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Abstract. Prediction of life in fatigue is still based on purely phenomenological or empiric
relations, in most cases in Engineering practice. The Paris’ law is one of the few consolidated
tools to calculate propagation velocity of fatigue cracks based on Fracture Mechanics,
although being also a phenomenological relation.

The cohesive interface method has been used intensively lately as a tool to simulate
cracking process in metals with great success. More recently, few attempts to use this method
to predict life in fatigue have been done. Such works follow the general idea that during the
loading-unloading, cohesive law should present some hysteresis, function of parameters that
measure damage during cycling process.

In this work, the cohesive surface method will be used as an attempt to model the rupture
in fatigue. However, dissipation during cyclic loading in the present work will not introduce
new damage parameters, being a residual opening after unloading the only source of
irreversibility. Such hypothesis is based on the fact that oxidation films develop after opening.

The unloading path may have also an important effect on monotonic crack propagation,
since local unloading, near the crack tip, are expected.

To simulate propagation, the cohesive surface was implemented in a Element code.
Preliminary results for a 7075-T6 aluminum show good data fitting, indicating that the
hypothesis is feasible. In the examples analyzed, only Mode I of propagation was considered.
Plastic strains on the crack tip were small, indicating the validity of the Linear Elastic Fracture
Mechanics. Dynamic and monotonic crack propagation are also considered here, showing that
the local unloading near crack tip may have an important effect on the kinematics of the
propagation.

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr01471-1482
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+

Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

1471



1 INTRODUCTION

The propagation process of fatigue cracks can be divided in nucleation, growth and final
fracture (stage I, II and III, respectively). Nucleation depends on microscopic defects as the
PSBs (Persistent Slip Band) and plastic strains, being then controlled by shear stresses. The
crack growth velocity (da/dN; a = crack length, N = number of cycles) is very low in this case
or visible only at atomic level. In the growth stage, propagation is a function of the variation
of the stress-intensity factor (∆KI=KI

max-KI
min), being the velocity da/dN increased

substantially in this stage. In this case the propagation occurs according to the Paris’ law:

m
I )K(C

dN

da ∆= (1)

since few conditions are fulfilled, as the validity of Linear Elastic Fracture Mechanics (LEFM)
and application of cyclic loading (no amplitude variation). C e m are material constants.
Several theories have been formulated to determine such constants, among them the cohesive
interface methodology, which is the focus of this work.

The use the cohesive interface methodology with return to origin during unloading does not
lead to fatigue (Andrés et al. 1999 and Nguyen et al. 2000). In this case a plastic shakedown
occurs after few cycles and the crack opening stops. Then the methodology will work after
some irreversibility on traction/crack opening relation is introduced. Basically, irreversibility
can be introduced by two ways: i) considering a residual opening caused, for instance, by
oxides as in Deshpande et al. (2002) and ii) using a cohesive law that presents hysteresis as in
Nguyen et al. (2000). In the latter case, a phenomenological damage theory must be
formulated in order to update fracture parameters as a function of the number of cycles.

The presence and formation of oxides seems to have fundamental importance on the
process of crack growing. Indeed, Peloux (1970), suggested that in vacuum, cyclic loading
was reversible, or fatigue did not occur. Later on, it became clear that in the absence of oxides,
propagation velocity of fatigue cracks was decreased in more than one order of magnitude (see
Suresh, 1998). The reason oxides produce such effect is linked to the irreversibility they
induce, avoiding that the crack returns to the same opening it had before loading/unloading
cycle. According to Do et al. (1997), a layer of oxide up to 6 nm has been predicted for
aluminum, on normal atmospheric conditions. However, this value can be increased
significantly by the friction between crack surfaces (fretting). For low values of ∆KI and ratios
R = KI

min/KI
max, near zero, when the crack faces are too close, Suresh et al (1981) found values

of oxide layer in fatigue cracks up to twenty times thicker than the layers developed in new
surfaces exposed to the same humidity.

Figure 1: 3D tomography images of fatigue crack surfaces in a 2xxx aluminum series, according to Kamp et
al. (2007). Left low ∆K I, right high ∆K I
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On the other side, a significant superficial roughness can be found in fatigue crack surfaces,
as shown in Figure 1 (see Kamp et al., 2007), even for high values of ∆KI. Due to roughness,
crack surface friction and then the enhanced development of oxides due to fretting may occur
in the whole fatigue process, although less pronounced at large ∆KI.

To consider a cyclic degradation of cohesive surface stiffness and peak traction is the other
way of introducing fatigue using the cohesive interface methodology. Examples of such
methodologies can be find in the works of Ural et al. (2007), Nguyen et al. (2000), Roe and
Sigmund (2003), etc. These methodologies need the definition of new state variables, to be
determined experimentally, besides the ones used in the monotonic fracture model.

The aim of the present work is to explore the cohesive interface methodology using the
first hypothesis (oxide formation), verifying the range of ∆KI and R it gives results compatible
with experiments. Also, Paris’ constants will be calculated based on numerical results. The
material used will be a 7xxx aluminum series. The effect of unloading will be also
investigated in a fracture case where monotonic loading is applied. In this case a PMMA plate
subjected to dynamic loading is investigated. In item 2 is presented the cohesive interface
methodology; in item 3 is described the implementation in a finite element context. In item 4,
applications to cyclic and monotonic loading are studied, being final remarks made in item 5.

2 COHESIVE INTERFACE METHODOLOGY

The fracture behavior is here analyzed using the Finite Element Method (FEM) with
cohesive elements placed between FEs (as in Xu and Needleman, 1994). Constitutive
equations need to be defined for cohesive elements. Then for an interface opening {∆} in a 2-
D domain, traction {T}, a normal vector {n} and a tangent vector {t} to the interface, it can be
defined that:

{ }{ }
{ }{ }n.TT

n.

n

n

=
∆=∆

and
{ }{ }
{ }{ }t.TT

t.

t

t

=
∆=∆

. (2)

A normal cohesive traction relates to normal opening according to the phenomenological
relation below (considering null tangential opening):

n n n
n 2

n n

T exp
φ
δ δ

 ∆ ∆= − − 
 

(3)

Equation (3) has a peak value (σmax) for a normal opening ∆n = δn; φn is the fracture energy
for Mode I of propagation. The dissipated energy during the crack opening is obtained
integrating (3) in ∆n (or the area under the curve Tn x ∆n) . For ∆n >> δn., the area is equal to
fracture energy φn  and the cohesive traction Tn is zero, which indicates fracture of the
interface. σmax is around 3 x σy where σy is the yielding stress, for metals. For fragile materials,
σmax is around E/10 where E is the longitudinal elastic modulus.

Deshpande et al. (2002) proposed an irreversible cohesive law where, in the case of
unloading after the peak stress, the relation followed is no longer exponential, becoming linear
and with a residual opening for null traction, according to Figure 2. This occurs due to oxide
formation after crack/interface opening. Then, if the interface is loaded monotonically until an
opening ∆a

nmax, the relation Tn x ∆n followed is exponential. If at this point occurs an
unloading, the return will not occur by the exponential relation, but by the linear law,
according to Figure 2. The result is a residual opening for null traction, which gives an
irreversibility in the cycle that may lead to fatigue. For a new loading, the relation followed is
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linear until ∆a
nmax is reached, when again the exponential curve is obeyed, until a new

unloading point (∆b
nmax) is achieved. The relation that defines traction during unloading is

given by equation (4):

n
n

max
n

e
T ∆

δ
σ

α−=                                                             (4)

where α is a factor that here will be changed from 0,1 to 20, which corresponds to consider
different levels of residual openings or different layer thickness of oxides (in Deshpande et al.
2002 α is constant and equal to one).

δ n

-Tn

∆n

∆n max

∆

a

maxσ

n max
b

Figure 2: Irreversible cohesive law with residual opening.

Tangential traction (Tt) follows uniquely an exponential law (see Xu and Needleman,
1994), then no irreversibility is considered in this component.

3 FINITE ELEMENT IMPLEMENTATION

The rate of deformation [D] for the material can be written as (assuming small elastic rate
of deformation):

[ ] [ ] [ ]ple DDD += (5)

where [De] is the elastic part and [Dpl] is the plastic part of the rate of deformation. To
calculate [Dpl] a flow-rule/von Mises type constitutive law is used

[ ] [ ]ND pl Λ= (6)

where,

[ ] [ ]
[ ] [ ]σ′⋅σ′

σ′
=N (7)

and

[ ] [ ]







 +

⋅=Λ

G

h
DN

3
1

(8)

[ ]σ ′  is the deviatoric stress, h is the hardening modulus and G is the shear modulus. 
yσ  is
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updated using the evolution equation below:
pl0

yy hε+σ=σ (9)

where σy
0 is the initial yield stress and plε is the equivalent plastic strain. Objective stress rate






 ∇
σ  is calculated as

[ ][ ]DΨ=




 σ
∇

(10)

where [ ]Ψ  is the constitutive relationship that result from equations (6) to (9). Equation (10)
together with co-rotational cohesive traction (equation 2), enable the use of the formulation in
large displacements. The Principle of Virtual Work including cohesive traction, can be written
as (with body and inertial forces neglected):

[ ] { } { } { } { }
f f

U
: dV F . U dS T . dS 0.

XΩ Γ Γ

∂δ σ − δ + δ∆ = ∂ 
∫ ∫ ∫ (11)

Bi-linear quadrilateral FE elements are used. The equation above is integrated in each FE
volume Ω using one volumetric and four deviatoric Gauss points, where {U} are nodal
displacements, {F} are prescribed forces on boundary Γf. Traction {T} is calculated in all FE
faces using four Gauss points; integration is performed over the crack surface Γt. An implicit
Newton-Raphson scheme is used to solve the corresponding equilibrium equations.

In the cases where inertial forces can not be neglected the explicit Central Differences
Method is used to solve equilibrium equations.

4 NUMERICAL EXPERIMENTATION

Examples of application of the theory are divided in two parts. First it is shown the effect
of cyclic loading on crack propagation (fatigue) in an aluminum specimen, neglecting inertial
effects. Afterwards a case of impact, with monotonic loading is tested in order to verify the
effect of unloading on crack propagation.

4.1 Fatigue test

The example modeled is a 7075-T6 aluminum specimen in plane strain. The aluminum is
considered elasto-plastic with non-linear hardening by saturation. The properties are:
longitudinal elastic modulus E=72000 MPa; poisson modulus ν=0.33; yielding stress σy =505
MPa; ultimate strength σu=570 MPa; ultimate strain εu=0,11.

To define the non-linear hardening by saturation (see equation 12) is necessary to define
the constant η, that was adjusted to η=101,9 (this value makes that the ultimate strain εu

occurs at the ultimate stress σu).

)]exp(1)[(
pl

eue εησσσσ −−−+=                                         (12)

where 
pl

ε  is the equivalent plastic strain. The cohesive interface properties are defined as
follows: fracture energy φn=7,74 N/mm; maximum normal traction: σmax=3 x σy=1515 MPa;
characteristic length: δn=1,88x10-3mm. The geometry is described in Figure 3:
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Figura 3. Specimen geometry (L=40 mm; W=20 mm; a=5 mm)

Half of the piece was modeled, using symmetry. The crack has a length a=W/4, located at
x=0. Interface elements where placed only in a straight line in the crack direction, from the
crack tip to the end of piece. 20.000 bi-linear quadrilateral FEs where used, with characteristic
length of 0,1 mm at the crack zone. 150 interface elements were used. The piece was
subjected to prescribed force in x=L/2 and x=-L/2, from y=0 to y=W. Analysis were done for
different loading functions but always linear, according to Figure 4 (in the figure, loads appear
converted in remote applied traction. It was admitted that applied traction is uniform and
obtained dividing loads by area).

Figura 4. Cycles of loading and unloading.

In this case, the stress-intensity factor can be calculated as:

4342143421
min
I

max
I K

min

K

maxI aYaYaYK πσ−πσ=πσ∆=∆                                            (13)

The interface is considered cracked for ∆n ≥ 5δn. The static force necessary for propagation
is the force that produce a stress-intensity factor KI equal to its critical value KIC. Considering
material data and using equation (14), KIC can be calculated as 25 MPa.m1/2.

)1(

E.
K

2
n

IC ν−
φ

=                                                                (14)

The value of the stress-intensity factor KI can be obtained by equation (13) (for the case in
study, Ewalds e Wanhill, 1986, define the value of the geometric function Y). For KI=KIC, the
theoretical force necessary to begin propagation is 2624 N. The numerical force obtained was
2626 N, which indicates that discretization was correct and the LEFM was valid.

The Table 1 below shows the results of propagation obtained in cyclic loading, for different
values of ∆K, R and α. The value of α, used in equation (4), determines the declivity of
unloading curve. The greater the α, the greater the declivity and a larger residual opening is
obtained. Then a relationship of α with the thickness of oxide can be established: the greater
the α, the greater the oxide layer.

σmax

σmin

t

σapplied

1476



R 0,0 0,0 0,0 0,111 0,111 0,167 0,222

∆KI 21,25 22,5 23,75 21,25 20,0 18,75 17,5

α 5,0 1,0 0,35 0,5 1,0 1 0,5

da/dN 0,01 0,022 0,029 0,029 0,013 0,007 0,01

Tabela 1: Crack propagation velocity (∆KI  in MPa m ; da/dN in mm).

Points of Table 1 are plotted in Figure 5, together with experimental data. To obtain a
better fitting with experiments, in general it is necessary to increase α with ∆K. Then the
residual opening has the tendency to increase with the decrease of ∆K, which finds
experimental background considering that for low ∆K a greater friction between crack faces
occur, leading to greater oxide build up. The greater friction with low ∆K values occurs
because crack is less opened and roughness is greater (see Figure 1).
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Figura 5. Experimental data [14] x numerical simulation (Al 7075-T6)

Figure 6 shows the relation α x ∆K for best data fitting. It is evident the described trend.
Besides, for greater R (greater average stress), the layer of oxides necessary to fit numerical
with experimental results has the tendency to be smaller due to smaller friction, which is
evident in the figure 5.
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Figura 6. α values fitted for different values of ∆K and R.

4.2 Dynamic test

The example modeled consisted of a PMMA (Polimetacrilate of Metila) piece, in plane
strain under dynamic loading. The material is considered elastic. The external loading is
monotonic crescent, however local unloading may occur at the crack tip, as it will be shown as
follows. The material properties are: elastic longitudinal modulus E=3240 MPa; poisson
coefficient ν = 0.35; specific mass ρ = 1190 kg/m³; normal fracture energy φn=352.3 J/m²;
tangential fracture energy φt=352.3 J/m²; maximum normal traction σmax=E/10=324 MPa;
maximum tangential traction τmax=755.4 MPa; normal characteristic length δn=0.4 x 10-6 m;
tangential characteristic length δt=0.4 x 10-6 m. The geometry is described in Figure 7.

Figure 7: Specimen geometry  (L=6 mm; W=3 mm; a=0.6 mm)

Half of the specimen was modeled due to symmetry. Interface cohesive elements were
placed between all FEs (then, contrary to the previous example, the crack is free to propagate
in all directions). 6400 volumetric FEs (quadrilaterals degenerated into triangles) and 9516
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interface elements were employed. The characteristic FE dimension is 0.0375 mm.
Displacement ux=0 at x=0 from y=-W/2 to y=W/2. The other boundary conditions are defined
by equations below:

( ) ( )∫=
t

0

ysy dttVtu  in 
2

W
y =                                                     (15)

( ) ( )∫=
t

0

yiy dttVtu  in 
2

W
y −=                                                    (16)





>
≤

=
rs

rrs
ys ttforV

ttfort/tV
V                                                    (17)





>
≤

=
ri

rri
yi ttforV

ttfort/tV
V                                                    (18)

where Vs is the impact velocity at the superior boundary and Vi is the impact velocity at the
inferior boundary. tr=0.1 µs. Total analysis time is 10 µs. The interface is considered cracked
for ∆n ≥ 5δn.

The explicit Central Differences Method was used to solve equilibrium equations.
Theoretically maximum time increment (∆tc) for the method (CFL condition, see, for instance,
Hughes, 1990) is lmin/cd where lmin is the minimal dimension of the FE and cd is the velocity of
pressure waves of the material. This critical time-step calculation will work out only if
interface elements are not used. The problem introduced by interface elements is that lmin

value tends to zero. Then the CFL loses its application here and a much smaller time step
must be used in order to guarantee stability. In the case studied here a time-step around 200
times smaller than CFL condition (considering only standard FE) had to be used in order to
guarantee stability.

Due to the absence of oxides and assuming a fragile rupture, unloading will occur to origin,
or no residual opening is assumed. Figure 8 presents results of the simulation for two different
situations: a) unloading following the original exponential relation (equation 3) and b)
unloading following a linear relation (equation 4, α in this case is variable). It can be seen
that, in case “a” a linear propagation occurs for 0.60 mm and then the crack bifurcates, while
for case “b” propagation before bifurcation occurs for 0.75 mm. It can be concluded that a
local unloading at the crack tip effectively took place, even for the monotonically crescent
applied loading. Also, it can be concluded that a dissipation was introduced by the linear
unloading, which permitted that crack propagated without bifurcation for a longer distance.
Also the results presented in Figure 8b are coincident with results presented by Xu and
Needleman (1994).

Different values of Vi and Vs were studied in Machado (2007). The trend described above
was also found.
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Figure 8: Propagation after 8.0 µs. Vs = 5 m/s and Vi = -5 m/s. a) exponential unloading; b) linear unloading.
Vertical line indicates begin of bifurcation for case “a”.
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5 CONCLUSIONS

Direct use of cohesive interface methodology, as originally proposed, is not able to model
fatigue phenomenon correctly, unless some degree of irreversibility be introduced in the
interface constitutive law. In this work, oxide formation after crack opening was considered
the key factor leading to irreversibility. The oxide layer increases crack opening after each
cycle. This effect can also be associated to contact between crack surface peaks and valleys.

The hypothesis leads to numerical results consistent with experiments, at least in the range
studied:

• Relatively high values of ∆K ranging from 0,6 to 0,95 KIC.
• Relatively small values of R ranging from 0 to 0,2.
To obtain a correct fitting with experiments, α had to be changed:
• For larger values of ∆K, smaller values of α had to be used. Physically this hypothesis

means that a greater oxide layer is created for smaller values of ∆K.
• This trend decrease when R, or the average stress, increases.
Experimental evidences subsidize this behavior: For smaller values of ∆K the crack

opening is smaller and superficial roughness is increased (Kamp et al., 2007). Friction
between surfaces should increase in this case, leading to enhanced oxide formation (Suresh et
al., 1981).

Besides oxide formation, a greater superficial roughness can lead to a greater residual
opening due to peak/valley misfit caused by plastic deformation or other effect, after each
cycle. Kamp et al. (2007) showed that misfit of crack surfaces may lead to early surface
contact even for large values of ∆K.

The average value found here for the “m” exponent of Paris’ law (see equation 1), was
approximately 4, which is in accordance with values reported in the literature (Nguyen et al.,
2000 and Deshpande et al. 2002).

If only monotonically crescent loading is considered, it can be concluded that:
• Unloading of the cohesive law is important and can not be neglected.
• A linear path during unloading leads to energy dissipation, even when no residual

opening is introduced. This dissipation was here shown by retardation of bifurcation in
the impact of a fragile material.

As a byproduct of this research, it was concluded also that critical time-step used in the
Central Difference Method, based on minimal FE size, can not be used when cohesive
interface are embedded in a standard FE mesh.
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