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Abstract.  The use of triangular elements in simulations of dendritic solidification of binary 
alloys is examined. The simulations require the solution of the diffusion equation for the 
solute concentration in very distorted geometries that change continuously with time, 
therefore a new mesh of triangular elements is generated at each time step and data from the 
previous mesh interpolated to the new one. It is shown that because of the exponential nature 
of the solute concentration field and the large number of time steps/interpolations, linear 
triangles suffer from excessive interpolation error that leads to unacceptable error in the total 
mass conservation unless unreasonably fine meshes are used. The problem is greatly 
alleviated by the use of quadratic triangles, which introduce the curvature needed to obtain 
better accuracy in the interpolation of the exponential fields. Examples of simulations of 
dendritic growth in binary alloys are given. 
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1 INTRODUCTION  
 The importance of understanding dendritic growth is critical to the manufacturing of high-
temperature-resistant castings used in the aerospace industry and for the production of the 
high-quality crystals needed in the electronics industry. Numerical modeling of directional 
solidification of alloys requires the time integration of a moving boundary problem made 
unstable by constitutional undercooling. Moreover, in a typical alloy, such as the Pb-Sb model 
alloys used in this work, the thermal and solute diffusivities differ by four orders of 
magnitude, which makes these simulations, even today, a formidable challenge. In previous 
work it has been assumed that the solutions are very dilute,1-5 or eutectic,6,7 and that the 
temperature field is known, either constant or a prescribed gradient, in order to alleviate these 
difficulties. The latter assumption requires that the latent heat release be negligible, and it 
reduces the problem to the solution of the solute concentration in the liquid only. However, 
none of these assumptions is valid for high concentrations of solute. 
 In simulations of solidification of binary alloys the solute concentration in the liquid must 
be calculated in a domain that is continuously evolving and that can become topologically 
extremely complicated.1,2,8,9 In most metallic alloys the solute diffusion coefficient in the solid 
is several orders of magnitude smaller than the diffusion in the liquid, which in turn is several 
orders of magnitude smaller than the heat diffusion; therefore solute diffusion in the solid is 
usually neglected. The solute diffusion in the liquid must then be calculated in a region that is 
complicated and continuously changing, placing severe demands on the generation of ade-
quate computational meshes. In this work the problem has been addressed utilizing the mesh 
generation techniques developed in Refs. 10-12 based on triangular elements. The algorithm 
developed in Ref. 9 solves the energy equation over a fixed mesh of bilinear quadrilateral 
elements; the solid-liquid interface is tracked using a set of marker points that move according 
to the interface velocity and the number of markers can change to maintain a uniform 
resolution as the interface evolves.8 The solute concentration in the liquid is solved inde-
pendently on a variable mesh of triangular elements; a new triangular mesh is generated at 
every time step to follow the geometric change of the domain containing the liquid. The 
temperature and the solute concentration fields are coupled at the interface through a gen-
eralized Gibbs-Thompson equation. 
 The next section contains the mathematical model used in this work. Section 3 discusses 
the triangular interpolation schemes and the error associated with them and present numerical 
simulations of solidification. We close with a discussion in section 4. 
 
2 GOVERNING EQUATIONS  
 We assume that the only transport mechanism in the solidification/melting process is 
diffusion, the material properties are different but constant in each phase, the latent heat is 
constant, and fluid flow is ignored so the densities must be equal in the solid and liquid. The 
energy equation is given by  

  2S
PS S S

Tc T
t

ρ κ∂ = ∇
∂

         in the solid (1a) 
 
and 
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  2L
PL L L

Tc T
t

ρ κ∂ = ∇
∂

          in the liquid  (1b) 
 
At the solid-liquid interface we must satisfy the conditions  
  S L IT T T= =  (2a) 
and 
  [ ]ˆ( ) ( )( )S S L L PL PS I mT T n L c c T T Vκ κ ρ∇ − ∇ ⋅ = + − −   (2b) 
 
In the above equations, the subscripts S and L denote the solid and liquid phases, respectively; 
ρ  is the density; Pc  is the specific heat; κ is the thermal conductivity; n̂  is the unit vector 
normal to the interface pointing into the liquid; L is the latent heat; IT  and mT  are the local 
interface and equilibrium liquidus temperatures, respectively; and V is the local normal 
interface velocity. We also define the solid and liquid thermal diffusivities by S S PScα κ ρ=  
and L L PLcα κ ρ= , respectively. 
 Solute diffusion in the solid is neglected. The solute concentration is solved only in the 
liquid and is given by  

  2L
L L

C D C
t

∂ = ∇
∂

  (3) 
 
with interface conditions 
 
  ˆ( ) (1 )L L LD C n k C V− ∇ ⋅ = −        before eutectic  (4a) 
 
and  
  L EC C=                              at eutectic  (4b) 
 
In Equations (3), (4a), and (4b), LD is the solute diffusion coefficient in the liquid, k is the 
equilibrium partition ratio, and EC  is the eutectic concentration. 
 The local interface temperature is given by the generalized Gibbs-Thompson relation13   

  ( ) ln 0m m PL PS I
I m I m I

m

T T c cV TT T T T T
L L T
γ

ρ ν
−− + + + + − =   (5) 

 
where γ  is the surface energy;  is the local interface curvature, and ν  is the kinetic 
mobility. The liquidus of the phase diagram is approximated linearly by  
  0m m LT T mC= +   (6) 
Here m is the slope of the liquidus line and 0mT  is the melting point of the pure solvent. 
 The equations are solved using a standard Galerkin finite element formulation. The novelty 
of the approach is that the energy and solute conservation in the liquid are solved in separate 
independent meshes, and the mesh for the solute conservation equation changes at every time 
step as the solid-liquid interface advances. The solution algorithm has been explained in detail 
in Refs. 8 and 9 and will not be repeated here. 
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3 TRIANGULAR INTERPOLATION  
 Because of the complex morphologies that develop during the dendritic solidification 
process, the solution of the solute concentration equation in the liquid is obtained using 
meshes based on triangular elements. An example of one such mesh is shown in Figure 1. The 
mesh is extremely refined at and near the solid-liquid interface; this is necessary to resolve the 
new diffusion length scale given by C LD V= , which is much smaller than the thermal 
diffusion length scale T L Vα= . To be more specific, we will use the properties for Pb-Sb 
alloys listed in Table 1, where we see that LD  is four orders of magnitude smaller than Lα . 
This leads to very steep gradients of solute concentration at the solid-liquid interface that 
decay exponentially in the direction normal to the interface and must be resolved by the mesh. 
To illustrate the behavior of linear and quadratic triangles under these circumstances, let us 
first look at a one-dimensional example. With Equation (5) simplified to   

  0I m
VT T
ν

− + =   (7) 
 
due to the absence ofcurvature and neglecting the small contribution of the difference in 
specific heat. We consider a Pb-2.2 wt%Sb alloy using the properties in Table 1. The domain 
is 20 mm long. An initial temperature gradient of 10 K/mm is imposed and fixed at the right 
boundary, and a cooling rate of 0.1 K/s is applied at the left boundary. Simulations using 
graded meshes that initially contain 400 linear elements and 200 quadratic elements in the 
liquid region were done, with the elements near the interface refined so that the minimum 
distance between nodes was less than 0.2 C ; these refined elements moved with the interface. 
A time step of 0.05 s was used, and during the simulation, at each time step, the total solute 
mass was calculated. The total number of time steps/interpolations in a simulation where 85% 
of the domain was solidified is approximately 26,000. The error in mass conservation as a 
function of the interface position is shown in Figure 2. It can be observed that by the time the 
interface reaches 5 mm the linear elements already show an error in mass conservation of 
about1.5%, which is unacceptable. On the other hand, the error for quadratic elements has not 
reached 0.7% after the interface has advanced 17 mm.  
 
  
 
 
 
 
 
 
 
 
 
    

Figure 1.  Morphology of dendritic growth and triangular finite  
 element mesh that conforms to the interface. 
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Table 1.  Physical properties of a Pb-Sb alloy. 
 

Property Symbol and Unit Value 
Bulk concentration of Sb 0C , wt% 2.2 
Solute diffusivity LD , 2mm / s  31.13 10−×  
Solute partition ratio k 0.312 
Eutectic concentration EC , wt% 11.2 
Slope of liquidus line m, K/wt% -6.829 
Melting temperature of pure solvent 0mT , K 600.0 
Eutectic temperature ET , K 523.5 
Density ρ , 3kg/mm  51.0416 10−×  
Specific heat of solid PSc , J/kg K⋅  142.0 
Specific heat of liquid PLc , J / kg K⋅  151.0 
Heat conductivity in the solid Sκ , J/s mm K⋅ ⋅  0.030 
Heat conductivity in the liquid Lκ , J/s mm K⋅ ⋅ 0.016 
Latent heat of fusion L, J/kg 29775 
Surface energy γ , 2J/mm  87.0 10−×  
Kinetic mobility ν , mm/s K⋅  6.67 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 2.  Mass conservation error vs. interface position for one-dimensional  
 solidification  of Pb-2.2wt%Sb. 
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Next we solve a one-dimensional problem in a two-dimensional domain using linear and 
quadratic triangular elements to compare their performance. As shown in Figure 3a, the 
domain is 10 mm by 1 mm. Initially the solute concentration is uniform with 0LC C= , which 
is also the boundary condition at infinity. At time 0t = , the interface, which is the left-side 
wall, starts to move with a constant velocity V. Solidification proceeds as the interface moves 
to the right-hand side, and the solute concentration at the interface builds up due to the 
rejection of solute there. Under the assumptions that the interface is plane and that the solute 
diffusion in the solid can be ignored, the problem simplifies to a one-dimensional moving 
boundary diffusion problem. In a coordinate system moving with the interface it is governed 
by the convection-diffusion equation     

  
2

2
L L L

L
C C CD V
t x x

∂ ∂ ∂= +
∂ ∂ ∂

  (8) 
 
with interface condition  

  (1 )L
L L

CD k C V
x

∂− = −
∂

         at 0x =   (9) 
 
 The time-dependent equation, (8), was solved analytically in Ref. 14. After the initial 
transient, the final steady state is  
  /

0 1 (1 ) LxV D
LC C k e k−= + −   (10) 

 
 Calculations were performed using two meshes, one of linear triangles with 41559 
elements and 21234 nodes; the other with 4915 quadratic triangular elements and 10066 
nodes. The ratio of the number of nodes in the two meshes is approximately 2:1, and that of 
the number of elements is 8:1. Calculations were carried out from the initial uniform state 
until the distribution of the solute concentration no longer changed. The calculated results 
were then compared with the analytical steady-state solution given in equation (10). The 
maximum relative error for various values of the steady-state velocity is shown in Figure 4. 
The errors are small for both meshes; however, it is clear that as the interface velocity 
increases the error in the linear elements grows very fast.  
 
 
 

 
  
 
 
 
 
 
 
 

Figure 3. Domain and finite element meshes used to simulate solidification from a planar interface: 
 (a) computational domain; (b) linear elements; (c) quadratic elements. 

V  →  (a) 

(b) 

Melt initially at uniform solute concentration                  

(c) 
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Figure 4.  Accuracy of the solute concentration calculated using linear and quadratic meshes in Fig. 3.  
 The  error  is  the relative difference in  the solute concentration with respect to the analytic 
 solution, and V is the fixed interface velocity. 
 
The last simulation involves cellular and dendritic growth of a Pb-Sb alloy from a planar 
front. We consider cellular growth from a perturbed plane front for a very dilute Pb-
0.02wt%Sb alloy. The same problem was considered by Ungar and Brown3 with an 
approximate model that solved only the solute concentration equation and found the position 
of the interface implicitly. Here the fully coupled equations, (1)-(6), are used in the simula-
tion. The linear stability analysis of Mullins and Sekerka15 predicts a preferred wavelength 

* 0.1λ = mm at the Péclet number * 1.0LPe V Dλ= =  used in this calculation. To best 
approximate the conditions in Ref. 3 for comparison purposes, steady-state temperature and 
solute concentration fields are first calculated in one dimension. Starting with an initial 
temperature gradient 1.008G = K/mm and the temperature at the left end 0( 0) ( )mT x T C= = , 
at time 0t >  a cooling rate is applied at 0x = and the initial temperature gradient is imposed 
in the right boundary. The domain is long enough to reach a steady state, and the cooling rate 
is adjusted to obtain 1.0Pe = . The steady-state solute and temperature fields obtained in this 
manner are used as initial conditions in the two-dimensional calculation, starting from a 
planar interface that is perturbed with a cosine perturbation with wavelength * 0.1λ = mm and 
amplitude *0.01λ . The two-dimensional domain is chosen to be 2 by 0.6 mm so we expect six 
cells to develop. The mesh for the temperature solution has 100 by 30 bilinear elements and is 
the same for both types of triangles. The mesh of linear triangular elements contains 
approximately 10,000 nodes and 40,000 elements; the mesh of quadratic triangles ha approxi-
mately the same number of nodes and 10,000 elements. These meshes were chosen so that 
close to the interface the element’s size does not exceed 0.2 C . 
 Figure 5 shows the error in the solute mass conservation as a function of time, using linear 
and quadratic triangles. The excessive error in linear elements is clearly observed. The results 
of the calculation with  quadratic triangles after 60 s  are shown in Figure 6.  The expected six 
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  Figure. 5. Mass conservation error vs. simulation time for two-dimensional 
  solidification of Pb-0.02wt%Sb. 

 
 
 
 
 
                 (a) 
 
 
 
 
 
 
 
 
 
 
             (b) 
 
 
 
 
  

 
Figure 6. Solidification of Pb-0.02%wtSb from a perturbed plane front: (a) interface position 

 at intervals of 3 s; (b) solute concentration at 60 s (the interface is white). 
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cells develop and the expected microsegregation between cells can be observed. Finally, 
Figure 7 shows results of a calculation for Pb-0.2wt%Sb using quadratic triangles in a domain 
of 0.8 by 0.24 mm because at this concentration the preferred unstable wavelength is 
approximately 0.02 mm. A random perturbation was applied at the initially plane interface. In 
Figure 7a we observe that initially the instability grows very rapidly from small protuberances 
to a cellular morphology and then it becomes dendritic. Figure 7b shows the solute concen-
tration after 4 s of simulation; considerable microsegregation is seen to be present. 
 
4 CONCLUSION  
 Simulations of dendritic growth in binary alloys have been performed using a finite ele-
ment model that solves the temperature and solute concentration equations in independent 
meshes. The mesh for the temperature is fixed throughout the calculation but the mesh for the 
solute concentration changes at every time step. The latter is based on triangular elements due 
to the complexity of the domain. We have shown that linear triangular elements cannot 
properly interpolate the exponentially decaying solute concentration field, and that they lead 
to excessive error in the mass conservation. Quadratic triangles, on the other hand, produce 
acceptable accuracy with meshes that are not overly refined. The method has produced the 
first calculations for solidification of binary alloys using the fully coupled equations of con-
servation of energy and solute. 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 7. Solidification of Pb-0.2wt%Sb from a randomly perturbed planar front: (a) interface position at 
 intervals of 0.2 second; (b) solute concentration at 4.0 seconds (the white line is the interface). 
 
 

 
(a) 

 
(b) 
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