

de Mecánica Computacional

Mecánica Computacional Vol XXVI, pp.1399-1412 Sergio A. Elaskar, Elvio A. Pilotta, Germán A. Torres (Eds.) Córdoba, Argentina, Octubre 2007

ESTABILIDAD DEL EQUILIBRIO DE PLACAS RECTANGULARES ORTÓTROPAS CARGADAS EN EL PLANO, APLICANDO EL MÉTODO DE RAYLEIGH-RITZ

Daniel H. Felix^a, Carlos A. Rossit^{a,b}, Diana V. Bambill^{a,b}

 ^aInstituto de Mecánica Aplicada, Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina, dhfelix@uns.edu.ar
 ^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), carossit@uns.edu.ar, dvbambill@uns.edu.ar

Palabras clave: Placas ortótropas, Ritz, Carga Crítica, Funciones Viga.

Resumen. El problema de la estabilidad en placas planas constituye un tema de renovado interés, toda vez que tiene múltiples aplicaciones en diversos campos de la ingeniería (civil, mecánica, naval etc.). Es numerosa la información disponible en el caso de placas isótropas pero mucho más reducida para el caso de placas ortótropas, cuya utilización crece cotidianamente.

En el presente trabajo se analizan placas rectangulares ortótropas sometidas a cargas en el plano (normales y de corte), según sus direcciones coordenadas y considerando distintas combinaciones en sentido y magnitud.

Asimismo se contemplan en los modelos analizados diferentes condiciones de borde y relaciones de aspecto de la placa.

En su resolución se utiliza el método de Ritz recurriendo a "funciones viga"como funciones coordenadas. Las cargas críticas calculadas muestran excelente concordancia con valores de casos particulares disponibles en la literatura técnico científica.

Si bien como es sabido, en la formulación del problema deben tenerse en cuenta las condiciones de compatibilidad, esto no siempre ha sucedido en los trabajos sobre el tema publicados en la literatura.

1 INTRODUCCIÓN

El uso de materiales compuestos es cada vez más frecuente en distintas áreas de la tecnología y en virtud de ello diversas metodologías computacionales y experimentales se utilizan para el estudio de su comportamiento dinámico y estático.

Debido a su alta resistencia mecánica estos materiales son utilizados, en numerosas ocasiones, en estructuras de elevado grado de esbeltez. En consecuencia, resultan de sumo interés, en este tipo de estructuras, los estudios sobre su comportamiento dinámico y en particular frecuencias naturales así como sobre la estabilidad de su equilibrio.

Como es sabido, cuando existen fuerzas en el plano es posible plantear el problema globalmente introduciendo en las ecuaciones de movimiento transversal los efectos de las fuerzas en el plano (Dickinson, 1971; Bassily and Dickinson, 1972). El caso particular de equilibrio en configuración deformada, en ausencia de carga transversal y frecuencia de vibración nula, corresponde a los valores críticos de los esfuerzos en el plano, lo que fue comprobado experimentalmente en un reconocido trabajo de Hearmon, (Hearmon, 1956). En el presente estudio esto se comprueba numéricamente, incrementando la magnitud de la carga compresiva en el plano.

En el presente trabajo se ha seguido esa formulación para determinar el valor crítico que provoca el pandeo de placas rectangulares de material ortótropo vinculada con distintas combinaciones de las clásicas condiciones de borde: empotrado, simplemente apoyado o libre. Se consideran diferentes estados de carga en el plano, combinando esfuerzos normales y de corte actuando en su plano medio (Laura y Maurizi, 1979; Laura et al, 2002).

El tratamiento clásico del problema consiste en determinar previamente el campo de tensiones originado por las fuerzas actuando en el plano medio de la placa sobre la superficie sin deformar de la misma (Leissa, 1969; Timoshenko and Woinowsky-Krieger, 1970) y luego obtener los esfuerzos en el plano, denominados $\overline{N}_x, \overline{N}_y, \overline{N}_{xy}$ multiplicando las componentes del tensor de tensiones correspondiente por el espesor *h* de la placa.

Finalmente, los esfuerzos resultantes son incluidos al formular el funcional gobernante del problema (Felix, 2004).

2 FORMULACIÓN DEL ESTADO PLANO DE TENSIONES

En el esquema de la Figura 1, se representa el modelo a analizar, de una placa rectangular ortótropa, con fuerzas distribuidas en el contorno, con direcciones normal, \overline{N}_x , \overline{N}_y y tangencial, \overline{N}_{xy} , aplicadas en su plano medio. Se supone una variación arbitraria de las cargas aplicadas con los sentidos indicados como positivos.

Figura 1: Placa rectangular ortótropa con cargas distribuidas normales y de corte, actuando en su plano medio.

Se plantea la determinación de los esfuerzos en el interior de la placa como consecuencia de las cargas aplicadas en el contorno. Para considerar la validez de las expresiones que conducen a tal determinación, se asume que los esfuerzos en el plano de la placa son función únicamente de las coordenadas espaciales. Esto significa que los esfuerzos no dependerán del tiempo, ni de las deflexiones transversales w de la placa (Leissa, 1969). En la hipótesis de planteo se supone que:

- La vibración es libre.

- La ecuación de movimiento permanece lineal.

- Las condiciones de borde no generarán restricciones al desplazamiento en el plano.

- Las deflexiones transversales w son suficientemente pequeñas como para no afectar la distribución de esfuerzos internos.

2.1 Determinación de los esfuerzos en el plano

Utilizando la notación clásica de Lekhnitskii, (Lekhnitskii, 1968) de acuerdo a la teoría de la elasticidad (Timoshenko and Woinowsky-Krieger, 1970; Laura et al, 2002), se parte de las ecuaciones diferenciales de equilibrio para el estado plano de tensiones:

$$\frac{\partial \sigma_x}{\partial \bar{x}} + \frac{\partial \tau_{xy}}{\partial \bar{y}} + X = 0 \qquad ; \qquad \frac{\partial \tau_{xy}}{\partial \bar{x}} + \frac{\partial \sigma_y}{\partial \bar{y}} + Y = 0 \qquad (1a, b)$$

siendo σ_x , σ_y y τ_{xy} las componentes del tensor de tensiones, y X e Y, las fuerzas de volumen en las direcciones \bar{x} e \bar{y} respectivamente. Recordando las ecuaciones constitutivas para materiales ortótropos dadas por la ley de Hooke al expresar las componentes del tensor de deformaciones en función de las tensiones se tiene:

$$\varepsilon_x = \frac{1}{E_1} (\sigma_x - \nu_1 \sigma_y) \quad ; \quad \varepsilon_y = \frac{1}{E_2} (\sigma_y - \nu_2 \sigma_x) \quad ; \quad \gamma_{xy} = \frac{1}{G} \tau_{xy} \quad (2a, b, c)$$

en las que E_1 y E_2 son los módulos de Young en direcciones ortogonales, v_1 y v_2 los coeficientes de Poisson en dichas direcciones y G el módulo de distorsión. Las tensiones generadas por las fuerzas en el plano pueden ser expresadas utilizando la función de tensión, $F(\bar{x}, \bar{y})$ (Laura y Maurizi, 1979; Lekhnitskii, 1968) que será necesario determinar.

$$\sigma_x = \frac{\partial^2 F}{\partial \bar{y}^2} + V \quad ; \quad \sigma_y = \frac{\partial^2 F}{\partial \bar{x}^2} + V \quad ; \quad \tau_{xy} = -\frac{\partial^2 F}{\partial \bar{x} \partial \bar{y}} \quad (3a, b, c)$$

en esta expresión V es una función potencial, de la cual se derivan las fuerzas de volumen, siendo:

$$X = -\frac{\partial V}{\partial \bar{x}}$$
; $Y = -\frac{\partial V}{\partial \bar{y}}$ (4a, b)

Puede observarse que al emplear las expresiones (3a, b, c) y (4a, b), las ecuaciones de equilibrio (1a, b) se satisfacen idénticamente.

La teoría de elasticidad lineal, para estados planos se reduce a satisfacer la compatibilidad de las deformaciones en el plano de la placa:

$$\frac{\partial^2 \gamma_{xy}}{\partial \overline{x} \partial \overline{y}} = \frac{\partial^2 \varepsilon_x}{\partial \overline{y}^2} + \frac{\partial^2 \varepsilon_y}{\partial \overline{x}^2}$$
(5)

en la expresión (5) se asumen valores constantes de las componentes de deformación ε_x , ε_y y γ_{xy} en el espesor de la placa.

Es de interés hacer notar en esta instancia, que en trabajos publicados en la literatura internacional se han adoptado soluciones que no cumplen la condición de compatibilidad (5). Los autores del presente trabajo han puntualizado el hecho (Bambill et al, 2005).

Si se reemplazan las expresiones (3a, b, c) que incorporan la función de tensión $F(\bar{x}, \bar{y})$, en las ecuaciones constitutivas (2a, b, c), y a su vez estas últimas en la ecuación de compatibilidad cinemática (5), se obtiene finalmente la ecuación diferencial que permite obtener la función de tensión $F(\bar{x}, \bar{y})$. En el caso de placas de material ortótropo, cuando las direcciones principales de elasticidad son coincidentes con los ejes \bar{x} e \bar{y} se obtiene (Lekhnitskii, 1968):

$$\frac{1}{E_2} \frac{\partial^4 F}{\partial \bar{x}^4} + \left(\frac{1}{G} - \frac{2v_1}{E_1}\right) \frac{\partial^4 F}{\partial \bar{x}^2 \partial \bar{y}^2} + \frac{1}{E_1} \frac{\partial^4 F}{\partial \bar{y}^4} = 0$$
(6)

Como puede observarse la expresión (6) es una ecuación diferencial de cuarto orden a derivadas parciales, lineal, homogénea y a coeficientes constantes, cuya solución permite obtener la función de tensión $F(\bar{x}, \bar{y})$, aplicando las condiciones de borde dadas por las fuerzas actuando en el contorno sobre el plano medio de la placa. Si el material de la placa es isótropo, y la función potencial *V*, dada en las expresiones (4a, b) satisfacen la ecuación de Laplace $\nabla^2 V = 0$, la expresión (6) se reduce a la conocida ecuación biarmónica:

$$\nabla^4 F = 0 \tag{7}$$

Obtenida la función de tensión, es posible determinar las tensiones σ_x , σ_y y τ_{xy} , mediante la aplicación de las expresiones (3a, b, c), y luego los esfuerzos en el plano, multiplicando las tensiones por el espesor *h* de la placa. Se tiene así para los esfuerzos

$$N_{x}(\overline{x},\overline{y}) = h \sigma_{x}(\overline{x},\overline{y}) \quad ; \quad N_{y}(\overline{x},\overline{y}) = h \sigma_{y}(\overline{x},\overline{y}) \quad ; \quad N_{xy}(\overline{x},\overline{y}) = h \tau_{xy}(\overline{x},\overline{y})$$
(8)

3 DETERMINANTE-ECUACIÓN DEL SISTEMA

Las frecuencias naturales de vibración transversal y la intensidad de los esfuerzos internos críticos, que provocan la inestabilidad del equilibrio, para una combinación dada de cargas \overline{N}_x , \overline{N}_y , \overline{N}_{xy} en el contorno, pueden ser convenientemente determinados, mediante la utilización del método energético de Ritz (Ritz, 1909), evaluando para el caso que nos ocupa, el trabajo total de las fuerzas en el plano, la máxima energía de deformación provocada por la deflexión transversal de la placa y la máxima energía cinética.

El trabajo total de las fuerzas actuando en el plano medio durante la flexión de la placa resulta (Timoshenko and Woinowsky-Krieger, 1970):

$$\tau_{\rm N} = \frac{1}{2} \int_{A_p} \left(\overline{\rm N}_{\rm x} \left(\frac{\partial W}{\partial \overline{x}} \right)^2 + \overline{\rm N}_{y} \left(\frac{\partial W}{\partial \overline{y}} \right)^2 + 2 \,\overline{\rm N}_{xy} \frac{\partial W}{\partial \overline{x}} \frac{\partial W}{\partial \overline{y}} \right) d\overline{x} \, d\overline{y} \tag{9}$$

 $\tau_{\mathbf{N}}$ representa el trabajo total realizado por los esfuerzos $\overline{\mathbf{N}}_x, \overline{\mathbf{N}}_y, \overline{\mathbf{N}}_{xy}$ durante la flexión, A_p es el área de la placa, y $W = W(\overline{x}, \overline{y})$, es la amplitud de deflexión transversal de la placa.

La energía de deformación máxima de una placa ortótropa maciza, se obtiene mediante

(Lekhnitskii, 1968):

$$U_{\max} = \frac{1}{2} \int_{A} \left[D_1 \left(\frac{\partial^2 W}{\partial \overline{x}^2} \right)^2 + 2 D_1 \upsilon_2 \frac{\partial^2 W}{\partial \overline{x}^2} \frac{\partial^2 W}{\partial \overline{y}^2} + D_2 \left(\frac{\partial^2 W}{\partial \overline{y}^2} \right)^2 + 4 D_k \left(\frac{\partial^2 W}{\partial \overline{x} \partial \overline{y}} \right)^2 \right] d\overline{x} d\overline{y}$$
(10)

donde v_2 el coeficiente de Poisson en la dirección elástica principal definida como 2 de la placa ortótropa. Los coeficientes D_1 y D_2 son los respectivos módulos de rigidez a flexión de la placa en direcciones ortogonales, y D_k el coeficiente de rigidez torsional.

Mientras que la máxima energía cinética resulta:

$$T_{max} = \frac{1}{2} \rho \,\omega^2 \,\int_A h \,W^2 \,d\overline{x} \,d\overline{y} \tag{11}$$

El sistema estructural planteado es gobernado entonces por el siguiente funcional:

$$J[W] = \mathcal{T}_{N} + U_{max} - T_{max} = \frac{1}{2} \int_{A_{p}} \left(\overline{N}_{x} \left(\frac{\partial W}{\partial \overline{x}} \right)^{2} + \overline{N}_{y} \left(\frac{\partial W}{\partial \overline{y}} \right)^{2} + 2 \overline{N}_{xy} \frac{\partial W}{\partial \overline{x}} \frac{\partial W}{\partial \overline{y}} \right) d\overline{x} d\overline{y} + \frac{1}{2} \int_{A} \left[D_{1} \left(\frac{\partial^{2} W}{\partial \overline{x}^{2}} \right)^{2} + 2 D_{1} \upsilon_{2} \frac{\partial^{2} W}{\partial \overline{x}^{2}} \frac{\partial^{2} W}{\partial \overline{y}^{2}} + D_{2} \left(\frac{\partial^{2} W}{\partial \overline{y}^{2}} \right)^{2} + 4 D_{k} \left(\frac{\partial^{2} W}{\partial \overline{x} \partial \overline{y}} \right)^{2} \right] d\overline{x} d\overline{y} - \frac{1}{2} \rho \omega^{2} \int_{A} h W^{2} d\overline{x} d\overline{y}$$
(12)

3.1 Forma adimensional del funcional gobernante

Sean las coordenadas espaciales adimensionales definidas del siguiente modo:

$$x = \frac{\overline{x}}{a}$$
; $y = \frac{\overline{y}}{b}$ (13a, b)

siendo *a* y *b* las dimensiones de la placa. La forma adimensional de los esfuerzos en el plano surge al multiplicar los mismos por la relación a^2/D_1 , se tiene así:

$$N_x = \frac{\overline{N}_x a^2}{D_1} \quad ; \quad N_y = \frac{\overline{N}_y a^2}{D_1} \quad ; \quad N_{xy} = \frac{\overline{N}_{xy} a^2}{D_1} \quad (14a, b, c)$$

Las expresiones anteriores nos permiten obtener la forma adimensional del funcional gobernante que resulta entonces:

$$J[W] = \frac{1}{2} \left[\frac{b}{a^3} \int_{A_n} D_1 N_x \left(\frac{\partial W}{\partial x} \right)^2 dx dy + \frac{1}{ab} \int_{A_n} D_1 N_y \left(\frac{\partial W}{\partial y} \right)^2 dx dy + \frac{2}{a^2} \int_{A_n} D_1 N_{xy} \frac{\partial W}{\partial x} \frac{\partial W}{\partial y} dx dy \right] + \frac{1}{2} \left[\frac{b}{a^3} \int_{A_n} D_1 \left(\frac{\partial^2 W}{\partial x^2} \right)^2 dx dy + \frac{2v_2}{ab} \int_{A_n} D_1 \frac{\partial^2 W}{\partial x^2} \frac{\partial^2 W}{\partial y^2} dx dy + \frac{a}{b^3} \int_{A_n} D_2 \left(\frac{\partial^2 W}{\partial y^2} \right)^2 dx dy + \frac{4}{ab} \int_{A_n} D_k \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 dx dy \right] - \frac{1}{2} \rho a b \omega^2 \int_{A_n} h W^2 dx dy$$
(15)

3.2 El método de Ritz

La minimización del funcional (15) permite alcanzar la solución buscada, esto es:

$$\delta J[W] = 0 \tag{16}$$

La ecuación variacional (16) es resuelta mediante el método de Ritz, utilizando funcionesviga (Young, Felgar, 1949) para representar la amplitud de deflexión transversal $W(\bar{x}, \bar{y})$ de la placa, la cual se expresa en la forma:

$$W(x, y) \simeq \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} X_{m}(x) Y_{n}(y)$$
(17)

donde $X_m(x)$ es la forma modal propia de una viga que coincide con las condiciones de borde de los extremos de la placa en dirección $x \in Y_n(y)$ es la forma modal propia de una viga que coincide con las condiciones de borde en los extremos en la dirección y.

Las constantes arbitrarias A_{mn} , representan la ponderación de cada término en la aproximación, y no es necesario determinarlas para obtener los coeficientes de frecuencia natural o los valores de carga crítica, del elemento estructural en estudio. Los valores M y N dan el número de funciones–viga utilizadas en la aproximación.

Ahora, la ecuación variacional (16) toma la forma de un sistema de ecuaciones lineales homogéneo, que de manera compacta puede representarse del siguiente modo:

$$\frac{a b}{D_{1}} \frac{\partial J[W]}{\partial A_{ql}} = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} \left[S.\tau_{qlmn} + u_{qlmn} - \Omega^{2}.t_{qlmn} \right] = 0$$
(18)

siendo

$$\Omega = \sqrt{\frac{\rho h}{D_1}} a^2 \omega \tag{19}$$

los coeficientes de frecuencia de vibración transversal de la placa.

El parámetro S, es un factor de intensidad de los esfuerzos en el plano. En el presente

trabajo se adopta $S=N_x$ (con $N_x \neq 0$).

Los coeficientes entre corchetes del sistema de ecuaciones (18) resultan:

$$\tau_{qlmn} = \lambda^{-2} \int_{A_n} \frac{dX_q}{dx} \frac{dX_m}{dx} Y_l Y_n \, dx \, dy + \int_{A_n} \frac{N_y}{N_x} X_q X_m \frac{dY_l}{dy} \frac{dY_n}{dy} \, dx \, dy + \lambda^{-1} \int_{A_n} \frac{N_{xy}}{N_x} \left(X_q \frac{dX_m}{dx} \frac{dY_i}{dy} Y_n + \frac{dX_q}{dx} X_m Y_l \frac{dY_n}{dy} \right) dx \, dy$$
(20a)

$$u_{qlmn} = \lambda^{2} \int_{A_{n}} \frac{d^{2} X_{m}}{dx^{2}} Y_{n} \frac{d^{2} X_{q}}{dx^{2}} Y_{l} dx dy + v_{2} \int_{A_{n}} \left[\frac{d^{2} X_{m}}{dx^{2}} X_{q} \frac{d^{2} Y_{l}}{dy^{2}} Y_{n} + \frac{d^{2} X_{q}}{dx^{2}} X_{m} Y_{l} \frac{d^{2} Y_{n}}{dy^{2}} \right] dx dy$$
(20b)
$$+ \lambda^{2} D_{2}^{*} \int_{A_{n}} X_{m} \frac{d^{2} Y_{n}}{dy^{2}} X_{q} \frac{d^{2} Y_{l}}{dy^{2}} dx dy + 4 D_{k}^{*} \int_{A_{n}} \frac{dX_{m}}{dx} \frac{dY_{n}}{dy} \frac{dX_{q}}{dx} \frac{dY_{l}}{dy} dx dy t_{qlmn} = \lambda^{-2} \int_{A_{n}} X_{m} Y_{n} X_{q} Y_{l} dx dy$$
(20c)

donde $\lambda = a/b$: es la relación de lados de la placa, $D_2^* = D_2/D_1$ y $D_k^* = D_k/D_1$ las formas adimensionales de la rigidez a flexión D_2 y a torsión D_k . El cálculo de estos coeficientes se simplifica si se utilizan las expresiones de integración de funciones-viga (Felgar 1950).

El determinante del sistema de ecuaciones (18) debe ser nulo para obtener una solución distinta de la trivial, con lo cual resulta:

$$\left|S.\tau_{ql\,mn} + u_{ql\,mn} - \Omega^2.t_{ql\,mn}\right| = 0 \tag{21}$$

El determinante-ecuación (21) permite hallar los coeficientes de frecuencia natural de vibración transversal de placas ortótropas cargadas en el plano. En dicho caso la intensidad S de las cargas es obviamente conocida. Puede demostrarse numéricamente de este modo, que incrementando los valores de intensidad de las cargas S, disminuyen los coeficientes de frecuencia Ω .

La situación límite o crítica, se da cuando $\Omega = 0$ (modelo estático), en cuyo caso se tiene:

$$\left|S_{c} \cdot \tau_{ql\,mn} + u_{ql\,mn}\right| = 0 \tag{22}$$

El determinante-ecuación (22) permite obtener la intensidad crítica S_c del estado de cargas en el plano, que produce la inestabilidad del sistema.

4 RESULTADOS NUMÉRICOS

En primer lugar se determinaron coeficientes de frecuencia para valores crecientes de las fuerzas en el plano. El análisis, cuyos resultados se muestran en la Figura 2, se realizó para una placa rectangular ortótropa E-E-SA-SA con $\lambda = 1.5$. Los gráficos muestran como disminuye el coeficiente de frecuencia fundamental de vibración natural, conforme se incrementa la intensidad de las fuerzas en el plano, para el caso: a) fuerza compresiva en la dirección *x*; b) Fuerzas de corte N_{xy}.

Figura 2: Variación del coeficiente de frecuencia fundamental Ω_1 en función de la intensidad de carga en el plano, en una placa ortótropa E-E-SA-SA con $\lambda = 1.5$. a) Fuerzas N_x, b) Fuerzas N_{xy}.

Con el objetivo de verificar el procedimiento, se compararon los coeficientes de carga crítica $\overline{N}_x^{crit} b^2/D$ obtenidos para una placa rectangular isótropa SA-E-SA-E con distribución de carga constante en la dirección x, con los valores obtenidos en la literatura (Timoshenko and Woinowsky-Krieger, 1970; Leissa and Kang, 2002), Los resultados se presentan en la Tabla 1. Asimismo en las Tablas 2 y 4 se compara el caso de la placa ortótropa simplemente apoyada sometida a compresión uniaxial y a compresión hidrostática con los valores obtenidos por Lekhnitskii (Lekhnitskii, 1968).

			$\lambda = a/b$				
	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	(m=1)	(m=1)	(m=1)	(m=1)	(m=1)	(m=1)	(m=2)
Presente estudio	93.2477	75.9105	69.6326	69.0954	72.0846	77.5450	75.9105
Timoshenko	93.2	75.9	69.6	69.1	71.9	77.3	75.9
Leissa	93.247	75.910	69.632	69.095	72.084	77545	75.910

Tabla 1: Valores adimensionales de carga crítica $\overline{\mathbf{N}}_{x}^{crit} b^2 / D$, en función de la relación de lados $\lambda = a/b$ de la placa, empleando $M \times N = 225$ términos, comparados con valores de Timoshenko y de Leissa.

Posteriormente se determinó la carga crítica, que provoca la inestabilidad del equilibrio en una placa rectangular ortótropa con diferentes condiciones de borde y distintas relaciones de lado λ . El material del modelo se define por las relaciones $D_2=D_k=D_1/2$ y $v_2=0.3$, empleándose $M \times N = 225$ términos en la aproximación de W.

Se consideró en primer término fuerzas de compresión en la dirección *x*. Los valores de $\overline{N}_x^{crit} \times b^2/D_1$ se encuentran en las Tablas 2 y 3. En segundo término se consideró la acción de carga hidrostática sobre los modelos mencionados anteriormente (Tablas 4 y 5), y en tercer lugar un estado de carga combinado de fuerzas de compresión en la dirección *x*, y fuerzas de tracción en la dirección *y* (Tablas 6 y 7). Por último se analizó la acción de fuerzas de corte en el plano, y los valores $\overline{N}_{xy}^{crit} \times b^2/D_1$, se presentan en las Tablas 8 y 9.

a)	SA–SA–SA-SA	λ	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$	Lekhnitskii
	$\wedge^{\overline{y}}$	0.4	88.136	88.1356
	b	0.5	66.373	66.3781
	→ SA + ←	2/3	50.067	50.0608
	$N_{rit}^{crit} \rightarrow \Omega_{rit}^{crit}$	1	40.465	40.4654
	\rightarrow	1.5	41.151	41.1508
	SA $\overline{\overline{x}}$	2	40.465	40.4654
	a	2.5	39.688	39.6881
b)	E–E–SA-SA		$\lambda \qquad \overline{N}_{x}^{crit}$	$b^{t} \times b^2 / D_1$
	$\wedge^{\overline{y}}$	0	.4 1	55.348
	b	0	.5 1	11.110
		2	/3 7	8.080
	$N_{rit}^{crit} \rightarrow \Gamma$		1 5	8.615
	$A \rightarrow E$ $A \rightarrow A$	1	.5 5	5.900
	E T		2 5	2.911
		2	.5 5	2.507

Tabla 2: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-SA-SA, b) E-E-SA-SA, bajo la acción de carga de compresión en la dirección x, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA-E-SA-E	λ	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$
	$\overline{\mathcal{V}}$	0.4	95.206
	b	0.5	75.776
		2/3	64.024
	N_{rit}^{crit}	1	66.418
		1.5	62.568
	\rightarrow E \overline{x}	2	64.023
	a	2.5	62.753
b)	E-E-E-E	λ	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$
b)	E-E-E-E	λ 0.4	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$ 278.853
b)	E-E-E-E	λ 0.4 0.5	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$ 278.853 192.196
b)	E-E-E-E	λ 0.4 0.5 2/3	$ \overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1} $ 278.853 192.196 123.334
b)	E-E-E-E	λ 0.4 0.5 2/3 1	$ \overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1} $ 278.853 192.196 123.334 88.695
b)	E - E - E - E	λ 0.4 0.5 2/3 1 1.5	$ \overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1} $ 278.853 192.196 123.334 88.695 77.785
b)	E-E-E-E	λ 0.4 0.5 2/3 1 1.5 2	$\overline{\mathbf{N}}_{x}^{crit} \times b^{2}/D_{1}$ 278.853 192.196 123.334 88.695 77.785 70.573

Tabla 3: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-E-SA-E, b) E-E-E, bajo la acción de carga de compresión en la dirección x, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a) SA–SA–SA	-SA λ	$\overline{\mathbf{N}}^{crit} \times b^2 / D_1$	Lekhnitskii
$\wedge^{\overline{y}}$ N ^{crit}	0.4	75.879	75.8789
$b \downarrow \downarrow$	0.5	53.099	53.0985
SA #	2/3	34.658	34.6575
$N^{crit} \rightarrow SA$ S	A \sim N ^{crit} 1	20.233	20.2327
	1.5	12.662	12.6618
	a a a a a a a a a a a a a a a a a a a	9.574	9.5735
N ^{crit}	2.5	8.011	8.0114
b)	E-E-SA-SA	λ	$\overline{\mathbf{N}}^{crit} \times b^2 / D_1$
$\wedge^{\overline{y}}$	N ^{crit}	0.4	136.381
b		0.5	91.030
\rightarrow	SA #	2/3	55.731
$N^{crit} \longrightarrow E$	SA \sim N ^{crit}	1	30.403
\rightarrow	E T	1.5	19.045
	$\overbrace{+ + + + + + + + + + a}^{\sim}$	2	15.061
	N ^{crit}	2.5	13.230

Tabla 4: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-SA-SA, b) E-E-SA-SA, bajo la acción de carga hidrostática, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA-E-SA-E	λ	$\overline{\mathbf{N}}^{crit} \times b^2 / D_1$
	$\wedge^{\overline{y}}$ N ^{crit}	0.4	80.751
	$b \downarrow \downarrow$	0.5	58.932
		2/3	42.033
	$N^{crit} \rightarrow SA$ $SA \qquad A \qquad$	1	29.907
	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \end{array} $ E $ \begin{array}{c} \leftarrow \\ \leftarrow \\ \leftarrow \\ \end{array} $	1.5	24.381
	$ \land \land$	2	22.388
	N ^{crit}	2.5	21.448
b)	E-E-E-E	λ	$\mathbf{\bar{N}}^{crit} \times b^2 / D_1$
	$\Lambda^{\overline{y}}$ N ^{crit}	0.4	264.919
	$b \downarrow \downarrow$	0.5	157.115
		2/3	90.660
	$N^{crit} \longrightarrow E $ $E $ $E $ E N^{crit}	1	46.122
		1.5	29.128
		2	24.305
	N ^{crit}	2.5	22.384

Tabla 5: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-E-SA-E, b) E-E-E, bajo la acción de carga hidrostática, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA–SA–SA-SA	λ	$\mathbf{\bar{N}}^{crit} \times b^2 / D_1$
	$\wedge^{\overline{y}}$ N ^{crit}	0.4	104.923
	<u>₽</u> <u></u>	0.5	88.498
	SA #	2/3	90.110
	$N^{crit} \rightarrow SA$ $SA \leftarrow N^{crit}$	1	88.498
		1.5	88.498
		2	88.498
	N ^{crit}	2.5	86.736
b)	E–E–SA-SA	λ	${ar{\mathbf{N}}}^{crit}$ × b^2/D_1
	$\wedge^{\overline{y}}$ N ^{crit}	0.4	179.517
	$b \stackrel{\overline{y}}{\uparrow} \stackrel{\overline{y}}{\downarrow} \stackrel{\overline{y}}$	0.4 0.5	179.517 140.615
	$b \xrightarrow{\overline{y}} N^{crit}$	0.4 0.5 2/3	179.517 140.615 121.729
	$N^{crit} \xrightarrow{\overline{y}} N^{crit}$	0.4 0.5 2/3 1	179.517 140.615 121.729 109.145
	$N^{crit} \xrightarrow{\overline{y}} B$	0.4 0.5 2/3 1 1.5	179.517 140.615 121.729 109.145 101.624
	$N^{crit} \xrightarrow{\overline{y}} N^{crit} \xrightarrow{SA} + \xrightarrow{E} N^{crit}$	0.4 0.5 2/3 1 1.5 2	179.517 140.615 121.729 109.145 101.624 98.674

Tabla 6: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-SA-SA, b) E-E-SA-SA, bajo la acción de fuerzas combinadas de compresión y tracción en el plano, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA-E-SA-E	λ	$\overline{\mathbf{N}}^{crit} \times b^2 / D_1$
	$\wedge^{\overline{\mathcal{V}}}$ N ^{crit}	0.4	115.376
	$b \uparrow \uparrow$	0.5	104.783
		2/3	127.487
	$N^{crit} \rightarrow SA$ $SA \leftarrow N^{crit}$	1	104.783
	$\begin{array}{ccc} - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ - & & \\ -$	1.5	104.783
		2	104.783
	N ^{crit}	2.5	104.783
b)	E-E-EE	λ	$\overline{\mathbf{N}}^{crit} \times b^2 / D_1$
b)	E-E-E-E	λ 0.4	$\frac{\overline{\mathbf{N}}^{crit} \times b^2/D_1}{319.689}$
b)	E - E - E - E	λ 0.4 0.5	$\frac{\overline{\mathbf{N}}^{crit} \times b^2 / D_1}{319.689}$ 240.262
b)	E-E-E-E	λ 0.4 0.5 2/3	$\overline{\mathbf{N}}^{crit} \times b^2/D_1$ 319.689 240.262 194.831
b)	E-E-E-E	λ 0.4 0.5 2/3 1	$\overline{\mathbf{N}}^{crit} \times b^2/D_1$ 319.689 240.262 194.831 147.787
b)	E-E-E-E	λ 0.4 0.5 2/3 1 1.5	$ \overline{\mathbf{N}}^{crit} \times b^2 / D_1 $ 319.689 240.262 194.831 147.787 126.060
b)	E-E-E-E	λ 0.4 0.5 2/3 1 1.5 2	$ \overline{\mathbf{N}}^{crit} \times b^2/D_1 $ 319.689 240.262 194.831 147.787 126.060 117.433

Tabla 7: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-E-SA-E, b) E-E-E, bajo la acción de fuerzas combinadas de compresión y tracción en el plano, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA–SA–SA–SA	λ	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$
	$\wedge^{\overline{y}}$ N ^{crit}	0.4	390.194
		0.5	380.900
	SA # 1	2/3	162.911
	\mathbf{N}_{xy}^{crit} SA SA \mathbf{N}_{xy}^{crit}	1	91.951
		1.5	62.129
	$ \xrightarrow{ \downarrow \uparrow} \xrightarrow{ \downarrow \downarrow } \xrightarrow{ \downarrow \downarrow \downarrow \downarrow } \xrightarrow{ \downarrow \downarrow \downarrow \downarrow } \xrightarrow{ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow } \downarrow $	2	52.471
	N_{xy}^{crit}	2.5	48.512
b)	E–E–SA–SA	λ	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$
b)	$E-E-SA-SA$ $\uparrow^{\overline{y}} \qquad N_{xy}^{crit}$	λ 0.4	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$ 496.468
b)	E-E-SA-SA	λ 0.4 0.5	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$ 496.468 331.204
b)	E-E-SA-SA	λ 0.4 0.5 2/3	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$ 496.468 331.204 204.117
b)	E-E-SA-SA b b F A	λ 0.4 0.5 2/3 1	$ \overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1 $ 496.468 331.204 204.117 110.206
b)	$ \begin{array}{c} E-E-SA-SA \\ & & & \\ N_{xy}^{crit} \\ & & $	λ 0.4 0.5 2/3 1 1.5	$ \overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1 $ 496.468 331.204 204.117 110.206 74.804
b)	$\begin{array}{c} E-E-SA-SA \\ \hline \\ N_{xy}^{crit} \\ \downarrow \\ E \\ E \\ E \\ \hline \\ E \\ E \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\$	λ 0.4 0.5 2/3 1 1.5 2	$ \overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1 $ 496.468 331.204 204.117 110.206 74.804 65.291

Tabla 8: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-SA-SA, b) E-E-SA-SA, bajo la acción de esfuerzos de corte en el plano, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

a)	SA-E-SA-E	λ	$\overline{\mathbf{N}}_{xy}^{crit} \times b^2 / D_1$
	\overline{y}	0.4	397.720
	b	0.5	270.541
		2/3	170.464
	\mathbf{N}_{xy}^{crit} \mathbf{N}_{xy}^{crit}	1	107.849
		1.5	85.445
		2	76.919
	μ	2.5	72.433
			Terit 12/D
b)	E-E-E	λ	$\mathbf{N}_{xy}^{enn} \times b^2/D_1$
b)	$\begin{array}{c} E - E - E \\ \uparrow^{\overline{y}} \qquad N_{xy}^{crit} \end{array}$	λ 0.4	$\frac{\mathbf{N}_{xy}^{OR} \times b^2/D_1}{733.059}$
b)	$b \xrightarrow{\overline{y}} N_{xy}^{crit}$	λ 0.4 0.5	$\frac{N_{xy}^{0} \times b^{2}/D_{1}}{733.059}$ 406.099
b)	E-E-E-E	λ 0.4 0.5 2/3	$\frac{N_{xy}^{0} \times b^{2}/D_{1}}{733.059}$ 406.099 373.741
b)	E-E-E-E	λ 0.4 0.5 2/3 1	$\frac{N_{xy}^{0} \times b^{2}/D_{1}}{733.059}$ 406.099 373.741 132.992
b)	E-E-E-E	λ 0.4 0.5 2/3 1 1.5	$\frac{N_{xy}^{0} \times b^{2}/D_{1}}{733.059}$ 406.099 373.741 132.992 90.523
b)	E-E-E-E	λ 0.4 0.5 2/3 1 1.5 2	$\frac{N_{xy}^{0} \times b^{2}/D_{1}}{733.059}$ 406.099 373.741 132.992 90.523 80.249

Tabla 9: Coeficientes de carga crítica en una placa rectangular ortótropa: a) SA-E-SA-E, b) E-E-E, bajo la acción de esfuerzos de corte en el plano, para diferentes valores de $\lambda = a/b$, $M \times N = 225$ términos.

5 CONCLUSIONES

El método de Ritz, aproximando la deflexión con funciones viga se ha mostrado como una herramienta eficaz para analizar el problema de la vibración transversal y pandeo de placas rectangulares ortótropas.

Las funciones viga con sus conocidas condiciones de ortogonalidad y la implementación de un algoritmo conveniente (Felix et al, 2004), permiten efectuar cálculos rápidos con gran número de términos.

Los resultados evidencian la incidencia de la vinculación y de la relación de aspecto en la magnitud de los parámetros críticos. Por ejemplo, en el caso de la carga axil unidireccional, se observa que los valores de carga crítica en la placa E-E-SA-SA (Tabla 2b) son mayores que los correspondientes a la placa SA-E-SA-E (Tabla 2a) cuando $\lambda < 1$ y ocurre lo contrario para $\lambda \ge 1$.

El efecto de la ortotropía se manifiesta en el caso de placas con condiciones de borde uniformes (totalmente apoyadas o empotradas) y distinta orientación (por ejemplo $\lambda = 0.4$ y $\lambda = 2.5$) en que los valores de los esfuerzos críticos de corte puro sin adimensionalizar: $\bar{\mathbf{N}}_{xy}^{crit}$ difieren.

AGRADECIMIENTOS

El presente trabajo ha sido auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur, en el Departamento de Ingeniería, por el CONICET y por la Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT).

REFERENCIAS

Bambill D.V., Rossit C.A., Felix D.H., Comments on "Buckling behavior of a graphite/epoxy composite plate under parabolic variation of axial loads", *International Journal of Mechanical Sciences*, 47:1473-1474, 2005.

Bassily S.F. and Dickinson S.M., Buckling and lateral vibration of rectangular plates subject to inplane loads-A Ritz approach, *Journal of Sound and Vibration*, 24(2):219-239, 1972.

Dickinson S.M., Lateral vibration of rectangular plates subject to in-plane forces, *Journal of Sound and Vibration*, 16(4):465-472, 1971.

Felgar R.P. Jr, Formulas for integrals containing characteristic functions of a vibrating beam, *The University of Texas Publication*, Circ.Nº 14, 1950.

Felix D.H., *Vibraciones de placas ortótropas con diversas condiciones de vínculo y orificios de borde libre*, Tesis Doctoral, UNS, Bahía Blanca, 2004.

Felix D.H., Bambill D.V. y Rossit C.A., "Desarrollo de un algoritmo de cálculo para la implementación del método de Rayleigh-Ritz en el cálculo de frecuencias naturales de vibración de placas rectangulares con complejidades diversas", *Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería*, 20(2):123-138, 2004.

Hearmon R.F.S., The frequency of vibration and the elastic stability of a fixed-free strip, *British Journal of Applied Physics*, 7:505-507,1956.

Hu H., Badir A., Abatan A., Buckling behavior of a graphite epoxy composite plate under parabolic variation of axial loads, *International Journal of Mechanical Sciences*, 45:1135-1147, 2003.

Laura P.A.A., Maurizi M.J., *Introducción a la Mecánica de los Sólidos*, Editorial Universitaria, Buenos Aires Argentina, 1979.

Laura P.A.A., Gutierrez R.H., y Rossi R.E., Estado plano de tensiones en un material

ortótropo. Mecánica Computacional, XXI:829-840, 2002.

Leissa A.W., Vibrations of Plates, NASA S.P. 160, 1969.

Leissa A.W., Kang J.H., Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses, *Mechanical Sciences*, 44:1925-1945, 2002.

Lekhnitskii S.G., Anisotropic Plates, Gordon and Breach Sciens Publishers, 1968.

Ritz W., Theorie der Transversalschwingungen, einer quadratischen Platte mit freien Rändern. Ann. Physik, Bd. 28:737-786, 1909.

Timoshenko C.S., Woinowsky-Krieger S., *Teoría de Placas y Láminas*, Ediciones Urmo, Bilbao, España, 1970.

Young D., Felgar R.P. Jr., Tables of characteristic functions representing normal modes of vibration of a beam, *The University of Texas Publication*, Nº 4913, 1949.