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Abstract. The cohesive surface method has been used végnsin numerical simulations of fracture
of metals and brittle materials. However, the ctumste cohesive laws (or traction versus crack
opening relationships) used for these materialsnateadequate to simulate the concrete behavior
because they do not take into consideration effettéed to the size of the finite elements andioth
phenomena that characterize concrete rupturedevglopment of a process zone at the crack tip).

In this work, some well-known post-peak constitatigquations for the cohesive surface are
explored. The shape of these equations changeslovesults and it seems to be linked with the
development of the process zone, so the shapeeanrisidered a material property as the fracture
energy. However, the present work also exploreetfeet of the pre-peak part of the cohesive law. |
is demonstrated that this part of the curve mugselsed to the size of the finite elements, ineor
have a mesh independent result.

As practical applications, cases in Mode | of pggigon are presented (three-point bending),
where the effect of the post-peak relationship @ad|versus crack opening is shown. It could be
concluded that post-peak relationship is importantefine maximum rupture load. Besides that,
different sizes of bodies were analyzed and thée sgfdect of concrete was captured (the smaller the
body, the greater the toughness). A good fit withrdture results was obtained. It is demonstrated
that results are mesh independent, depending ompréwpeak part of the cohesive law. Concrete
properties are not considered random fields.
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1 INTRODUCTION

Applications of the one-parameter Linear Elastiadture Mechanics (LEFM) to concrete
are restricted due to the presence of the proaess. Zhen, two or more fracture parameters
have been proposed to characterize concrete, stidh the “fictitious crack model” of
Hilleborg et al. (1976), the “crack band model” B&zant and Oh (1983) and the “two
parameters” (¢, CTOD,) method of Jeng and Shah (1985a), among manysother

The present work will focus on Hilleborg et al. ade implemented in a Finite Element
(FE) context, where fictitious cracks are considdsetween each FE of the domain through
cohesive zones or surfaces. The model for thesesznrepresented by a function of the
tractions in terms of separation distances betwieEnfaces, which corresponds to crack
opening. According to de Borst et al. (2006), whde ductile fracture the most import factor
of the cohesive surface model seem to be the éesiseéngth, for quasi-fragile material, where
micro-cracking plays an important factor, the shapthe stress-opening relation of the crack
appears to be more significant. Chandra et al.ZR@®o claim that shape of stress-opening
relation can not be neglected in the analysis afsgfragile materials. Finally, Tijssen et al.
(2000) reported that fracture path of concrete &nig determined by the initial slope of
softening of the cohesive law. In fact, experimergaults indicate that a concave curve with
a steeper decline after the peak is the most atke(Rats, 1988).

Then the fundamental material parameters in a cadhesodel for concrete are the fracture
energy and the shape of the traction versus crpeking. Although is polemic to say that
fracture energy is a property in concrete strustaige to size effects, Rots (1988) argued that,
in general, objections against the use of the dracenergy as a concrete property are
exaggerated, since has been reported that increaseéze up to eight times do not change
fracture energy more than 20 percent.

One aspect of the application of cohesive surféa@geoncrete that is rarely mentioned is
the pre-peak or elastic part of the constitutive.l&s all such methodologies follows the
basic principles of Barrenblat (1962) and Dugdal6(), this elastic part must exist. In Rots
(1988) it is mentioned only that this part is aidmily small. In applications to fragile and
ductile materials, the elastic part is consideredaterial property (see Needleman, 1987 and
Xu and Needleman, 1990). It was already demonsiritat these constitutive laws are not
suited to concrete (see Lens et al. 2006). As Wiesee later, the elastic part must be mesh
dependent in quasi-fragile materials to eliminagsimdependency.

The constitutive laws used in this work for the esiie surfaces are presented and
described in chapter 2; implementation in a FE &awark is described in chapter 3; chapter 4
shows applications of the methodology for threesphiending cases, mode | propagation.
Concluding remarks are done in chapter 5.

2 CONSTITUTIVE LAWS FOR COHESIVE SURFACE

As mentioned above, to represent crack behavioecessary to establish a relationship
between tractions and opening of the surfaces.dhown that when surfaces start to separate
from each other, tractions increase reaching a pahkle. Afterwards tractions decrease until
reach a zero value for crescent opening. For tipenimg the surfaces are considered
fractured. This behavior occurs in different scal@em separation of atomic planes, as
described for instance by Rose et al. (1981), tormacale at the crack tips, as described by
Barrenblat (1962), Dugdale (1960). Depending onsitede or material being represented by
separation of the surfaces, different peak trastipeak and final openings are used. A vast
collection of such values can be found in Chandral.(2002). In the case of concrete, the
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subject of this work, we separate the constitutave of cohesive surfaces in two parts: the
post-peak and the pre-peak part as follows.

2.1 Post-peak of the constitutive law

Three shapes of post-peak constitutive laws anesepted below: Hillerborg et al. (1976),
CEB-FIP Code Model (1993) and Xu (1999). Thesetimiahips are implemented in the
present work in the cohesive surface context aedlapicted in Figure 1.

Traction

Hilletborz { 1976)
— = = - = CERB-FIP (1983}
- = = = Xu (1999)

Wn W, Wolm W,

: Crack Opening

Figure 1: Post-peak cohesive surface constituéive |

The shape of post-peak traction-opening seems liokel with the development of the so
called process zone where many complex phenomemna sach as micro-cracking, interlock
bridging, friction between surfaces and agregates, The area under the curve is considered
the fracture energyg) and the maximum tractiorogay) is related to the tensile strength.
Interesting that the shape of post peak has anrianoinfluence on results (such as the
maximum load achieved), as will be seen in chapterhere are some practical indications
that this curve should be steeper for smaller oeidue to intense micro-cracking, and
much less steep for large openings due to bridgimgterlock effects (Rots, 1988 and Tijssen
et al. 2000). Then, theoretically, among the tloages studied, the curve of Hilleborg et al.
would be the less suited for concrete. This issllldoe& addressed again in chapter 4.2.

The equation for normal tractioo) for Hilleborg et al. post-peak is:

0]

n

_A(Wn’"m-w) :>(Wn <wswn’”m), (1)

(Wn,lim 'Wn)

where w is the normal opening, the elastic opening and,w, the final opening (where the
interface cracks), that can be calculated as falow
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Wn,Iim :(O_Zi-l_wnj' (2)

max

The equations of the bi-linear model of CEB-FIP9Q3pis described below:

o= B ) {0185,0) > (< s ). ®
= 08 ) = (w<wsw), @

Ws andgs are the intermediate values shown in Figure 1lenthie final opening is named-w
These values are calculated as follows:

w, =% (5)
O-ma)(
0,=0,1%, .. (6)
w, =2 015w +w 7)
o

max

Finally, the exponential Xu (1999) expression igegi below:

0, = O-maxexp( _n(WV-VWn j} = (Wn < ws WC) ! (8)
where,
n=o.[1-exp(-o;)], 9)
(dmax)0,9
=\ 11
o, 5 (11)
f 0,7
A=10-| - | 10
(Zoj (10)
and
w,=a, (12)
o

dmax (Mm) is the maximum aggregate diameter apdMPa) the characteristic compressive
strength.
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The fracture energy is represented here by the nommk of separation of the cohesive
surface,@, since Mode Il and Ill of propagation are not adased.@, depends on several
factors, but the most representative (Xu,1999) fre and ¢hax (fom is the average
compression strength and is takengs8 MPa). Then, when experimental information about
fracture energy is not availabl@, can be determined by Equation (13) (see Xu,1999) as
follows (dnaxin mm and §, in MPa).

0.95 / ¢ 0.7
9, =0,0204+ 0,0056= [ng (13)

Based on previous studies (Lens et al., 20606) should range from 1 to 3 times the average
tensile strength of the concretgy. fActually this range was also used by Carpintérale

(2003). According to these authors the relatigaXx fim depend on the size of the body{x
=fim for large specimens amghax=3 x fim for small specimens).

2.2 Pre-peak of the constitutive law

In the curves showed in Figure 1, the pre-peakiguois not depicted (crack opening from
zero to W) This part of the curve is a non-dissipative etagiart of the surface opening.
According to Rots (1988), wshould be a small value in order that the elagtiormation of
the cohesive surface be negligible compared to irmamtn elastic deformation. More
important, we believe wshould be a size dependent dimension, in ordeaviud the
introduction of an undesirable size effect, as ctepli in Figure 2.
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Fig. 2: Scaling of elastic opening, with size.

We propose here that,

0)

W, =0 —| 14
T, (14)

or
w, =0¢g .o (15)

wheregmax = Omax/E IS the elastic deformation of the continuumbhet peak load (in Mode 1)
and | is its characteristic lengtlmn should be a small value (in generet< 1). In a FE
context, | is taken as the characteristic length of the FEhatfracture zone. The use of a
constant wvalue would introduce an undesirable mesh depeaden results when cohesive
surfaces are used between all FE. In a successiveshing process, still for,veonstant, no
matter this value is small, at certain point thensef all wy will be greater than the elastic
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volumetric displacements, which does not make seAsether effect, maybe even more
drastic, is the induction of a fake pure brittldn@eior. Imagine a case as depicted in Figure 3.
According to Carpinteri (1989), a transition frormrmal softening or quasi-fragile behavior
to catastrophic softening occurs wh&pi I is greater than w As in the cohesive surface
method an elastic part is introduced, this condisbould be replaced ®.x Ic + W, greater
than w. This effect is shown in Figure 3, below.

(6)
A
Omax [F~—————~~~7 |
a) i
i
I
i
I
i > w
o Emax lcHWh We
A
Omax [[~7° """ 4
b)
> w
Emax lcHWn = W
(6)
A
Omax [T~ 77 7777777777777 T o |
I I
g e
I I
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I I
I I
/
> w
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Fig. 3: Overallo x w behavior of a bar in Mode I. Transition fromegi-brittle behavior (case a) to brittle or
catastrophic behavior (cases b and c), induceddrgased elastic displacement.

When transition described above is due to increlsg it is the well known size effect in
concrete. However, if this effect is caused hy Wvrepresents only a numerical effect. This
effect should not be confused with the spurioushhsensitivity that occurs in smeared crack
approaches, as described in Carpinteri et. al.3200

3 FINITE ELEMENT IMPLEMENTATION

The fracture behavior is here analyzed using the Eifether with cohesive elements (Xu
and Needleman,1994) throughout the whole continmmsidering an interface openingy{

in bi-dimensional problems{,T} tractions {n} the normal vector and {t} the tangent vector to
the interface, it can be defined that:

w={A}.{n},
o={T}{n}

(16)

and
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z={n} {1,
t={T} {1},

(parenthesis {.} are used to represent vectors larattkets [.] to represent second order
tensors). The cohesive normal tractionarises as a result of the opening according to
equations (1), (3-4) and (8), depending on the-peak relation used (a linear equation is
used for the pre-peak part). A linear equationsisdufor tangential tractiorts o andt can be
considered corotational tractions and then objeatelated to rigid body rotations, since they
are integrated in the local system (n,t).

In this work the concrete is considered an eladbokean material. Damage can occur

only by separation of interfaces in tension. No pogssive damage is considered. The
O
objective Jaumann stress r%te} Is related to constitutive equation as follows:

[3} =[w][p°], (18)

Where[LP] is the Hooke tensor and fPthe rate of deformation. The use of Jaumann stres

rate in equation (18), together with corotationahesive tractions (equations 16 and 17)
enable the use of the formulation in large displaeets. The Principle of Virtual Work
including cohesive tractions, can be written aglgbimrces are neglected):

(17)

[[d]: [aéu}dv j {3} ds+j {8} ds= ¢ (19)

Constant triangular FE elements are used. The iequabove is integrated in each FE
volume Q using one Gauss point, where {U} are nodal disgphaents, {F} are prescribed
forces on boundarly;. Tractions {T} are calculated in all FE faces usiogr Gauss points;
integration is performed over the crack surfageAn implicit Newton-Raphson scheme is
used to solve the corresponding equilibrium equatio

4 NUMERICAL EXPERIMENTATION

Examples of application of the theory are dividedwo parts. First it is shown how mesh
change results. Afterwards, size effects in coecpgéces are investigated and results are
compared with literature.

4.1 Mesh dependency

In this section a three-point bending test is usedest mesh sensitivity. The size and
boundary conditions are defined in the Figure oWewhere S=190 mm; a=12 mm; D= 76
mm, L'= 12 mm, Ho=1 mmAU=0.002 mm and B=38 mm. Concrete properties are384Q2
MPa, £=25.2 MPa an@=0.20. Cohesive surface properties @€l00 N/m,0ma=1.8 MPa
anda=0.333. Three meshes are used here according twoeFig
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Figure 4: Geometry and boundary conditions.
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Figure 5: a) Coarse mesh ; b) medium mesh ; c)rfiash.

Figure 6 shows results of load x crack opening laad x displacement, considering, w
constant, where+12 mm andx=0,333. It can be observed a severe dependen@goits on
mesh size, being the fine mesh much more flexitdm tthe coarse mesh, as expected. Also
can be noticed that the fine mesh has the tendenbghave more brittle than coarse mesh,
due to the effect mentioned in chapter 2.2 and shiowFigure 3 (peak load moves toward a
large opening/displacement). This effect tendsisagpear for smaller values of However,
if mesh is also refined, the problem persists.
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Figure 6: a) load x crack opening and b) load pldisement, considering,weonstant and different mesh

resolutions.

In Figure 7, { is taken the characteristic length of each mesh.o¥serve that mesh effects
practically disappear. In the case of the Figure=0.333, again. Another interesting outcome
of the Figure 7, is that it somehow shows that4pestk interface properties do not need to be
a function of the FE size. It is claimed by soméhats (e.g. Iturrioz and Riera, 2005) that
post-peak constitutive equation for concrete shdmddlependent on FE size. At least in the
present way of considering concrete fracture, gsdaot seem necessary to consider such
dependency.

2 2r
15} 151
~ T = |
£ [ 2 L
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0.5 05
I I I I 1 I L 1 L 1 L 1 T TN N NN [N NN TN NN T NN TN N TN N AN N TN SO B NN
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Crack Opening (mm) Displacement (mm)
a) b)

Figure 7: a) load x crack opening and b) load pldissment, considering,vaccording equation (15) and
different mesh resolutions.

4.2 Size effects

Two cases are considered here and compared withiténature. Both are three-point
bending test, see Figure 4.
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In the first case the geometric parameters areepted in Table 1. Concrete properties are
E=27600 MPa, f{=2.9 MPa andv=0.20. Cohesive surface properties gxe66,27 N/m,
Omax=8.7 MPa, =6 mm andx=1.

Specimens S(mm) D(mm) B(mm) L' (mm) a(mm) a/D Ho (mm)
SH1 95 38 38 6 6 0.1667 3
SH2 190 76 38 12 12 0.1667 3
SH3 380 152 38 25 25 0.1667 3
SH4 760 304 38 50 50 0.1667 3

Table 1:Geometry of the first case.

Table 2 shows a comparison between experimentaltseé€Shah et al., 1995) and the
present theory.

Specimens D Maximum load (kN) results, Shah et al. Maximum  Difference
(1995) load (KN) %
(mm) Beam1l Beam?2 Beam3 Mean Present study
SH1 38 1.80 1.81 1.85 1.820 1.81 -0.55
SH2 76 3.01 3.14 3.16 3.103 3.65 +17.63
SH3 152 4.40 4.63 4.88 4.637 4.97 +7.18
SH4 305 7.73 7.74 7.89 7.787 7.80 +0.17

Table 2:Experimental results (Shah,1995) and thegmt theory for the first case.

A general good fitting was obtained. However a nmomplete comparison was necessary
in order to verify the present theory, so a secoask was studied and results compared with
Jeng and Shah (1985b). In this case geometry péeesrere presented in Table 3. Concrete

and cohesive surface properties are in the Tab@4erve that experimental elastic modulus
(E) changes with size (Jeng and Shah 1985b).

Specimens S (mm) D(mm) B(mm) L (mm) a(mm) a/D Ho (mm)
JS1 305 76 29 12 25 0.333 1
JS2 610 152 57 25 50 0.333 1
JS3 914 229 86 38 76 0.333 1

Table 3:Geometry of the second case.

Specimens  &(MPa) E(MPa) @ (N/m) lc(mMm)  omax(MPa) a

JS1 25.2 21.93 100 6 3.4259 0.125
JS2 25.2 23.34 100 6 3.4259 0.125
JS3 25.2 34.92 100 6 3.4259 0.125

Table 4:Concrete and cohesive surface properties of thenslecase.

Figure 8 shows the complete curve load x crack imgetogether with experimental curves
(sub-index indicates the cohesive law used in timaarical model: H for Hillerborg et al., E
for Xu (1999) and C for the CEB-FIP, 1993).Someiasting conclusions can be addressed
inspecting the figure. First, the size effect igjded, captured. It can be noticed that curves
load x crack opening are not similar, indicating thange in failure behavior as size changes.
For the greatest body, load decrease much faster iththe smallest body, indicating the
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trend of a sudden or brittle behavior when the beidg is increased. Actually, the smallest
body presents practically a ductile fracture.
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Figure 8: Load x crack opening compared with Jerdj$hah (1985b).

Second, the post-peak part of cohesive surfacetituthvee law does have an important
effect not only in the post-peak behavior of thadoc crack opening curve but also on the
peak load itself. In all cases, Hilleborg et aB{&) induce a somewhat more brittle behavior,
with greater peak load and more abrupt drop ovéta behavior is emphasized in Figure 9).
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0 0.05 0.1 0.15 0.2 0.25
Crack Opening (mm)

Figure 9: Various post-peak behaviors compared(d84, according Tables 3 and 4).
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The more brittle behavior induced by Hilleborg dt é€976) when compared to
experiments, can be associated to the absenceeof\efracture for large openings, when
bridging and interlock play an important effect.eTGEB-FIP Code Model (1990) and Xu
(1999) present a greater toughness, especialprge lopenings. In general Xu’s constitutive
law fits better experimental results. A much bettarve fitting with experiments can be
obtained if w andos (equations 6 and 7) are changed in the CEB-FIReGoalel.

5 CONCLUDING REMARKS

A cohesive model based on Hilleborg et al. (197@qaiple of “fictitious crack model”
was presented. The cohesive model must have alstaatic part, here called the pre-peak
part of the cohesive constitutive law. It is heeendnstrated, maybe for the first time, that:

* The elastic opening at peak traction,\\mmust be function of the characteristic length

of FEs at the fracture zone.

* W, can not be considered a constant, which can leaa tfake or numerical

embrittlement of the concrete, in a limit case.

Regarding the post-peak part of the constitutive la

e The curve proposed by Hilleborg et al. (1976) ftsehot the best for concrete, mainly

because it does not take into consideration thghening effect of bridging/interlock
for large crack openings.

* The post-peak curve with best fitting seems tohieedine proposed by Xu (1999).
Evidences show that cohesive surface propertiels aagpeak tractiom.x and fracture
energy, should be size dependent (see for instance Carpettal. 2003). Even though this

dependency was not explicitly considered here] stilgood fitting was obtained with
experiments. However the authors recognize the itapce of the subject and a study in this
regard is ongoing by them.
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