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Abstract. Resonances in small rooms may lead to inadequate frequency responses. In rooms where 
the exigencies on the listening conditions are important, these resonances cause non wanted coloration 
effects, which implies a non desirable sound quality. Choosing the correct dimensions it is possible to 
reduce the audible effects of these resonances. The presented methodology aims to determine the form 
and size of small rectangular rooms based on the finite elements method for modeling the room’s 
physical acoustic behavior; a neural network for loudness estimation and genetic algorithm uses to 
achieve the optimal dimensions. A comparison with previous techniques used to choose the dimension 
of rectangular room is also presented. 
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1 INTRODUCTION 

The sound that is listened to in recording studios is the result of the interaction of the 
system of audio and the acoustics of the room. The pitch answer and the balance in the timbre 
depend on the geometry and the position of the sonorous sources and the listener. This article 
is centered in the design of the room in order to diminish the effects of the resonances based 
on the room dimensions and the human the auditory system response. 
 

The main problems in low frequencies are due to a relative low modal density. Most of the 
developed solution methods previously developed to solve this problem are directed to 
rectangular rooms, and they are based on the election of the proportions, positioning of the 
sources and the use of resonators. The primary target of this article is to present a different 
perspective from this problem when approaching the solution from the field of psychacoustics 
instead of the architectural and physical acoustics. 
 

In this aspect the method to present is characterized to search for a room dimensions 
whose to produce equal loudness in the low frequency band. This means that the sound 
pressure level must, as far as possible, to agree with some of the equal loudness curves (see 
Figure 1) curves represent the response of human the auditory system based on the sound 
pressure and the frequency, giving the sensation of equal sound amplitude (Zwicker and Fastl, 
1990, Suzuki and Takeshima, 2004). 
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Figure 1 Equal Loudness Level Curves 
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2 BIBLIOGRAPHICAL ANTECEDENTS 

2.1 Previous Works 

Most of the methodologies to diminish and to avoid the colorations in the design rooms 
based on rectangular enclosures and mainly they consist of the election of the proportions 
adapted between wide and high length. Essentially those methods try to avoid degenerated 
modes where multiple frequencies of resonance fall one narrow frequency band. 

 
From the equation 1 that determines the frequencies of resonance in a rectangular 

enclosure have been developed diverse methods to determine the proportions an enclosure 
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zyx nnnf ,,  : Natural frequencies 

zyx LLL ,,  : Dimensions of the rectangular room 

zyx nnn ,,  : Modal numbers 
c   : Speed of sound 

 
Bolt (1946) produced design graphs based on the average distance between resonant 

frequencies, the known proportions more are 2: 3: 5 and 1: 21/3: 41/3. Louden 
(1971).developed a set of more exact and preferred proportions based on the standard 
deviation of space between modes and not the distance average, producing the good well-
known radius 1: 1.4: 1:9. Bonello (1981) developed a criterion based on the fact that the 
modal density must never decrease as the frequency increases. These and other methods 
(Guilford, 1979, Walker, 1996) have their limitations, first is that they are applicable to 
rectangular halls with perfectly reflecting surfaces. The absorption not only influences the 
amplitude of the sound pressure in the modes, also is responsible of the displacement for the 
resonance frequencies. Another effect of the absorption is that it acts of different form if the 
ways are axial, tangential or oblique. Cox, D’Antonio and Avis (2004) developed a new 
methodology using optimization techniques for rectangular enclosures, using the method of 
images and approximated factors of reflection, being able to flatten the frequency response of 
the room by the minization of the quadratic difference between the frequency response and 
the straight line of obtained linear regression. They found the following optimal dimensions, 
1: 2.19: 3 and 1: 1.55: 1.85. 

2.2 Description of the New Method 

The methodology presented in this article consists of a modification of the work of Cox 
et. al. using shape optimization in order to determine the dimensions of the room in such a 
way that it does not have the flattest response possible, if not that their frequency response is 
isophonically flat, that means that the frequency response of the enclosure must simulate the 
way in which the auditory system perceives the sound, this will be made within the frequency 
band between 20 Hz until 200 Hz. In this first stage of the work will not consider the 
sonorous absorption of the surfaces of the enclosure and it will be only restricted to 
rectangular enclosures. 
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The shape optimization consists in causing geometric or structural changes in order to 
obtain a wished response of the structure that is being designed. That set of modifications 
must be restricted in order to satisfy other requirements and with which the changes are 
physically attainable. In this case the characteristics of the room are modeled like a 
multidimensional function called objective function, function of cost or fitness function, that 
depends on the design variables; also a region is due to establish search that characterizes the 
restrictions. In such way it looks to minimize this function in order that it produces the 
optimal answer according to the design parameters. 

3 MATHEMATICAL MODEL OF A RECTANGULAR ROOM  

The enclosure that is desired to optimize is rectangular, for this reason is not necessary to 
create the problem in three dimensions, similarly has chosen the finite elements method to be 
able to extrapolate this methodology to rooms with arbitrary shape. 

3.1 Formulation of the Problem and Application of the Method of Separation of 
Variables 

The enclosure rectangular and is excited by a point source of flat spectrum. This can be 
represented using the following equation partial differential and its respective boundary 
conditions. In order to simplify the problem the stationary solution in the frequency domain 
will be only studied. The wave equation and the boundary conditions are:
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p   : Sound pressure 
c   : Sound speed 
ur   : Particle velocity 
n̂   : Normal vector outward the room 
 

When considering an harmonic solution we obtain the Helmholtz’s equation. 

  (3) 022 =+∇ PkP

Using the method of by separation of variables we have the following equations and 
boundary condition:

 ( ) ( ) ( )zPyxPzyxP zxy ,,, =  (4) 

For the dependency in z  
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For the dependency in yx,
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Is due to fulfill that:

  (7) 222
zxy kkk +=

k   : Wave number. 
xyk   : Wave number in the plane yx, . 

zk   : Wave number in the axis z . 

3.2 Application of the Method of Finite Elements in the Solution of the Equations 

The equation and the boundary condition (5) have a widely known solution (Fahy and 
Walker, 1998). While the equation (11) and its respective boundary condition (12) can be 
solved using the Finite Elements Method (Zienkiewicz and Taylor, 1991). Specifically it is 
possible to interpret these equations like a membrane with of Neumann boundary conditions. 
This leaves us to a system of equations of ordinary differentials to us and to their 
corresponding eigenvalue problem. 

 0KppM =+ xyxy&&  (8) 

 Λ= MΦKΦ  (9) 

 [ ]NφφφφΦ ,,,, 321 K=  (10) 
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2
xyk   : Eigenvalue (Wave number). 

xyp   : Sound pressure. 
φ   : Eigenvector. 
Φ   : Modal matrix. 
Λ   : Eigenvalue matrix. 
M   : Mass matrix. 
K   : Stiffness matrix. 
 

Then the natural frequencies can be calculated as:

 22
zxynn kkc

zxy
+=ω  (12) 

Finally the sound pressure for any point rr  within the given enclosure a source located in 
 0rr at the frequency ω , is the result of the combination of the solutions of the equations 5 y 6. 
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Finally, 0ρ  and  a0U re the density of the air and the vibratory speed of the surface of the 
source. 

3.3 Determination of the Loudness Levels Using Neuronal Networks  

The loudness may be defined as the sensation that corresponds most closely to the sound 
intensity of a stimulus (Zwicker and Fastl, 1990). An equal-loudness contour is a curve that 
ties up sound pressure levels having equal loudness as a function of frequency. In other 
words, it expresses a frequency characteristic of loudness sensation. 

In this work a loudness model, implemented by using artificial neural network, has been 
developed from the equal-loudness-level contours data presented in (Suzuki and Takeshima, 
2004) and following the procedure employed by Espinoza, Venegas and. Floody (2006). The 
presented model aims to perform an accurate loudness calculation in low frequencies; this 
objective is different to the objective of the model presented previously which is a loudness 
model for wide frequency range. 

The artificial neural network (Gupta, Jin and Homma, 2003) was trained by using the Quasi 
Newton Backpropagation algorithm with 3000 epochs and an objective goal of 10-5. The final 
configuration corresponds to a three layer feedforward neural network with 5 neurons in the 
hidden layer and 1 neuron in the output. The transfer function of the hidden layer is sigmoidal 
hyperbolic tangent and for the output layer is a linear function. The inputs to the neural 
network are the frequency and sound pressure level and the output is the respective loudness 
level. 

4 OPTIMIZATION USING GENETIC ALGORITHM  

The optimization techniques are used to determine the best possible design in engineering 
problems. In our case it will be used to determine the optimal shape of a small and/or medium 
rectangular enclosure, in order to obtain the best psychoacustical response. The propose 
fitness function corresponds to the variance of the loudness level response versus the 
frequency.
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( )nLL   : Loudness level in the nth frequency. 

LL   : Loudness level average. 
xr   : Vector of the variables of design that contains the length, wide and the 

height. 
 

The optimization problem that sets out this characterized by a strong nonlinear interrelation 
between the variables and the fitness function, also the function has many peaks and dips 
which makes the solution over sensitive to the dimensions of the enclosure. For this reason, 
the curve of frequency response has been smoothed and the method of Genetic Algorithm has 
been chosen (Goldberg 1989), which has demonstrated efficient in to be varied problems of 
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acoustics and vibrations (Keane, 1995, Ratle and Berry, 1998). These methods work 
maintaining a population of the competent designs that are combined to find improved 
solutions. In its basic form each member of the population is represented by a binary 
sequence that codifies the variables that characterize the design. The search progresses 
manipulating the sequences in the population to provide in the new generations of better 
characteristic designs in average, than its processes of predecessors los processes that are used 
to look for these improved designs imitate those of the natural selection; that is the reason of 
Genetic Algorithm’s name. 

5 NUMERICAL SIMULATIONS 

5.1 General Considerations 

The limits of the optimization in the frequency range is from 20Hz to 200Hz , although this 
range can be extended, it is due to remember that as increases in the frequency, the exactitude 
of the model is smaller and than is in this range where the resonances are more annoying. It 
will be hoped that the main results of the optimization process will consist in the avoiding of 
degenerated modes. The points of emission and reception are the opposite corners and it will 
not be tried in this work to optimize position of the sound sources and the listener position. 
The source has been characterized pint like and of constant speed. The dimensional limits are: 
4m ≤ Lx ≤ 8m, 7m ≤ Ly ≤ 15m and 3m ≤ Lz ≤ 5m. The population size is 15  and the number 
of generations is . 200

 
The comparisons with rectangular rooms are made for enclosures that have equal height 

and the wide and length proposed in this article are obtained through the proposed relations of 
optimal proportionality (Bolt, 1946, Louden, 1971, and Cox et. al., 2004) Also the result will 
be comparated using the objective function proposed by Cox et. al., (2004) (see Figure 2) and 
the present objective function. (see Figure 3) The advantages of the proposed function in this 
work by on the developed ones previously are: 

 
• To represent the response of the human auditory system and its interaction with the 

sound field. 
• When diminishing the variance of the loudness level is able to diminish the 

fluctuations of the resonances when approaching to the sector of the medium 
frequencies. 

• To increase the loudness, therefore the sound pressure level in the sector of the lowest 
frequencies.  
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Figure 2 Fitness Function Cox et. al., (2004). 
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Figure 3 Proposed Fitness Function 

 
5.2 Results 

In the Table 1 are the values of the optimal dimensions of the rectangular enclosure 
obtained by this work. In the Table 2 are the values of the functions of fitness for the different 
methodologies based on proportions versus the optimal value obtained with this method, 
being observed a much better performance to the being evaluated with the objective function 
of this work and the proposed function by Cox et. al. (2004). 
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Dimension (m) 

Length 13.131 
Wide 5.643 

Height 3.031 
Table 1: Optimal Dimensions of the Rectangular Room. 

 
( )xrf  Floody - 

Venegas 
( )xrf  Cox et. al. 

Bolt (2 : 3 : 5 ) 1778.652 90.530 
Bolt (1: 7/3 : 13/3 ) 2013.067 65.790 

Louden (1 : 1.4: 1.9) 1810.915 63.225 
Cox et. al.(1 : 2.19 : 3) 1798.234 70.691 
Cox et. al.(1:1.55:1.85) 2159.300 68.902 

Optimal Room 1530.137 44.008 
Table 2: Values of the Fitness Function. 

 
The Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 

12 and Figure 13 show the differences between the present method and the classic proportions 
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Figure 4: Comparison of the Distribution of the Sound Pressure Level in the Frequency - Optimal Room – Bolt 

(1946) Room 2 : 3 : 5. 
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Figure 5: Comparison of the Distribution of the Loudness Level in the Frequency - Optimal Room – Bolt (1946) 

Room 2 : 3 : 5. 
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Figure 6: Comparison of the Distribution of the Sound Pressure Level in the Frequency - Optimal Room Bolt 

(1946) Room 1 : 7/3 : 13/3. 
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Figure 7: Comparison of the Distribution of the Loudness Level in the Frequency - Optimal Room - Bolt (1946) 

Room 1 : 7/3 : 13/3. 
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Figure 8: Comparison of the Distribution of the Sound Pressure Level in the Frequency - Optimal Room Louden 

(1971) Room 1 : 1.4 : 1.9. 
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Figure 9: Comparison of the Distribution of the Loudness Level in the Frequency - Optimal Room – Louden 

(1971) Room 1 : 1.4 : 1.9. 
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Figure 10: Comparison of the Distribution of the Sound Pressure Level in the Frequency - Optimal Room - Cox 

et. al. (2004) Room 1 : 2.19 : 3. 
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Figure 11: Comparison of the Distribution of the Loudness Level in the Frequency - Optimal Room - Cox et. al. 

(2004) Room 1 : 2.19 : 3. 
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Figure 12: Comparison of the Distribution of the Sound Pressure Level in the Frequency - Optimal Room - Cox 

et. al. (2004) Room 1 : 1.55 : 1.85. 
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Figure 13: Comparison of the Distribution of the Loudness Level in the Frequency - Optimal Room - Cox et. al. 

(2004) Room 1 : 1.55 : 1.85. 

6 CONCLUSIONS 

We can see that the proposed method fulfills the objectives drawn up obtaining a better 
yield than the recommendations of proportions of length, wide and high found in literature.  

 
The main reason is that many of these criteria were constructed on the basis of proportions, 

is to say that the height of the enclosure was equaled to the unit; although the structure of the 
phantom would have to stay when it goes to the real dimensions, not always this structure is 
completes in the frequency band of interest. 

 
In addition the optimization to the three dimensions considers to the height of independent 

form to the wide one and the length, for this reason will not recommend proportions, because 
each problem of optimization depends on the space search imposed by the restrictions. On the 
other hand the criterion of equal loudness proposed in this work is much more demanding that 
the one of flat frequency response. 
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