cresta ancha para vertederos con descarga libre y sumergida, respectivamente^[4]:

$$Q_{k,i}^{n} = \mu_{l} b \sqrt{2g} \left(z_{k}^{n} - z_{i}^{n} \right)^{3/2}$$
 (13.a)

$$Q_{ki}^{n} = \mu_{2} b \sqrt{2g} \left(z_{k}^{n} - z_{w} \right) \sqrt{z_{k}^{n} - z_{i}^{n}}$$
(13.b)

donde g es la aceleración gravitatoria, μ_i y μ_2 son los coeficientes de descarga, b el ancho del vertedero y z_w es el nivel de aguas abajo al vertedero.

El modelo permite la aplicación de otros tipos de uniones, a pesar de no haber sido directamente incorporadas al código computacional, a saber: (a) Unión Río Cuasi-Dinámica: Se emplea cuando los mecanismos convectivos son relevantes. Se parte de la ecuación de momentum, despreciando el término local y con una discretización que permita despreciar $\mathcal{Q}/\partial x^{[6]}$; (b)Unión Dinámica: Se parte de la ecuación momento y se arriba a una expresión aproximativa de segundo grado en la variable caudal [9]; (c) Unión tipo Puente: Se utiliza la expresión de caudal para vertederos con escalón de fondo nulo y coeficiente de gasto según para flujo a través de constricciones [6]; (d) Unión tipo Sección de Control: Esta vinculación resulta apta cuando se manifiesta una pérdida de energía del flujo debido a bruscos cambios en la sección de escurrimiento (expansiones-contracciones) [7]; (e) Unión en conductos cerrados: se utilizan las aproximaciones de onda cinemática, difusiva, cuasi-dinámica y dinámica. Para flujo a presión el área superficial se calcula considerando la rendija de Preissmann [1] a lo largo del conducto.

Modelo de flujo subterráneo

La ecuación de continuidad tiene la misma forma que la correspondiente a flujo superficial:

$$A_{Se_i} \frac{dz_i}{dt} = P_i + \sum_{k=1}^{j} Q_{i,k}$$
 (14)

donde A_{Sei} es el área superficial efectiva de la celda; obtenida como producto del área superficial y la porosidad efectiva del medio permeable. El modelo evalúa el intercambio de caudal entre celdas de acuerdo con la formulación de Darcy para flujo uniforme en medio poroso saturado [10]:

$$Q_{i,k} = \phi_{i,k} h_{i,k} \Delta_{Z_{i,k}} \tag{15}$$

donde $\phi_{i,k} = \frac{b_{i,k} \ k_{i,k}}{\Delta_{X_{i,k}}}$, $h_{i,k}$ es la altura media de agua entre celdas vinculadas, medida desde

el fondo del acuífero; z_f es la cota de fondo de acuífero; $k_{i,k}$ es la conductividad hidráulica horizontal entre celdas del estrato; $b_{i,k}$ es el ancho total de la union entre celdas; $\Delta z_{i,k} = z_i - z_k$ es la diferencia de cotas de nivel de agua de los centros de celda; $\Delta x_{i,k}$ es la distancia entre

centros de celdas. Al igual que en el caso anterior, el modelo permite la aplicación de otros tipos de uniones, tales como la unión entre celdas acuíferas y conductos de drenaje [18].

Formulación numérica y condiciones de borde

Para la resolución numérica de ambos modelos es adecuado el uso de un esquema implícito^[4] del tipo:

$$A_{S_{i}} \frac{\Delta z_{i}}{\Delta t} = P_{i} + \sum_{k=1}^{j} Q_{k,i}^{n} + \sum_{k=1}^{j} \frac{\partial Q_{k,i}^{n}}{\partial z_{i}} \Delta z_{i}$$

$$+ \sum_{k=1}^{j} \frac{\partial Q_{k,i}^{n}}{\partial z_{i}} \Delta z_{k}$$
(16)

las funciones A_S , P_i y $Q_{k,i}$ son conocidas en el tiempo $t = n \Delta t$ y los incrementos Δz_i y Δz_k son las incógnitas, j es la cantidad total de celdas vinculadas a la celda i. La resolución numérica se realiza mediante un algoritmo matricial basado en el método de Gauss-Seidel, previa reducción de la matriz mediante eliminación de elementos nulos.

Las condiciones de borde posibles de imponer son: (a) Cota de Agua en función del tiempo, z(t); (b) Caudal en función del tiempo, Q(t) y (c) Relación cota – caudal, Q = f(z). Asimismo el modelo requiere la especificación de las alturas de agua en todas las celdas en el tiempo inicial.

ENSAMBLE ENTRE ALGORITMOS DE FLUJOS.

El ensamble entre las distintas rutinas computacionales que representan diversos procesos hidrológicos, se propuso bajo los siguientes criterios generales:

- Cada rutina (asociada a un subproceso) puede operar independientemente, con su conjunto de archivos de entrada y de salida.
- Las rutinas operan bajo una secuencia lógica durante un período de simulación determinado, p.ej.: (1) arranque de la simulación desde las condiciones iniciales, (2) operación de la rutina de evapotranspiración hasta un evento lluvioso (actualización de las humedades del perfil y de tasas de percolación y evapotranspiración), (3) operación de la rutina de flujo subterráneo (actualización de niveles freáticos), (4) tras un evento de lluvia, operación de la rutina de almacenamientos en superficie e infiltración, (5) actualización de las humedades del perfil y de tasas de percolación y lluvia neta, (6) operación de la rutina de flujo subterráneo (actualización de niveles freáticos), (7) operación (optativa) de la rutina de flujo superficial (determinación de caudales, alturas y cotas en superficie) y (8) reiniciar la secuencia hasta el próximo evento lluvioso.
- El intercambio de información entre cada rutina se logra mediante la lectura y escritura de archivos que se actualizan permanentemente.
- La gestión de las todas las rutinas se realiza a través de un programa maestro que comanda la secuencia de operación según se ha mencionado precedentemente.

Los archivos de datos generales a lo largo de todo el período de simulación, son (a) un archivo que contiene tantos registros como eventos lluviosos se simulen y para cada registro el año, el día del evento seguido de 24 datos de precipitaciones horarias correspondientes al día de la lluvia y (b) un archivo que contiene un registro diario de la evapotranspiración potencial.

Es importante resaltar la enorme versatilidad que presentan los esquemas de celdas para la modelación en hidrología. Las celdas definen una unidad de discretización espacial, no necesitan estar equiespaciadas ni tener las mismas propiedades físicas y pueden representar elementos de características heterogéneas, por ejemplo canales, vertientes, conductos, porciones de acuífero, etcétera, estando vinculadas entre sí por la leyes físicas que correspondan al tipo de flujo entre dichos elementos. Los flujos de intercambio y las variables de estado de este conjunto heterogéneo de elementos se resuelven dinámicamente en un mismo sistema de ecuaciones En la Figura 3 se muestra esquemáticamente el ensamblaje entre dos celdas superficiales, con sus celdas análogas subterráneas y en la zonavadosa. Las superficiales y las subterráneas se encuentran vinculadas a una celda central deescurrimiento encauzado, como condición de borde interna.

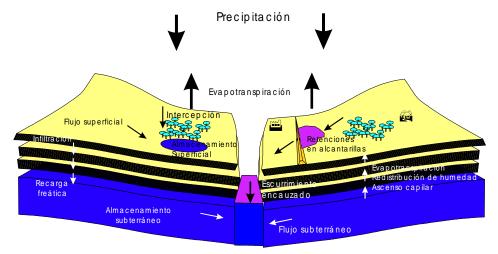


Figura 3. Esquematización del ensamblaje entre celdas superficiales, no saturadas y subterráneas.

PUESTA EN OPERACIÓN DEL MODELO SHALL3

El modelo fue aplicado en el sistema hidrológico del arroyo Ludueña (Santa Fe, Argentina). Dicho sistema presenta características propias de un área de llanura, con pendientes del orden de 1m/km y un área de aporte de 700 km². El arroyo atraviesa el ejido urbano de Rosario. El sistema hidrológico fue subdividido en un conjunto de celdas de características homogéneas.

La *zona saturada* fue caracterizada por la conductividad hidráulica horizontal y el coeficiente de almacenamiento del medio permeable. Tales parámetros fueron calibrados previamente con la operación del modelo GW8 ^[12]. Los valores calibrados se tomaron como referencia y fueron posteriormente sometidos a ajustes. El sistema se modeló con un total de 79 celdas, 27 de las cuales conforman condiciones de contorno interno y externo (niveles establecidos) y 114 vinculaciones entre ellas (Figura 4).

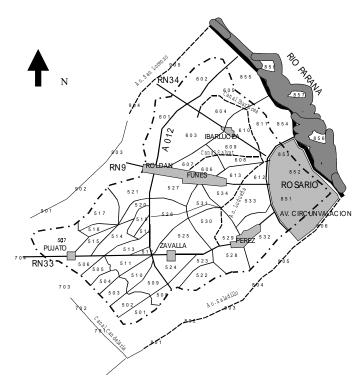


Figura 4. Sistema del Ao. Ludueña Topología empleada.

La zona vadosa (ZNS) fue modelada con profundidades cercanas a los 18 metros (contemplando 70 nodos verticales, parte de los cuales se encuentran sumergidos en la zona saturada). Se adoptó un intervalo de discretización vertical Δz de 0,25 m e intervalos temporales entre 360 seg. (durante eventos de lluvia) y 900 seg. (entre eventos de lluvia) los que garantizan condiciones de estabilidad y convergencia del esquema numérico de resolución^[15]. Para la asignación de una conductividad hidráulica vertical característica de cada celda se propuso una metodología de ponderación areal para conductividades hidráulicas

verticales de suelos heterogéneos no saturados ^[18]. En este análisis, se tuvo en cuenta las series de suelos presentes en la cuenca, las asociaciones de dichas series, sus composiciones texturales, el contenido salino y el pH para definir las conductividades hidráulicas características, humedades de saturación y potenciales de succión del frente húmedo. La información fue extraída de cartas de suelo del INTA con el apoyo de aerofotografías en escala 1:50000. Para predefinir las conductividades hidráulicas en función de las composiciones texturales y pH se utilizaron los ábacos de Rauls y Brankensiek ^[11] y trabajos actuales de Suárez y otros (USDA).

Los parámetros de superficie como alma-cenamientos por intercepción se estimaron en base a tipos de cultivos presentes, recurriendo a valores citados bibliográficamente [3]. Los porcentajes de ocupación de cada cultivo fueron estimados en base a censos de producción agrícola realizados por la Facultad de Ciencias Agrarias y las curvas de desarrollo del cultivo fueron propuestas en base al ciclo vegetativo de cada cultivo. Igual tratamiento que el grado de cobertura se dio a la estimación de la profundidad radicular, con el fin de determinar los nodos de la ZNS afectados por la evapotranspiración. Las capacidades de almacenamiento superficial se estimaron por medición de las áreas de almacenamiento detectadas mediante aerofotografías, suponiendo para cada receptáculo una volumetría cónica inversa cuyas generatrices mantienen la pendiente topográfica local. Se utilizaron cartografías del Instituto Geográfico Militar, en escala 1:50000.

CALIBRACIÓN DEL SHALL3

El modelo SHALL3 fue concebido con una base racional, de manera tal que los procesos que simula estén representados por ecuaciones cuyos parámetros tienen una interpretación física y están sujetos a mediciones in situ o en laboratorio. No obstante, ajustes sobre algunos de los parámetros adoptados son convenientes, sobre todo aquellos que presentan incertidumbres o heterogeneidades importantes en el terreno. Como parámetros de calibración se tomaron las conductividades hidráulicas verticales (en cada celda) y horizontales (en cada vinculación subterránea entre celdas). Los ajustes de tales parámetros se hicieron mediante dos coeficientes, *ckv* y *ckh*, que multiplican los valores previamente definidos. Es decir que las conductividades hidráulicas no se ajustaron en forma individual (para cada celda o vinculación) sino que se calibraron en conjunto.

Para la calibración del modelo, se procesó información de registros pluviográficos de las estaciones Rosario Aéreo y Zavalla, y pluviométricos (en forma discontinua) de Casilda y Pérez; de registros de evaporación en tanque "A" de la estación agroexperimental de Zavalla y limnigramas de la estación Circunvalación, disponible en forma continua durante el período 1982-1984 (Figura 4). La información limnigráfica fue procesada en intervalos diarios y separada por tormentas. Se construyeron hietogramas de tormentas con paso horario, partiendo de información pluviográfica disponible. Para algunos registros faltantes se adoptó una distribución temporal del evento en forma triangular, la cual es la más frecuente de acuerdo a un análisis probabilístico realizado en una estación de la región [16]. Dado que la respuesta hidrológica del sistema del Ludueña ha cambiado sensiblemente con las prácticas agrícolas desde los 70 a la fecha, se ha desestimado información disponible para anteriores períodos. Como

información complementaria, que fue empleada en el proceso de calibración del modelo, se cuenta con (a) profundidades freáticas, a intervalos diarios durante el período 1973-1992, y (b) humedades en peso tomadas a 0,15 m, 0,30 m y 0,60 m de profundidad, con intervalos asistemáticos (cada tres días en promedio), durante el período 1973-1986. Ambas series fueron registradas en la estación Agroexperimental de Zavalla y digitalizadas para el período 1982-1984.

Las tareas de calibración se llevaron a cabo en dos etapas sucesivas. En una primera, el sistema fue discretizado espacialmente con un grado de desagregación inferior, totalizando 13 celdas representativas de superficie. El objetivo de la agregación realizada sobre ladiscretización que inicialmente se adoptó fue disponer de un esquema simplificado que permita un gran número de simulaciones con un consumo de tiempo de máquina operativo. Posteriormente se realizó un ajuste detallado con el grado de discretización originalmente adoptado.

Calibración bajo el esquema agregado

Se realizó un primer análisis de sensibilidad en el largo plazo, tomando como información de entrada una serie sintética de tormentas (1293 eventos) generada estadísticamente [16] junto a otra serie sintética de evapotranspiración potencial (7300 datos diarios) generada mediante un modelo determinístico-estadístico^[14]. La simulación se realizó a lo largo de veinte años permitiendo analizar el comportamiento del SHALL3 en el largo plazo. Como resultado del análisis de sensibilidad se observó que prácticamente la totalidad del agua infiltrada es tomada por la ETR, denotando un predominio de movimientos verticales en las direcciones del flujo. Los volúmenes de escurrimiento (O) decrecieron frente a los aumentos del ckv con una marcada sensibilidad. El proceso de percolación (B-) experimentó un aumento absoluto significativo. Cuadriplicando las conductividades hidráulicas verticales permanecen constantes, a los fines prácticos, las variables I y ETR, denotando una baja sensibilidad al parámetro de ajuste. Ocurre lo contrario para las variables B y Q que, en ese orden, presentan cambios muy significativos al aumentar ckv. La percolación B aumenta en valor absoluto un orden de magnitud, mientras que el escurrimiento O disminuye unas 6,5 veces. Las magnitudes de los procesos de I y ETR marcan un predominio por sobre los restantes, B y Q, en términos de volúmenes anuales. En las redistribuciones de humedad, pequeños cambios en los primeros significaron importantes cambios en los segundos. Lo descrito para el análisis en el largo plazo se reprodujo para la serie observada de septiembre 1982 a marzo 1984. Los escurrimientos superficiales disminuyen ante los aumentos del ckv, en mayor medida para las celdas de divisorias (Figura 4) que para las deprimidas del sector Salvat-Ibarlucea y del arroyo Ludueña. Las celdas ubicadas en las zonas deprimidas del sistema del arroyo Ludueña y el sector Salvat-Ibarlucea producen casi la totalidad de los volúmenes de escurrimiento (Tabla 1) ocupando un 67% del área total.

Los valores óptimos hallados para las conductividades hidráulicas horizontal y vertical fueron de 6.25 y 0.047 m/d, respectivamente, con un error del 2% entre volúmenes acumulados de escurrimiento superficial estimados y observado para la serie 1983-1984.

Celdas	Proporción del área total	Proporción del volumen total	
	_	Kv = 0.047 m/d	
Cabecera	33%	9%	
Area deprimida	28%	30%	
Area norte	39%	61%	

Tabla 1. Producción de volúmenes de escurrimiento.

Calibración bajo el esquema desagregado.

Para el esquema desagregado se realizaron corridas del modelo, compuesto por 79 celdas, con diferentes ckv. Finalmente, el valor óptimo de kv calibrado fue de 0.056 m/d, el cual permite alcanzar a un buen ajuste de volúmenes de escurrimiento superficial (Figura 5). El coeficiente de determinación entre serie observada y calculada resultó de $\hat{r} = 0.9747$.

Se analizó la evolución de los niveles freáticos a lo largo del período de calibración y en la celda 524, adyacente a la estación agroexperimental de Zavalla (Figura 6). El coeficiente de determinación entre serie observada y calculada resultó de $t^2 = 0.8917$.

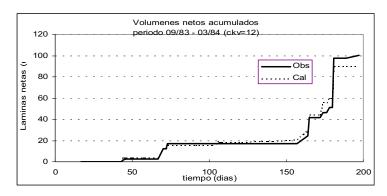


Figura 5. Escurrimientos observados y calculados

Las humedades del perfil estimadas por el modelo SHALL3 en las celdas 524 y 525 para un metro de profundidad, fueron chequeadas con las medidas en la estación agrometerológica de Zavalla, la cual se encuentra en el límite entre ambas celdas. Los registros dehumedades tienen validez puntual y presentan grandes variaciones espaciales, por lo cual el objetivo de este ajuste fue reproducir las tendencias generales en la evolución de humedades del perfil. Bajo estas condiciones, el ajuste se consideró satisfactorio (Figura 7). En la Tabla 2, se presentan los acumulados de diferentes variables hidrológicas para el período de calibración y sus respectivos porcentajes respecto a la precipitación total.

La calibración del SHALL3 bajo un esquema desagregado ha permitido un mayor detalle en las características espaciales o zonales de los procesos hidrológicos que se dan a nivel del sistema. Se han trazado mapas de la distribución espacial de diferentes procesos hidrológicos, tomando como base los valores puntuales en cada celda de simulación Se puso en evidencia que la producción de montos de escurrimiento se concentra en los sectores deprimidos del sistema. Existe una entera correspondencia entre los mapas de conductividades hidráulicas y escurrimientos.

Tabla 2. Totales acumulados y porcentuales de variab	oles hidrológicas en el período de calibración
---	--

Precipitación, P	1565,8 mm	100%
Evapotranspiración, ETR	1576,7 mm	101%
Percolación, B	-44,4 mm	3%
Almacenamiento superficial e intercepción, AS + F	181,7 mm	12%
Escurrimiento, Q	90,4 mm	6%
Infiltración, I	1264,8 mm	81%

Los sectores de la cabecera del sistema hidrológico, representan la zona de recarga por excelencia, en donde se concentran los valores de percolación. Los sectores deprimidos representan las descargas de la freática por ascenso capilar, por excelencia. La evapotranspiración acumulada durante el período es mayor en los sectores deprimidos de la cuenca, en donde se encuentra el acuífero freático a menor profundidad. Las tasas de evapotranspiración disminuyen en gran medida en los sectores de cabecera de cuenca, donde el acuífero se encuentra a profundidad.

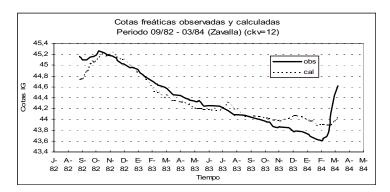


Figura 6. Niveles freáticos observados y calculados.

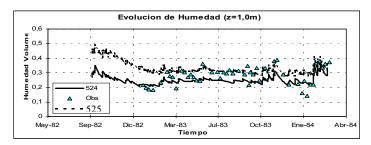


Figura 7. Humedades a 1 m de profundidad

CONCLUSIONES

El modelo propuesto permite contemplar las interacciones entre los procesos hidrológicos en la superficie, en la zona no saturada y en la zona saturada. Esta aptitud de conectar la hidrología de superficie con la subterránea, lo habilita para realizar predicciones acerca de evoluciones en los procesos hidrológicos provocados por acciones antrópicas a gran escala y en el largo plazo. Las componentes hidrológicas consideradas lo hacen apto para simulaciones en áreas de llanura. La puesta en operación y las tareas de calibración del modelo hidrológico, SHALL3, en el sistema del arroyo Ludueña puso en evidencia que las conductividades hidráulicas verticales ajustadas resultaron ser de un orden de magnitud mayor a las estimadas previamente con los ábacos de Rauls y Brakensiek, poniendo de manifiesto que la conformación textural del suelo, sobre las que se basan los ábacos, no es la única variable que controla la conductividad hidráulica. Los ajustes en los escurrimientos, niveles freáticos y humedades medidas durante el período de calibración pueden considerarse como satisfactorios, validando al modelo SHALL3 para posteriores simulaciones.

REFERENCIAS BIBLIOGRAFICAS

- [1] Abbott M, and Cunge J. (1981) A modelling system for the design and operation of storm-sewer network Engineering applications of computational hydraulic storm. Vol. 1, edn. Pitman, London.
- [2] Candela L y Varela M (1993) La zona no saturada y la contaminación de las aguas subterráneas [The non saturated zone and groundwater contamination]. Teoría, medición y modelos. CIMNE, Barcelona, España.
- [3] Chow VT, Maidment D, and Mays L (1994) *Hidrología Aplicada [Applied Hydrology]*. Mc Graw-Hill Interamericana SA; ISBN 0-07-010810-2; Colombia.
- [4] Cunge J. (1975) Two dimensional modeling of flood plains. **In:** Mahmood K. and Yevjevich V. (eds). *Unsteady flow in open channels*. Water Resources Publications, Fort Collins.
- [5] Deeb Páez A, Díaz Granados M (1988) Balance hídrico en la cuenca media del río Magdalena, modelación de la interacción río, acuífero, suelo, vegetación y atmósfera.

- [Water balance in the middle basin of Magdalena River, interaction modelling between river, aquifer, soil, vegetation and atmosphere] **In:** Vol 2; XIII Congreso Latinoamericano de Hidráulica; La Habana; Cuba.
- [6] Riccardi G. (1994). Un Modelo Matemático Hidrodinámico cuasi-bidimensional para escurrimiento cuasi-dinámicos. [A hydrodynamic mathematical model quasi-2D for quasi-dynamic flows] In: XVI Congreso Latinoamericano de Hidráulica, IAHR-LAD, Santiago. Chile.
- [7] Riccardi G, Zimmermann E, Maurig R (1995) Mathematical Modelling of Flood Propagation for the Delimitation of Rural, Semiurbanized and Urbanized Zones with Inundation Risk. In: IAHS International Symposium on Runoff Computations for Water Proyects, St. Petersburg Federación Rusa.
- [8] Riccardi G. (1997a) El Mapeo de Riesgo de Inundación por medio de la Modelación Matemática Hidrodinámica. [Risk of flood maps by hydrodynamic mathematical modelling]. Revista Ingeniería del Agua. Vol. 4 (3), ISSN 1134-2196, Univ. Politécnica de Valencia, 45-56.
- [9] Riccardi G. (1997b) The mathematical modelling of flood propagation for the delimitation of inundation risk zone. In: Rosberg D (ed). Sustainability of Water Resources under Increasing Uncertainty IAHS Publication Nro 240, ISSN 0144-7815., Wallingford, 355-364.
- [10] Riccardi G, Zimmermann E. (1999) La Modelación Matemática Bidimensional de Escurrimie nto Subterráneo mediante Esquemas de Celdas. [The two-dimentional mathematical modelling of groundwater flow by cell schemes] In: Tineo A (ed). Hidrología Subterránea. ISSN 1514-4186, Instituto Superior de Correlación Geológica-CONICET, Tucumán, 79-88.
- [11] Tucci C (1989) *Hidrologia Aplicada*. [Applied Hydrology] Colección ABRH de recursos hídricos. Instituto de Pesquisas Hidráulicas; UFRGS. Porto Allegre. Brasil.
- [12] Zimmermann E. (1994) Evolución Temporal de Niveles Freáticos y de las Zonas de Interacción con la Hidrología Superficial en un Area de Llanura. [Time evolution of water-table, and surface interaction zones in a flatland area] In: II Congreso Latinoamericano de Hidrología Subterránea, Sgo. de Chile, Chile.
- [13] Zimmermann E, Riccardi G. (1995) A Preliminary Model for the Hydrological Simulation in Flatlands Areas. **In:** IAHS International Symposium on Runoff Computations for Water Projects; St. Petersburg; Federación Rusa.
- [14] Zimmermann E. (1998a) Un modelo de parámetros concentrados para la simulación de la interacción suelo-vegetación y atmósfera. [A lumped model for SVAT simulation] In: XVII Congreso Nacional del Agua. Santa Fe. Argentina.
- [15] Zimmermann E. (1998b) Esquema explícito para la resolución de la ecuación de Richards [Explicit scheme for the Richards's equation solution]. In: XVII Congreso Nacional del Agua. Santa Fe. Argentina.
- [16] Zimmermann E (1998c) Synthetic Storm Generation in a Flatland Region (Santa Fe, Argentina). *Journal of Environmental Hydrology.* Vol. 6. N° 2. IAEH.

- [17] Zimmermann E. (1999) Assessment of hydrologic impacts of irrigation projects in a flatland area, Santa Fe, Argentina.. *Journal of Environmental Hydrology*. Vol. 7. N° 1. IAEH.
- [18] Zimmermann E. (2000) Metodología para la estimación de la conductividad hidráulica equivalente en suelos no saturados heterogéneos [Methodology for equivalent hydraulic conductivity estimation in heterogeneous non saturated soils]. *Cuadernos del CURIHAM*. PHI-UNESCO. Vol 6, No. 1. pp 1-12. ISSN 1514-2906. UNR Editora.
- [19] Zimmermann E., Riccardi G. (2000) Hydrodynamic model of cells for designing systems of urban groundwater drainage. *Hydrogeology Journal*. Springer Ed. IAH. Vol. 8. No 5. pp 538-548.