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Abstract. Mesh generation remains a tricky and time-consuming step between design and 
finite element analysis. This paper proposes a new method to automatically build an 
optimized triangular mesh where density is adapted to finite element analysis. To achieve this 
goal, the method makes the most of both geometric data and information provided by the 
functional analysis of the product. This information determines where the mesh must be 
coarse or fine and, combined with a geometric model, allows to directly build an optimized 
triangular mesh meeting simulation requirements. For the geometric model, a CSG 
representation is used instead of a BRep because maintaining geometrical and topological 
consistency in a BRep raises important and sometimes unresolved issues. Moreover, it is 
possible to assign an importance regarding finite element analysis to each node of the CSG, 
which allows to determine the mesh density and nodes blending strategy. The mesh of 
Boolean nodes in the CSG is directly computed from the meshes of the operands. The paper 
highlights and solves the problems induced by this approach, that is triangles quality where 
meshes merge and errors introduced by approximating surfaces intersection with meshes 
intersection. A new meshing technique based on the advancing front method and taking into 
account triangles size variation between areas having very different densities, is presented. 
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1. INTRODUCTION 

Interfacing design and simulation is a key step in product life cycle as simulation must 
guarantee product quality before the first prototype is even manufactured and tested. For 
example, Aerospatiale Matra has been showing for several years its will to increase the quality 
of its simulations to such a level that the company will manufacture only one prototype of 
each plane and that this plane will even be marketed if it passes all in flight tests. Now, 
construction of the digital model that supports analysis, generally a mesh, remains a time-
consuming task, which goes against ever increasing demands concerning the time to market. 
This paper proposes a new approach for surface mesh generation of solids, with a view to 
simulation. Unlike current methods which deduce the mesh from geometric information only, 
this new technique makes the most of both the functional information attached to the product 
and its shape description in a Constructive Solid Geometry representation. The paper is 
organized as follows. The second section recalls the reasons why mesh generation remains a 
tedious task, requiring a human intervention. This leads to the specifications of the new 
method. The next two sections introduce the method itself and solutions to the problems it 
raises. The final section summarizes the paper and lists some future work. 

2. CURRENT APPROACHES AND GOALS 

2.1 Current design-analysis interface 

Most of the simulation systems require a mesh of the solids to be analyzed. But neither the 
mesh type – triangular, quadrangular …– nor, generally, the density are automatically adapted 
to the simulation needs. Consider, for example, a triangular mesh of the filling system of a 
foundry mould, the filling of which has to be simulated. The areas where the filling system 
opens onto the mould cavities are called the in-gates. These are small size pipes, compared 
with the whole filling system dimensions but they are very important for the flow simulation 
of the molten metal, as constraints are very high, there. If it was decided to mesh the filling 
system in a coarse way, to shorten the simulation time, it may happen that the in-gates 
disappear or that their geometry is highly damaged; in both cases, simulation results are no 
longer significant. If, on the contrary, the mesh is fine, in order to guarantee the in-gate 
presence in the mesh, the simulation time becomes disproportionate. To avoid these 
drawbacks, the operator(s) responsible for preparing the simulation have to provide the system 
with a large amount of information about the mesh. In most cases, this information was 
already provided during previous stages such as functional analysis, preliminary or detailed 
design. Such pieces of information are the functional model, business rules, form features, 
connections etc. For example, knowing the functions achieved by some parts of a solid would 
allow to set their importance for simulation and the mesh density in these areas; knowing that 
a shell has been used during detailed design allows to choose elements dedicated to shells; it 
also often happens that the mesh dimension (1D, 2D or 3D) or the interpolation functions 
have been previously given, during design or other analysis, implicitly or explicitly. 



����

#� �#����������
�����&��-
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

 

 
Now, the mesh tools do not make the most of these pieces of information, they just work 

out a mesh from geometric information. Thus, the generated mesh does not take into account 
the importance of such and such part of the solid. This need to provide the system with data 
that were already provided earlier, often in an implicit way, turns analysis into a real 
bottleneck in the design-simulation cycle. 

2.2 Goals 

The above survey shows that current mesh generation tools are generally not able to 
produce a pre-optimized mesh. So a mesh is generally calculated, a simulation is performed, 
the mesh is refined where necessary and so on. Our goal is to produce a pre-optimized mesh 
that highly reduces the number of these iterations. Other studies aiming at providing a pre-
optimized mesh have already been published but they only apply to limited contexts: Vexo’s 
software1 generates a mesh of the filling system of a mould but the rules to optimize the mesh 
are embedded in the code; Salgado et al.2 and Dolsack et al.3 have designed a learning system, 
but it is dedicated to shapes that are mainly cylindrical. Yamada et al.4 developed a framework 
to adapt the mesh of a part to another part, but the parts have to have similar shapes. 
Cuilliere’s study5 deals with general parts but assumes that feature recognition is possible, 
whereas this is not yet fully solved, especially for features that are not machining features. 

Current meshing techniques mostly rely on a boundary representation (BRep) of the solid 
to be meshed, as this representation is the closest to the meshed model6. However, several 
factors prompt us not to use this representation. 1) a current trend in CAD is to reduce the 
importance of boundary representations in favor of higher semantics level models (feature-
based models7, functional models8,9,10,11, requirement-function-behavior-structure models12,13 
…). 2) A BRep cannot easily keep track of joints, that is to say the areas where the entities 
that were combined to build the solid, merge. Yet, joints are places where constraints 
generally concentrate and that should be explicitly known so that it is possible to mesh them 
finely. 3) Besides joints, there are other areas on a solid’s boundary that sometimes have to be 
meshed more finely (friction zones, heavily loaded zones…) and a BRep does not allow to 
bound these zones, unless dummy edges and faces are built. 4) Whatever the way to get the 
BRep, feature-based modeling or combination of primitives and half spaces bounded by free-
form surfaces, Boolean operators remain basic operations in geometric modeling. They raise 
the major problem of computing intersections between surfaces, which is not yet solved for 
parametric surfaces. The most commonly admitted solution consists in approximating free-
form surfaces intersection by broken lines, which of course leads to errors. 

For these reasons, our goal is to generate the mesh not from the BRep but from the CSG 
description of the solid. The CSG tree is used simultaneously with the functional model and 
this paper defends the idea that this association reduces the number of human interventions, 
the computation times and produces a mesh the density of which is adapted to the simulation 
needs. 
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3. PROPOSAL 

There are various quality criteria for meshes: chord error, shape and size of triangles and 
mesh pertinence. Several methods dealing with some of these criteria14,15,16 were published 
but none is able to take all criteria into account. In particular, the last factor has been less 
investigated than others so the method proposed in this paper focuses on the last three criteria; 
chord error will be integrated in future work. 

3.1 Mesh generation strategy 

Usually meshing an object described by a CSG tree first involves the evaluation of its 
boundaries, the resulting faces being then triangulated. For the reasons listed above, we 
decided not to base our method on a BRep but, instead, to build the mesh directly from the 
CSG tree: each primitive is triangulated first, then the resulting meshes are combined by 
Boolean operations, as requested in the CSG tree. Boender and Bronsvoort17 also developed a 
method to build a mesh from a CSG tree, but they didn’t address the problem of pre-
optimization. In the next two sub-sections, the advantages and drawbacks of our approach are 
listed and the main difficulties it raises are presented. 

3.2 Advantages and drawbacks 

The design process of a product generally starts with a functional analysis. This analysis 
consists in a recursive decomposition of the product’s main functions and continues until it 
becomes possible to assign to each elementary function a simple shape. This decomposition 
produces the so-called functional description. The simple shapes may be surfaces or primitive 
solids – spheres, cylinders, boxes… – so they can be described by small CSG trees. The 
aggregation of these small trees comprises a description of the entire product, often called 
design history, although this name is a little bit restrictive: the functional description might 
legitimately belong to this design history. As the present study is about finite element analysis 
of parts, the product is a single solid and we make the not very restrictive hypothesis that the 
design history is a CSG tree.  

The big advantage of the method is that, as the CSG tree is built, the functional description 
is still very present, wherever in a data structure or in the designer’s mind. And we consider 
this makes it possible to assign to each leaf of the tree and then to each non-terminal node, its 
importance with regard to simulation. Consider for example the design of a mould. Its filling 
system is built by combining several basic components such as pipes, a funnel, feeders, in-
gates, cavities that are negatives of the part to be manufactured… When an in-gate is added as 
a basic component, that is as a leaf in the tree, it is known that it is a high constraints area and 
that the mesh should be very thin there.  

For a leaf, this extra information that can be deduced from the functional description 
consists in a so-called pertinence coefficient and a nodal distance. The latter sets the maximal 
permitted distance between two vertices of a triangle of the mesh. So it has a strong influence 
on the mesh density, although other criteria, such as chord error, also matter. In the current 
version of this study, the nodal distance is the only factor impacting on the density. The 
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pertinence coefficient is used when two meshes are combined: during a combination, it may 
happen that the two involved meshes have very different densities and that they have to be 
adapted in the zones where they merge, to ensure a reasonable density variation. The 
pertinence coefficient is used to quantify the adaptation on the two meshes: the larger the 
pertinence coefficient, the more accurate the simulation should be in the corresponding area 
and the more important it is to reduce the size variation between two adjacent triangles of the 
mesh. If a zone has a small pertinence coefficient, a stronger size variation can be accepted, 
which allows to link it to a zone with a very different density.  

For a non-terminal CSG node, the only extra information is a nodal distance. It defines the 
maximal permitted distance between consecutive vertices on the intersection curves of the two 
meshes that are combined by the CSG node. The need for this nodal distance results from the 
fact that constraint concentrations often happen nearby intersection curves, making it 
necessary to mesh them and their neighborhood with a given nodal distance. The value of this 
nodal distance is less likely to be automatically determined from the functional 
decomposition. So, if the user knows it, he can give it to the system at the time when he builds 
the CSG node, otherwise, a heuristic is applied to determine the nodal distance as the meshes 
are combined. This heuristic simply consists in computing the average of the distances 
between vertices of the intersection curves. The vertices are then moved on the intersection 
curves so that their spacing meets the nodal distance. 

The main drawback of the method is that the whole mesh has to be reevaluated when a leaf 
is modified. This happens for example when an in-gate nodal distance is reduced, for a more 
accurate simulation. This could be partially overcome with techniques similar to incremental 
BReps but has not been considered in the current version. 

3.3 Combining meshes 

A conventional Boolean combination module cannot be used to combine two meshes. First, 
this would generate non-triangular elements where the meshes join. Second, when the 
combined meshes have different densities, the triangles have to be adapted so that the size 
variation between adjacent triangles complies with the simulation needs. So a mesh 
combination technique has been developed. It is detailed for the union operator; intersection 
and difference use similar principles.  

The first step consists in computing the intersection curves between the two meshes. 
Actually, these curves are polygons and are called intersection loops in what follows. It can be 
noticed that the nodal distance on the intersection loops is generally smaller than on the 
operands. Then, all triangles that do not entirely belong to the resulting mesh are removed. For 
the union operation, the concerned triangles are those which are totally or partially included in 
the solid bounded by the other mesh. When removing a triangle, a particular attention has to 
be paid to so-called initial edges: a side of a triangle is an initial edge if it is carried by an 
actual edge of the solid to be meshed. When deleting a triangle, its initial edges are removed 
only if they entirely lie inside the other solid. Otherwise, they are trimmed so that only the part 
inside the other solid is deleted. 
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At this stage, unmeshed zones remain that must be filled in by linking together the 
intersection curves to the boundaries of the “open” meshes. Figure 1 shows an example where 
the intersection loop has to be linked together to two meshes. 

 
 

 
Figure 1. Union of a box and a cylinder 

The final stage of the combination is the re-meshing of the gaps. For any gap, the main 
problem is to know whether it is possible to build new triangles from the intersection loops to 
the boundary of the “open” mesh so that the triangle sizes do not vary excessively. The 
various aspects of this stage are detailed in the next section. 

4. REMESHING 

4.1 Issues 

The problem is to mesh a three dimensional area bounded by intersection loops and the 
boundary of an “open” mesh. This mesh corresponds to one son of the Boolean operation so 
the re-meshing operation has to be performed twice. 

Nodal distances can be sharply smaller on intersection loops than on mesh boundary. It is 
then important to manage size variation over the new mesh so that two neighbor elements – 
triangles in this case – always have consistent dimensions, to maintain triangles shape and size 
quality. Current meshing algorithms can triangulate most of the parametric surfaces while 
reducing approximation and stretching errors through metrics, but do not care about mesh 
density variations. 

Our strategy first consists in computing the maximal enlargement value ( max) in the area 
that has to be re-meshed. This value is directly deduced from the pertinence coefficient when 
the “open” mesh is a leaf of the CSG tree. For example, if the pertinence coefficient is high, 
the simulation has to be very accurate so max has to be very low. If the “open” mesh 
corresponds to a sub-tree, then max is simply the smallest max of all the leaves of this sub-
tree. 

Then, new elements – or triangles – are created, from the intersection loops to the boundary 
of the “open” mesh. These new elements are built while taking into account max; however, it 
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may happen that the gap between the intersection loop and the boundary of the “open” mesh is 
not large enough and it is not possible to perform this operation. In that case, instead of 
increasing the triangles’ size faster, other triangles are removed on the “open” mesh, until it 
becomes possible to connect the new mesh to the “open” mesh. As it is difficult to determine 
a priori how much space is required to cope with the nodal distance variation, the un-meshing 
operation is performed dynamically, while the new mesh is being constructed. 

The end of this section (from 4.2 to 4.9) details the re-meshing operation in a plane 
domain. Section 5 explains how to extend it to parametric surfaces. 

4.2 Plane re-meshing 

The problem is to mesh a plane area bounded by loops with different nodal distances. For 
example, in figure 1, one of the two areas to be re-meshed is plane because it lies on the 
cube’s top face. It is bounded by an intersection loop, which is approximately an ellipse, and 
by the boundary of the “open” mesh, which is a broken line. The meshing algorithm 
developed within this project is based on an advancing front method. So we briefly summarize 
this type of method in the next section.  

4.3 Advancing front method 

The area to be meshed is bounded by one or several fronts. A front is a sorted list of 
oriented edges. At each iteration, an edge [SiSi+1] from one front is chosen (figure 2). A vertex 
Q is then computed so that (SiSi+1Q) is an ideally shaped triangle. In the case of an isotropic 
mesh in the plane, the ideal shape is typically an equilateral triangle. 

Then if one vertex V of any front lies in the neighborhood of Q, V is chosen to build a new 
element in the triangulation and Q is neglected. Otherwise Q is chosen to build the new 
triangle. Of course, in both cases, some validation tests, such as the absence of intersection 
with other triangles, must be performed. Fronts are then updated, which may consist in 
splitting a front, adding a line segment in it or in merging two fronts. This process is applied 
until all fronts are empty.  

 

Si+1

Si 

Si+1

Si 

The built triangle 

Q 

Neighborhood 
of Q 

 
Figure 2. An advancing front method  

Next section describes how to build the next triangle based on [SiSi+1] in our context. It 
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must be clearly underlined that, although the proposed method takes several successive 
triangles into account to make a better forecast, only one triangle is built at each iteration. 

4.4 Maximal enlargement control 

We assume for the explanation that the nodal distance on intersection loops is smaller than 
on the “open” mesh boundary. This means that the triangles built from the intersection loops 
to the mesh boundary have to have increasing dimensions. Otherwise, all calculations are 
symmetric and the triangles decrease. In what follows, current front denotes the front in which 
new triangles are added. So, at the beginning of the re-meshing, the current front is the 
intersection loop. The opposite front will denote the front towards which new triangles are 
built. 

Because of the need for an enlargement, the ideal triangle does not have an equilateral 
shape, in our case. The ideal shape has to take into account the best way to pass gradually 
from one nodal distance to another (from (SiSi+1) to (PiPi+1) in figure 3). 

First the minimal number of enlargements that would be required if the maximal 
enlargement were used to pass from the current front nodal distance to the opposite front 
nodal distance, is computed. Let’s call this number NE. Then, NE virtual isosceles triangles 
are built and stacked so that their third vertex stays on the perpendicular bisector of [SiSi+1]. 
(SiSi+1) is the basis of the first triangle and their heights increase by max at each time. The 
furthest vertex on the last triangle is the furthest point that can be reached by NE triangles that 
respect the maximal enlargement constraint (Q3 in figure 3). If this vertex lies beyond the 
opposite front, that is to be beyond [PiPi+1] in figure 3, then it is assumed that the triangulation 
is not possible and that the opposite front has to be modified (see 4.8). Otherwise, the 
sufficient size variation is computed from the actual distance between the two fronts and a 
new triangle is built based on [SiSi+1], using the sufficient enlargement. 

 
The algorithm to build a new triangle can be summarized as follows: 
- Evaluate the distance between [SiSi+1] and the opposite front (see 4.5). Let [PiPi+1] be the 

first edge in the opposite front cut by the perpendicular bisector of [SiSi+1]. 
- Given max, compute the distance required to absorb the nodal distances between both 

fronts (see 4.6). 
- Test the position of the vertex corresponding to this distance along m with regard to 

[PiPi+1]. 
- If this vertex lies before the opposite front, that is between [SiSi+1] and [PiPi+1], then 

calculate the sufficient enlargement (see 4.7), construct one new vertex on [SiSi+1]’s 
perpendicular bisector and build a new triangle with Si, Si+1 and the new vertex. The new 
vertex is located at a distance corresponding to SiSi+1 increased by the sufficient enlargement. 

- Otherwise modify the opposite front (enlarge the area to be re-meshed or decrease the 
nodal distances of the opposite front – see 4.8). 
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Opposite Front

Pi

Pi+1

Current Front

Si

Si+1

Q3

I

J

Q1

Q2

 
Figure 3. Distance between two fronts 

4.5 Distance between the two fronts 

To determine the distance between the two fronts, we proceed as follows. Let I be the 
middle of [SiSi+1] and J the projection of I along m on the opposite front. We define the 
distance as the length ||IJ||. The distance is chosen this way because the perpendicular bisector 
of [SiSi+1] gives the direction for building the new vertex. A comment about this convention is 
given in 4.9. 

4.6 Distance required between the two fronts 

The nodal distance in J is defined as the distance between Pi and Pi+1 (||PiPi+1||). We are 
searching for the distance required along m to reach the nodal distance of the opposite front 
while respecting max. To do this, as explained in 4.4, we build virtual triangles the heights of 
which increase by max at each time. The height of the nth triangle is given by the recursively 
defined sequence (un)n: 

 1max 2
3. +∆= ii

n
n SSu  (1) 

Let the series (Sn)n be the sum of the n first terms of (un)n. (Sn)n describes the distance 
covered along m after n successive enlargements. Let Qn be a point on m so that ||IQn|| = Sn. 
We can compute the nodal distance ND (Qn) for any Qn: 

 1max1
max

3
2)( +− ∆=

∆
= ii

n
nn SSuQND  (2) 

We now search for p so that, for all n > p, the nodal distance in Qn is equal to or greater 
than the nodal distance in J, that is: 
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This leads to  

 












≥

+

+
∆

1

1
maxlog

ii

ii

SS
PP

p  (4) 

 
We choose p as the smaller integer value satisfying this inequality. Then, three cases may 

occur: 
- p is null, which means both fronts have similar nodal distances. 
- p is negative. The nodal distance on the opposite front is less than the one on the current 

front. This situation can be detected before. In this case, the computations are the same 
except for the determination of the sufficient enlargement, which is symmetric. 

- p is positive. This is the most frequent situation, where the nodal distance on the 
opposite front is greater than the one on the current front. 

 
We assume in the following that p is positive or null. To know whether it is possible to add 

a new triangle based on [SiSi+1] while meeting the size variation constraint, we test the 
position of Qp with regard to line (PiPi+1). If ||IQp|| > ||IJ|| (i.e. Qp lies beyond the opposite 
front) then the distance between the fronts is not sufficient: even if the triangles increase as 
fast as permitted, it is not possible to pass from the nodal distance on the current front to the 
nodal distance on the opposite front. In this case, the opposite front must be altered (see 4.8), 
otherwise, a new vertex is build based on the sufficient enlargement which is computed as 
follows. 

4.7 Sufficient enlargement 

Here, we assume the steps described above have determined that it is possible to link the 
two fronts while respecting max. However the nodal distance difference between the fronts 
may not require that the triangles grow according to the maximal enlargement. To compute 
the sufficient enlargement, the number of necessary steps is calculated first. 

 p
u

IQIJ
r

p

p +
−

=  (5) 

Then we compute ∆ , the sufficient enlargement, so that  

 ( ) 1+= iir PPQND  (6) 

 
This gives  
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Depending whether the nodal space on the current front is greater or less than the nodal 

space on the opposite front, the sufficient size variation is set to ∆  or 1/ ∆ . Then a new vertex 
V is built on m at a distance equal to ||SiSi+1||, increased or reduced by the sufficient size 
variation. As explained in 4.3, a new triangle based on Si, Si+1 and V or a vertex close to V is 
finally added to the triangulation. 

4.8 Opposite front modification 

In the case when it is not possible to build a triangle based on segment [SiSi+1], there are 
two possibilities, depending whether [PiPi+1] is a floating edge or not. [PiPi+1] is a floating 
edge if and only if it is neither an initial edge nor a line segment belonging to an intersection 
curve. 

If [PiPi+1] is a floating edge, then it is just deleted, which means that a triangle is removed 
in the mesh that has to be reached. This corresponds to the un-meshing operation mentioned 
in the overall approach described in 4.1. 

If [PiPi+1] is not a floating edge, it is split by inserting a node in its middle and the process 
described above starts again until the nodal distance on the opposite front is sufficiently close 
to the one on the current front. Precautions must be taken after each node insertion: [PiPi+1] 
belongs to an existing triangulation, because operands are meshed before Boolean calculation. 
So max could no longer be respected in the neighborhood of [PiPi+1] because of the node 
insertion. To compensate this max irregularity, node insertions are propagated throughout the 
existing triangulation beyond [PiPi+1] using the longest edge bisection18. This method consists 
in bisecting an edge and in recursively propagating the edge splitting to the adjacent triangle 
sharing the longest edge of the split triangle. 

4.9 Remarks 

There is no guarantee that this method gives the better triangulation. Particularly, the 
distance between [SiSi+1] and [PiPi+1] might not reflect the actual distance between the fronts 
(Figure 4). In this situation, some vertices – A and B – are very close to the current line 
segment. These vertices prevent the mesh from being generated while respecting max without 
modifying the opposite front (vertex insertion or triangle suppression). But the algorithm does 
not detect this situation in the current iteration.  

However, the distance between the two fronts is computed for each line segment of the 
current front so if the fronts can not be linked, the algorithm as it is proposed will detect it 
later, although, in the meanwhile, some triangles will have been built with the maximal 
enlargement while it was not required. Even so, the technique we use to evaluate the distance 
between the fronts gives the direction where the new vertex should be created and allows to 
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generate a mesh satisfying max. 

A B 
SiSi+1

PiPi+1

 
 

Figure 4. Evaluation of the distance between two fronts 

Another important point concerns the convergence of the algorithm. This question takes 
place for two reasons. First, while the current front moves forward, the opposite may move 
backwards and they might never meet. Second, edges of the opposite front could be split with 
Rivara's edge bisection method18 and it must be checked that the modifications this causes, 
end.  

In the case of a backwards progress of the opposite front, we ensure convergence by never 
removing edges of the pre-existing mesh boundary. This ensures that the mesh always 
progresses from the current front up to the pre-existing mesh boundary. So, even if the 
opposite front (the pre-existing mesh boundary) progresses backwards, the algorithm does not 
loop infinitely. In the worst case, all triangles of the pre-existing mesh are removed except 
initial edges and the mesh is entirely re-generated. So, even if the opposite front progresses 
backwards, the process converges. 

Rivara's edge bisection method defines the longest side propagation path, which is built 
with all the triangles that share their longest edge. To ensure the convergence, only triangles in 
the pre-existing triangulation are split, otherwise edges of the current front could be split and 
the size variation between triangles of the two fronts would not decrease. 

This method allows to mesh areas having strong nodal densities variations. It proceeds by 
stretching triangles as earlier as possible and by front advance and backing up. However, in 
most cases, the area to be re-meshed is not plane but skew. Next section shows that the 
method can be adapted to parametric surfaces under some conditions. 

5. ADAPTATION TO PARAMETRIC SURFACES 

The method described above relies on the notion of distance along a perpendicular bisector. 
It uses 2D geometric operations like line-line intersections to mesh a plane area and it is 
difficult to adapt these operations to mesh a surface in the three dimensional space. So, to 
adapt the algorithm to surfaces, the mesh is generated in the parametric space, which reduces 
the problem to a 2D triangulation. In what follows, we’ll call P: (u,v)  (x,y,z) the regular 



����

#� �#����������
�����&��-
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

 

mapping from parametric space to real space R3. 
The preliminary step of the re-meshing is to convert all points of both fronts in the 

parametric space. In what follows, all points are supposed to be in the parametric space. If Si 
and Si+1 are two consecutive points of the current front, the goal is to compute a third vertex V 
so that (P (Si), P (Si+1), P (V)) is a good element, that is to be a good triangle. 

To control the shape and size of the elements that make up the mesh, the method requires 
distances, perpendicular bisectors and projections. But the mapping from parametric space to 
real space does not preserve distances and angles. For example, the images of two line 
segments that are perpendicular in the parametric space are not perpendicular line segments of 
the 3D space; they are even not line segments. In our context, the two basic operations that 
have to be adapted are the construction of the perpendicular bisector of a line segment of the 
front and the distance between two points. Do Carmo19 and Cuilliere20 propose solutions to 
similar issues in the case of regular parametric surfaces, that is to say it is possible to convert 
any point from one space to the other and there exists a tangent plane in any point of the 
surface. The next two paragraphs summarize and adapt them to our context. 

5.1 Length of a line segment 

Let [A,B] be the line segment whose length is required. We define the distance between A 
and B as the length of the geodesic linking these two points. We assume that this length is 
correctly approximated by the length of the 3D curve corresponding to the segment [A,B] in 
the parametric space (P ([A,B])). So a parameterization (u(t),v(t)) of [A,B] is first determined; 
a(t)=P(u(t),v(t)) is a curve lying on P and its integration over t gives the required length. 

5.2 Determination of a perpendicular bisector 

To evaluate the distance between the two fronts, the perpendicular bisector to a line 
segment of the front is required. Let [SiSi+1] be the segment the perpendicular bisector of 
which is required. Of course, the bisector B in the parametric space is not satisfactory as its 
image in R3 is not perpendicular to [P (Si),P (Si+1)]. So the 3D perpendicular bisector is 
calculated as follows: in the parametric space, the straight line m making an angle θ with B 
and passing through the middle I of [SiSi+1] is determined (Figure 5). θ is then chosen so that 
the image of m in R3 is perpendicular to the image of [SiSi+1] in P (I) (see below). Then the 
distance between the two fronts can computed as the distance between I and the intersection 
of m and the opposite front. 

To compute θ, [SiSi+1] is parameterized in the same way as we did to measure the line 
segment length (see 5.1). Let a (t) be the corresponding curve in R3; m is also parameterized 
and the corresponding curve is called b (w), which depends on θ. θ is then calculated so that 
the tangents to a(t) and b(w) are perpendicular in P (I), that is: 

 0
wt

=
∂
∂⋅

∂
∂ ba

 (8) 
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Figure 5. Perpendicularity in parametric space 

 
This leads to20: 
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where E, F and G are the coefficients of the first fundamental form of the surface and 

S0=(u0, v0) and S1=(u1, v1). 
 
These relations enable to compute distances between fronts, triangles heights and sufficient 

enlargement for each new vertex construction. It is then possible to generate a mesh on a 
regular parametric surface having a strong nodal distance variation, while respecting max 
imposed by the functional reasoning. 

5.3 Approximation error control 

One point that has not been tackled yet concerns approximation errors on the intersection 
loops vertices. These vertices are obtained by intersecting triangles. This implies that they 
generally lie on none of the two (or more) surfaces. To correct this error, we apply the 
following process, which is based on a regular-parametric-surfaces intersection method21. 

 
Let S (u,v) and T (w,r) be two regular parametric surfaces: 

 
(w,r)(w,r), z(w,r), y xT(w,r) 

(u,v)(u,v), z(u,v), y xS(u,v) 

TTT

SSS

=
=

 (10) 
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The intersection process gives a set of points, close to the exact intersection curve C. We 
are going to move these points to decrease the distance between these points and C. Let Pi be 
one of these points close to C and let Qi (xQi ,yQi, zQi) be the same point after it has been 
moved on C. If (uq,vq) and (wq,rq) are Qi’s coordinates in the parametric spaces of S and T, 
then 

 0 ) ,r)  - T(w,vS(u pppp =  (11) 

This linear system has 3 equations and 4 unknowns up, vp, wp and rp. A fourth equation is 
required to solve it and find Qi. To get this fourth equation, we request Qi to lie on the plane 
containing Pi and the normal of which is PiPi+1. There are two possibilities to express this 
constraint, with S or T. Berroug21 advises to choose the most regular mapping. Assuming S is 
the most regular surface, the system becomes: 

 






=+++

=

0
0

 d ) ,v(uc.z) ,v(u b.y) ,v(ua.x
 ) ,r)-T(w,vS(u

ppSppSppS

pppp  (12) 

where a, b, c, d are the coefficients of the plane. 
To solve this, a Newton-Raphson method can be applied with Pi as a first solution. 
 

This method allows to control approximation errors on the intersection points and to insert 
new nodes on the intersection loops. This makes it possible to define the nodal distance on 
intersection loops and, thus, to better take into account the functional directives. 

6. CONCLUSIONS 

This paper presents a mesh generation technique which consists in meshing the part’s 
primitives and in combining these meshes according to the CSG description of the part. The 
goal was to develop a method that generates a mesh while reducing manual interventions, 
immediately adapting node densities to simulation needs and maintaining triangles size and 
shape quality. 

The reducing of manual interventions stems from the use of the functional model. The 
functional model allows to mesh judiciously the CSG primitives. When two meshes are 
combined and a reasonable evolution of adjacent triangles sizes has to be achieved, it allows 
to choose what operand has to be re-meshed and to what extent. This operation also 
guarantees the triangles size and shape quality. 

The mesh pertinence results from the fact that the mesh is not uniform and that it is coarser 
in the areas where a high density is useless. Simulation times are thus reduced as much as they 
can be, without affecting results accuracy. 

The fact of combining meshes saves from evaluating the part’s BRep model; this 
differentiates our approach from classical ones. As intersections apply to meshes, no 
assumption is made on the nature of involved surfaces. However, to cope with triangles size 
variation, surfaces have to be regular.  
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Future work includes the consideration of chord error while meshing and a better use of the 
various implicit and explicit pieces of information the CAD system can provide, leading to 
even better early design/analysis integration. In a number on contexts, such as design of a 
mould filling system, the technique as described in this paper succeeds in producing a pre-
optimized mesh. In other contexts, our intent is to combine it with other known approaches 
such as feature extraction or medial axis and medial surfaces techniques. 
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