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Abstract. The cohesive surface method has been used intensively on numerical simulations of fracture
of metals and brittle materials. However, the constitutive cohesive laws (or traction versus crack
opening relationships) used for these materials are not adequate to simulate the concrete behavior
because they do not take into consideration effects related to the size of the finite elements and other
phenomena that characterize concrete rupture (e.g. development of a process zone at the crack tip).

In this work, some well-known post-peak constitutive equations for the cohesive surface are
explored. The shape of these equations changes overall results and it seems to be linked with the
development of the process zone, so the shape can be considered a material property as the fracture
energy. However, the present work also explores the effect of the pre-peak part of the cohesive law. It
is demonstrated that this part of the curve must be related to the size of the finite elements, in order to
have a mesh independent result.

As practical applications, cases in Mode I of propagation are presented (three-point bending),
where the effect of the post-peak relationship on load versus crack opening is shown. It could be
concluded that post-peak relationship is important to define maximum rupture load. Besides that,
different sizes of bodies were analyzed and the scale effect of concrete was captured (the smaller the
body, the greater the toughness). A good fit with literature results was obtained. It is demonstrated also
that results are mesh independent, depending on the pre-peak part of the cohesive law. Concrete
properties are not considered random fields.
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1 INTRODUCTION

Applications of the one-parameter Linear Elastic Fracture Mechanics (LEFM) to concrete
are restricted due to the presence of the process zone. Then, two or more fracture parameters
have been proposed to characterize concrete, such as in the “fictitious crack model” of
Hilleborg et al. (1976), the “crack band model” of Bazant and Oh (1983) and the “two
parameters” (KIC, CTODc) method of Jenq and Shah (1985a), among many others.

The present work will focus on Hilleborg et al. ideas, implemented in a Finite Element
(FE) context, where fictitious cracks are considered between each FE of the domain through
cohesive zones or surfaces. The model for these zones is represented by a function of the
tractions in terms of separation distances between FE faces, which corresponds to crack
opening. According to de Borst et al. (2006), while for ductile fracture the most import factor
of the cohesive surface model seem to be the tensile strength, for quasi-fragile material, where
micro-cracking plays an important factor, the shape of the stress-opening relation of the crack
appears to be more significant. Chandra et al. (2002) also claim that shape of stress-opening
relation can not be neglected in the analysis of quasi-fragile materials. Finally, Tijssen et al.
(2000) reported that fracture path of concrete is mainly determined by the initial slope of
softening of the cohesive law. In fact, experimental results indicate that a concave curve with
a steeper decline after the peak is the most adequate (Rots, 1988).

Then the fundamental material parameters in a cohesive model for concrete are the fracture
energy and the shape of the traction versus crack opening. Although is polemic to say that
fracture energy is a property in concrete structures due to size effects, Rots (1988) argued that,
in general, objections against the use of the fracture energy as a concrete property are
exaggerated, since has been reported that increases in size up to eight times do not change
fracture energy more than 20 percent.

One aspect of the application of cohesive surfaces to concrete that is rarely mentioned is
the pre-peak or elastic part of the constitutive law. As all such methodologies follows the
basic principles of Barrenblat (1962) and Dugdale (1960), this elastic part must exist. In Rots
(1988) it is mentioned only that this part is arbitrarily small. In applications to fragile and
ductile materials, the elastic part is considered a material property (see Needleman, 1987 and
Xu and Needleman, 1990). It was already demonstrated that these constitutive laws are not
suited to concrete (see Lens et al. 2006). As we will see later, the elastic part must be mesh
dependent in quasi-fragile materials to eliminate mesh dependency.

The constitutive laws used in this work for the cohesive surfaces are presented and
described in chapter 2; implementation in a FE framework is described in chapter 3; chapter 4
shows applications of the methodology for three-point bending cases, mode I propagation.
Concluding remarks are done in chapter 5.

2 CONSTITUTIVE LAWS FOR COHESIVE SURFACE

As mentioned above, to represent crack behavior is necessary to establish a relationship
between tractions and opening of the surfaces. It is known that when surfaces start to separate
from each other, tractions increase reaching a peak value. Afterwards tractions decrease until
reach a zero value for crescent opening. For this opening the surfaces are considered
fractured. This behavior occurs in different scales, from separation of atomic planes, as
described for instance by Rose et al. (1981), to macro-scale at the crack tips, as described by
Barrenblat (1962), Dugdale (1960). Depending on the scale or material being represented by
separation of the surfaces, different peak tractions, peak and final openings are used. A vast
collection of such values can be found in Chandra et al. (2002). In the case of concrete, the
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subject of this work, we separate the constitutive law of cohesive surfaces in two parts: the
post-peak and the pre-peak part as follows.

2.1 Post-peak of the constitutive law

Three shapes of post-peak constitutive laws are represented below: Hillerborg et al. (1976),
CEB-FIP Code Model (1993) and Xu (1999). These relationships are implemented in the
present work in the cohesive surface context and are depicted in Figure 1.

Figure 1: Post-peak cohesive surface constitutive law.

The shape of post-peak traction-opening seems to be linked with the development of the so
called process zone where many complex phenomena occur such as micro-cracking, interlock
bridging, friction between surfaces and agregates, etc. The area under the curve is considered
the fracture energy (φn) and the maximum traction (σmax) is related to the tensile strength.
Interesting that the shape of post peak has an important influence on results (such as the
maximum load achieved), as will be seen in chapter 4. There are some practical indications
that this curve should be steeper for smaller openings, due to intense micro-cracking, and
much less steep for large openings due to bridging or interlock effects (Rots, 1988 and Tijssen
et al. 2000). Then, theoretically, among the three cases studied, the curve of Hilleborg et al.
would be the less suited for concrete. This issue will be addressed again in chapter 4.2.

The equation for normal traction (σn) for Hilleborg et al. post-peak is:

( ) ( ) ( )max
n n,lim n n,lim

n,lim n

w - w  w w w
w - w

σσ = ⇒ < ≤ ,                                   (1)

where w is the normal opening, wn the elastic opening and wn,lim the final opening (where the
interface cracks), that can be calculated as follows:
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n
n,lim n
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2
w w .

 φ= + σ 
                                                              (2)

The equations of the bi-linear model of CEB-FIP (1993) is described below:

( ) ( ) ( ) ( )max
n s max n s

s n

0,85
w w  + 0,15  w w w ,

w w

σσ = − σ ⇒ < ≤
−

                              (3)

( ) ( ) ( )max
n c s c

c s

0,15
w w   w w w ,

w w

σσ = − ⇒ < ≤
−

                                       (4)

ws and σs are the intermediate values shown in Figure 1, while the final opening is named wc.
These values are calculated as follows:

n
c

max

7
w ,

φ=
σ

                                                               (5)

s max0,15 ,σ = σ                                                           (6)

n
s c n

max

2
w 0,15w w .

φ= − +
σ

                                                (7)

Finally, the exponential Xu (1999) expression is given below:

( )n
n max n c

c

w-w
exp -   w w w ,

w

  
σ = σ η ⇒ < ≤   

  
                                (8)

where,

( )F F1 exp ,η = α − −α                                                  (9)

( )0,9

max
F

d
,

8
α = λ −                                                     (11)

0,7

ckf
10 ,

20
 λ = −  
 

                                                    (10)

and

n
c F

max

w ,
φ= α

σ
                                                       (12)

dmax (mm) is the maximum aggregate diameter and fck (MPa) the characteristic compressive
strength.
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The fracture energy is represented here by the normal work of separation of the cohesive
surface, φn, since Mode II and III of propagation are not considered. φn depends on several
factors, but the most representative (Xu,1999) are fcm and dmax. (fcm is the average
compression strength and is taken as fck+8 MPa). Then, when experimental information about
fracture energy is not available, φn can be determined by Equation (13) (see Xu,1999) as
follows (dmax in mm and fcm in MPa).

0,70,95
max cm

n

d f
0,0204 0,0056 .

8 10
 φ = +  
 

                                        (13)

Based on previous studies (Lens et al., 2006), σmax should range from 1 to 3 times the average
tensile strength of the concrete, ftm. Actually this range was also used by Carpinteri et al.
(2003). According to these authors the relation σmax x ftm depend on the size of the body (σmax

=ftm for large specimens and σmax =3 x ftm for small specimens).

2.2 Pre-peak of the constitutive law

In the curves showed in Figure 1, the pre-peak portion is not depicted (crack opening from
zero to wn) This part of the curve is a non-dissipative elastic part of the surface opening.
According to Rots (1988), wn should be a small value in order that the elastic deformation of
the cohesive surface be negligible compared to continuum elastic deformation. More
important, we believe wn should be a size dependent dimension, in order to avoid the
introduction of an undesirable size effect, as depicted in Figure 2.

Fig. 2: Scaling of elastic opening wn with size.

We propose here that,

max
n cw l

E

σ=α (14)

or

n max cw l ,=α ε (15)

where εmax = σmax /E is the elastic deformation of the continuum at the peak load (in Mode I)
and lc is its characteristic length. α should be a small value (in general α<< 1). In a FE
context, lc is taken as the characteristic length of the FE at the fracture zone. The use of a
constant wn value would introduce an undesirable mesh dependence on results when cohesive
surfaces are used between all FE. In a successive remeshing process, still for wn constant, no
matter this value is small, at certain point the sum of all wn will be greater than the elastic

lcwn lcwn
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volumetric displacements, which does not make sense. Another effect, maybe even more
drastic, is the induction of a fake pure brittle behavior. Imagine a case as depicted in Figure 3.
According to Carpinteri (1989), a transition from normal softening or quasi-fragile behavior
to catastrophic softening occurs when εmax lc is greater than wc. As in the cohesive surface
method an elastic part is introduced, this condition should be replaced by εmax lc + wn greater
than wc. This effect is shown in Figure 3, below.

Fig. 3: Overall σ x w behavior of a bar in Mode I. Transition from quasi-brittle behavior (case a) to brittle or
catastrophic behavior (cases b and c), induced by increased elastic displacement.

When transition described above is due to increase of lc, it is the well known size effect in
concrete. However, if this effect is caused by wn, it represents only a numerical effect. This
effect should not be confused with the spurious mesh sensitivity that occurs in smeared crack
approaches, as described in Carpinteri et. al. (2003).

3 FINITE ELEMENT IMPLEMENTATION

The fracture behavior is here analyzed using the FEM together with cohesive elements (Xu
and Needleman,1994) throughout the whole continuum. Considering an interface opening {∆}
in bi-dimensional problems, { }T tractions, {n} the normal vector and {t} the tangent vector to

the interface, it can be defined that:

{ } { }
{ } { }

w . n ,

T . n

= ∆

σ =
  (16)

and

εmax lc+wn wc

w

σ

σmax

a)

εmax lc+wn = wc

σ

σmax

w

b)

εmax lc+wnwc

σ

σmax

c)

w

1445



{ } { }
{ } { }

z . t ,

T . t ,

= ∆

τ =
  (17)

(parenthesis {.} are used to represent vectors and brackets [.] to represent second order
tensors). The cohesive normal traction σ arises as a result of the opening according to
equations (1), (3-4) and (8), depending on the post-peak relation used (a linear equation is
used for the pre-peak part). A linear equation is used for tangential tractions τ. σ and τ can be
considered corotational tractions and then objective related to rigid body rotations, since they
are integrated in the local system (n,t).

In this work the concrete is considered an elastic Hookean material. Damage can occur
only by separation of interfaces in tension. No compressive damage is considered. The

objective Jaumann stress rate σ
∇ 
  

 is related to constitutive equation as follows:

[ ] eD ,σ
∇   = Ψ    

  (18)

where [ ]Ψ  is the Hooke tensor and [De] the rate of deformation. The use of Jaumann stress

rate in equation (18), together with corotational cohesive tractions (equations 16 and 17)
enable the use of the formulation in large displacements. The Principle of Virtual Work
including cohesive tractions, can be written as (body forces are neglected):

[ ] { } { } { } { }
f f

U
: dV F . U dS T . dS 0.

XΩ Γ Γ

∂δ σ − δ + δ∆ = ∂ 
∫ ∫ ∫ (19)

Constant triangular FE elements are used. The equation above is integrated in each FE
volume Ω using one Gauss point, where {U} are nodal displacements, {F} are prescribed
forces on boundary Γf. Tractions {T} are calculated in all FE faces using four Gauss points;
integration is performed over the crack surface Γt. An implicit Newton-Raphson scheme is
used to solve the corresponding equilibrium equations.

4 NUMERICAL EXPERIMENTATION

Examples of application of the theory are divided in two parts. First it is shown how mesh
change results. Afterwards, size effects in concrete pieces are investigated and results are
compared with literature.

4.1 Mesh dependency

In this section a three-point bending test is used to test mesh sensitivity. The size and
boundary conditions are defined in the Figure 4 below, where S=190 mm; a=12 mm; D= 76
mm, L’= 12 mm, Ho=1 mm, ∆U=0.002 mm and B=38 mm. Concrete properties are E=23340
MPa, fck=25.2 MPa and ν=0.20.  Cohesive surface properties are φn=100 N/m, σmax=1.8 MPa
and α=0.333. Three meshes are used here according to Figure 5.
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Figure 4: Geometry and boundary conditions.

a)  

b) 

c)  

Figure 5: a) Coarse mesh ; b) medium mesh ; c) fine mesh.

Figure 6 shows results of load x crack opening and load x displacement, considering wn

constant, where lc=12 mm and α=0,333. It can be observed a severe dependency of results on
mesh size, being the fine mesh much more flexible than the coarse mesh, as expected. Also
can be noticed that the fine mesh has the tendency to behave more brittle than coarse mesh,
due to the effect mentioned in chapter 2.2 and shown in Figure 3 (peak load moves toward a
large opening/displacement). This effect tends to disappear for smaller values of α. However,
if mesh is also refined, the problem persists.
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                           a)                                                                                      b)

Figure 6: a) load x crack opening and b) load x displacement, considering wn constant and different mesh
resolutions.

In Figure 7, lc is taken the characteristic length of each mesh. We observe that mesh effects
practically disappear. In the case of the Figure 7, α=0.333, again. Another interesting outcome
of the Figure 7, is that it somehow shows that post-peak interface properties do not need to be
a function of the FE size. It is claimed by some authors (e.g. Iturrioz and Riera, 2005) that
post-peak constitutive equation for concrete should be dependent on FE size. At least in the
present way of considering concrete fracture, it does not seem necessary to consider such
dependency.

  
                                a)                                                                                      b)

Figure 7: a) load x crack opening and b) load x displacement, considering wn according equation  (15) and
different mesh resolutions.

4.2 Size effects

Two cases are considered here and compared with the literature. Both are three-point
bending test, see Figure 4.
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In the first case the geometric parameters are presented in Table 1. Concrete properties are
E=27600 MPa, ftm=2.9 MPa and ν=0.20. Cohesive surface properties are φn=66,27 N/m,
σmax=8.7 MPa, lc=6 mm and α=1.

Specimens S (mm) D (mm) B (mm) L´(mm) a (mm) a/D Ho (mm)
SH1 95 38 38 6 6 0.1667 3
SH2 190 76 38 12 12 0.1667 3
SH3 380 152 38 25 25 0.1667 3
SH4 760 304 38 50 50 0.1667 3

Table 1:Geometry of the first case.

Table 2 shows a comparison between experimental results (Shah et al., 1995) and the
present theory.

Specimens D Maximum load (kN) results, Shah et al.
(1995)

Maximum
load (kN)

Difference
%

(mm) Beam 1 Beam 2 Beam 3 Mean Present study
SH1 38 1.80 1.81 1.85 1.820 1.81 -0.55
SH2 76 3.01 3.14 3.16 3.103 3.65 +17.63
SH3 152 4.40 4.63 4.88 4.637 4.97 +7.18
SH4 305 7.73 7.74 7.89 7.787 7.80 +0.17

Table 2:Experimental results (Shah,1995) and the present theory for the first case.

A general good fitting was obtained. However a more complete comparison was necessary
in order to verify the present theory, so a second case was studied and results compared with
Jenq and Shah (1985b). In this case geometry parameters are presented in Table 3. Concrete
and cohesive surface properties are in the Table 4. Observe that experimental elastic modulus
(E) changes with size (Jenq and Shah 1985b).

Specimens S (mm) D (mm) B (mm) L´(mm) a (mm) a/D Ho (mm)
JS1 305 76 29 12 25 0.333 1
JS2 610 152 57 25 50 0.333 1
JS3 914 229 86 38 76 0.333 1

Table 3:Geometry of the second case.

Specimens fck (MPa) Ec (MPa) φn (N/m) lc (mm) σmáx (MPa) α 
JS1 25.2 21.93 100 6 3.4259 0.125
JS2 25.2 23.34 100 6 3.4259 0.125
JS3 25.2 34.92 100 6 3.4259 0.125

Table 4: Concrete and cohesive surface properties of the second case.

Figure 8 shows the complete curve load x crack opening together with experimental curves
(sub-index indicates the cohesive law used in the numerical model: H for Hillerborg et al., E
for Xu (1999) and C for the CEB-FIP, 1993).Some interesting conclusions can be addressed
inspecting the figure. First, the size effect is, indeed, captured. It can be noticed that curves
load x crack opening are not similar, indicating the change in failure behavior as size changes.
For the greatest body, load decrease much faster than in the smallest body, indicating the
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trend of a sudden or brittle behavior when the body size is increased. Actually, the smallest
body presents practically a ductile fracture.

Figure 8: Load x crack opening compared with Jenq and Shah (1985b).

Second, the post-peak part of cohesive surface constitutive law does have an important
effect not only in the post-peak behavior of the load x crack opening curve but also on the
peak load itself. In all cases, Hilleborg et al. (1976) induce a somewhat more brittle behavior,
with greater peak load and more abrupt drop overall (this behavior is emphasized in Figure 9).

Figure 9: Various post-peak behaviors compared (case JS1, according Tables 3 and 4).
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The more brittle behavior induced by Hilleborg et al. (1976) when compared to
experiments, can be associated to the absence of energy fracture for large openings, when
bridging and interlock play an important effect. The CEB-FIP Code Model (1990) and Xu
(1999) present a greater toughness, especially at large openings. In general Xu’s constitutive
law fits better experimental results. A much better curve fitting with experiments can be
obtained if ws and σs (equations 6 and 7) are changed in the CEB-FIP Code Model.

5 CONCLUDING REMARKS

A cohesive model based on Hilleborg et al. (1976) principle of “fictitious crack model”
was presented. The cohesive model must have also an elastic part, here called the pre-peak
part of the cohesive constitutive law. It is here demonstrated, maybe for the first time, that:

• The elastic opening at peak traction (wn) must be function of the characteristic length
of FEs at the fracture zone.

• wn can not be considered a constant, which can lead to a fake or numerical
embrittlement of the concrete, in a limit case.

Regarding the post-peak part of the constitutive law:
• The curve proposed by Hilleborg et al. (1976) itself is not the best for concrete, mainly

because it does not take into consideration the toughening effect of bridging/interlock
for large crack openings.

• The post-peak curve with best fitting seems to be the one proposed by Xu (1999).
Evidences show that cohesive surface properties such as peak traction σmax and fracture

energy φn should be size dependent (see for instance Carpinteri et al. 2003). Even though this
dependency was not explicitly considered here, still a good fitting was obtained with
experiments. However the authors recognize the importance of the subject and a study in this
regard is ongoing by them.
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