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Abstract. Prediction of life in fatigue is still based oarply phenomenological or empiric
relations, in most cases in Engineering practi¢e Paris’ law is one of the few consolidated
tools to calculate propagation velocity of fatigaeacks based on Fracture Mechanics,
although being also a phenomenological relation.

The cohesive interface method has been used ingyndately as a tool to simulate
cracking process in metals with great success. ewently, few attempts to use this method
to predict life in fatigue have been done. Suchksdpllow the general idea that during the
loading-unloading, cohesive law should present sbgsteresis, function of parameters that
measure damage during cycling process.

In this work, the cohesive surface method will Isedias an attempt to model the rupture
in fatigue. However, dissipation during cyclic loagl in the present work will not introduce
new damage parameters, being a residual openimy aftloading the only source of
irreversibility. Such hypothesis is based on the that oxidation films develop after opening.

The unloading path may have also an important effecmonotonic crack propagation,
since local unloading, near the crack tip, are etque

To simulate propagation, the cohesive surface wmaglemented in a Element code.
Preliminary results for a 7075-T6 aluminum show djadata fitting, indicating that the
hypothesis is feasible. In the examples analyzely, dode | of propagation was considered.
Plastic strains on the crack tip were small, intiicathe validity of the Linear Elastic Fracture
Mechanics. Dynamic and monotonic crack propagaii@nalso considered here, showing that
the local unloading near crack tip may have an ntgpd effect on the kinematics of the
propagation.
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1 INTRODUCTION

The propagation process of fatigue cracks can Wdeati in nucleation, growth and final
fracture (stage |, Il and lll, respectively). Nuaien depends on microscopic defects as the
PSBs (Persistent Slip Band) and plastic strainggbinen controlled by shear stresses. The
crack growth velocity (da/dN; a = crack length, Mamber of cycles) is very low in this case
or visible only at atomic level. In the growth stagropagation is a function of the variation
of the stress-intensity factorAK=K,"*K,™"), being the velocity da/dN increased
substantially in this stage. In this case the pgafian occurs according to the Paris’ law:

da m

N C(AK,) 1)
since few conditions are fulfilled, as the validitiyLinear Elastic Fracture Mechanics (LEFM)
and application of cyclic loading (no amplitude iaéion). C e m are material constants.
Several theories have been formulated to detersuok constants, among them the cohesive
interface methodology, which is the focus of thisrkv

The use the cohesive interface methodology withrinetio origin during unloading does not
lead to fatigue (Andrés et al. 1999 and Nguyen.e2@00). In this case a plastic shakedown
occurs after few cycles and the crack opening stdpen the methodology will work after
some irreversibility on traction/crack opening tela is introduced. Basically, irreversibility
can be introduced by two ways: i) considering adred opening caused, for instance, by
oxides as in Deshpande et al. (2002) and ii) ugionghesive law that presents hysteresis as in
Nguyen et al. (2000). In the latter case, a phemohogical damage theory must be
formulated in order to update fracture parameters function of the number of cycles.

The presence and formation of oxides seems to fhavdamental importance on the
process of crack growing. Indeed, Peloux (1970ygested that in vacuum, cyclic loading
was reversible, or fatigue did not occur. Lateribbecame clear that in the absence of oxides,
propagation velocity of fatigue cracks was decreéasenore than one order of magnitude (see
Suresh, 1998). The reason oxides produce sucht effdmked to the irreversibility they
induce, avoiding that the crack returns to the sapmning it had before loading/unloading
cycle. According to Do et al. (1997), a layer ofidex up to 6 nm has been predicted for
aluminum, on normal atmospheric conditions. Howgewis value can be increased
significantly by the friction between crack surfagéetting). For low values dfK; and ratios
R = K™"/K,"® near zero, when the crack faces are too closesBet al (1981) found values
of oxide layer in fatigue cracks up to twenty timtbgker than the layers developed in new
surfaces exposed to the same humidity.

2mm 2mm
A A

Figure 1: 3D tomography images of fatigue crackasgs in a 2xxx aluminum series, according to Katp
al. (2007). Left lowAK|, right highAK;

1472



On the other side, a significant superficial rouggsican be found in fatigue crack surfaces,
as shown in Figure 1 (see Kamp et al., 2007), émehigh values ofAK,. Due to roughness,
crack surface friction and then the enhanced deweémt of oxides due to fretting may occur
in the whole fatigue process, although less prooedrat largéK;.

To consider a cyclic degradation of cohesive serfdfness and peak traction is the other
way of introducing fatigue using the cohesive ifstee methodology. Examples of such
methodologies can be find in the works of Ural lef{2007), Nguyen et al. (2000), Roe and
Sigmund (2003), etc. These methodologies need ¢figition of new state variables, to be
determined experimentally, besides the ones ust#gimonotonic fracture model.

The aim of the present work is to explore the cioieemterface methodology using the
first hypothesis (oxide formation), verifying thenge ofAK, and R it gives results compatible
with experiments. Also, Paris’ constants will bdcatated based on numerical results. The
material used will be a 7xxx aluminum series. TH&eot of unloading will be also
investigated in a fracture case where monotonidifapis applied. In this case a PMMA plate
subjected to dynamic loading is investigated. émit2 is presented the cohesive interface
methodology; in item 3 is described the implemeatain a finite element context. In item 4,
applications to cyclic and monotonic loading atedstd, being final remarks made in item 5.

2 COHESIVE INTERFACE METHODOLOGY

The fracture behavior is here analyzed using thetd-iElement Method (FEM) with
cohesive elements placed between FEs (as in Xu Neetleman, 1994). Constitutive
equations need to be defined for cohesive elem&hemn for an interface opening)in a 2-

D domain, traction {T}, a normal vector {n} and angent vector {t} to the interface, it can be

defined that:
b, ={oHn) b, = {8}
U1 B 108 “

A normal cohesive traction relates to normal opgréiccording to the phenomenological
relation below (considering null tangential opening

_ BBy o _Bh
no e 3 o

Equation (3) has a peak valugg,y for a normal opening, = &,; ¢, is the fracture energy
for Mode | of propagation. The dissipated energyirdu the crack opening is obtained
integrating (3) iMA, (or the area under the curvg X4,) . ForA, >> 9,., the area is equal to
fracture energyp, and the cohesive traction, Ts zero, which indicates fracture of the
interface.omax is around oy whereoy is the yielding stress, for metals. For fragiletenials,
Omax IS around E/10 where E is the longitudinal elastadulus.

Deshpande et al. (2002) proposed an irreversiblesioe law where, in the case of
unloading after the peak stress, the relation ¥l is no longer exponential, becoming linear
and with a residual opening for null traction, acliog to Figure 2. This occurs due to oxide
formation after crack/interface opening. Thenh# interface is loaded monotonically until an
opening A’hmax the relation T x A, followed is exponential. If at this point occura a
unloading, the return will not occur by the expamanrelation, but by the linear law,
according to Figure 2. The result is a residualnape for null traction, which gives an
irreversibility in the cycle that may lead to fatey For a new loading, the relation followed is
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linear until A%nax is reached, when again the exponential curve myadh until a new

unloading point £°.ma) is achieved. The relation that defines tractiemindy unloading is
given by equation (4):
eo
T =-a max A 4
" 5, O (4)
wherea is a factor that here will be changed from 0,2@ which corresponds to consider
different levels of residual openings or differéayer thickness of oxides (in Deshpande et al.

2002a is constant and equal to one).

Tl O

Figure 2: Irreversible cohesive law with residupéning.

Tangential traction (J follows uniquely an exponential law (see Xu andedleman,
1994), then no irreversibility is considered instbbmponent.
3 FINITE ELEMENT IMPLEMENTATION

The rate of deformation [D] for the material canvinétten as (assuming small elastic rate
of deformation):

[o]=[o°]+[p"] ©)

where [O0] is the elastic part and [p is the plastic part of the rate of deformatioro T
calculate [[¥] a flow-rule/von Mises type constitutive law iseds

p?]=AIN] (6)
where,

[N] =r[£%?] (7)
and

e
3G

[0'] is the deviatoric stress, h is the hardening meglaind G is the shear modulug, is
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updated using the evolution equation below:
o, =09 +heP 9)

Whereoyois the initial yield stress ang” is the equivalent plastic strain. Objective stieds

{;} is calculated as

[3} ~[¥][p] (10)

where [w] is the constitutive relationship that result frequations (6) to (9). Equation (10)
together with co-rotational cohesive traction (¢guma?2), enable the use of the formulation in
large displacements. The Principle of Virtual Waorkluding cohesive traction, can be written
as (with body and inertial forces neglected):

[ [o] :[%}dv- J{F{o0 ds+ ] {1} {a) o= C 1)

Bi-linear quadrilateral FE elements are used. Tipgagon above is integrated in each FE
volume Q using one volumetric and four deviatoric Gaussn{®iwhere {U} are nodal
displacements, {F} are prescribed forces on boun8arTraction {T} is calculated in all FE
faces using four Gauss points; integration is peréa over the crack surfafe An implicit
Newton-Raphson scheme is used to solve the comdsmpequilibrium equations.

In the cases where inertial forces can not be otglethe explicit Central Differences
Method is used to solve equilibrium equations.

4 NUMERICAL EXPERIMENTATION

Examples of application of the theory are dividedwo parts. First it is shown the effect
of cyclic loading on crack propagation (fatigue)aim aluminum specimen, neglecting inertial
effects. Afterwards a case of impact, with monatdoading is tested in order to verify the
effect of unloading on crack propagation.

4.1 Fatigue test

The example modeled is a 7075-T6 aluminum specimgrane strain. The aluminum is
considered elasto-plastic with non-linear hardenlmng saturation. The properties are:
longitudinal elastic modulus E=72000 MPa,; poissaduiusv=0.33; yielding stressy =505
MPa; ultimate strengtt, =570 MPa; ultimate straig,=0,11.

To define the non-linear hardening by saturatiae (squation 12) is necessary to define
the constant), that was adjusted tg=101,9 (this value makes that the ultimate stigin
occurs at the ultimate stresg).

o=0,+(0,-0,)1-exptne")] (12)

where £" is the equivalent plastic strain. The cohesiverface properties are defined as
follows: fracture energy,=7,74 N/mm; maximum normal tractiooma=3 x 0,=1515 MPa;
characteristic lengthi,=1,88x10°’mm. The geometry is described in Figure 3:
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Figura 3. Specimen geometry (L=40 mm; W=20 mm; ar)

Half of the piece was modeled, using symmetry. diaek has a length a=W/4, located at
x=0. Interface elements where placed only in aigittdine in the crack direction, from the
crack tip to the end of piece. 20.000 bi-lineardyiateral FEs where used, with characteristic
length of 0,1 mm at the crack zone. 150 interfalmments were used. The piece was
subjected to prescribed force in x=L/2 and x=-lff@m y=0 to y=W. Analysis were done for
different loading functions but always linear, acting to Figure 4 (in the figure, loads appear
converted in remote applied traction. It was adeditthat applied traction is uniform and
obtained dividing loads by area).

Oappliec

Gmax

Figura 4. Cycles of loading and unloading.

In this case, the stress-intensity factor can b=utzted as:

AK, =YAoma=Yo, m-Yo,, Jm (13)

Klmax K{nin

The interface is considered cracked&gr> 58,. The static force necessary for propagation
is the force that produce a stress-intensity fa§taqual to its critical value K. Considering
material data and using equation (14); &an be calculated as 25 MP&m

K=l (f’_n VEZ) (14)

The value of the stress-intensity factqrdan be obtained by equation (13) (for the case in
study, Ewalds e Wanhill, 1986, define the valu¢hef geometric function Y). For ¥Kc, the
theoretical force necessary to begin propagati@61 N. The numerical force obtained was
2626 N, which indicates that discretization wasecdrand the LEFM was valid.

The Table 1 below shows the results of propagathtmained in cyclic loading, for different
values ofAK, R anda. The value ofa, used in equation (4), determines the declivity of
unloading curve. The greater the the greater the declivity and a larger residysgrng is
obtained. Then a relationship @fwith the thickness of oxide can be established:gteater
thea, the greater the oxide layer.

1476



R 0,0 0,0 0,0 0,111 0,111 0,167 0,222
AK| 21,25 22,5 23,7% 21,25 20,0 18,75 17,6
a 50 1,0 0,35 0,5 1,0 1 0,5

da/dN 0,01 0,022 0,029 0,029 0,013 0,007 0,01

Tabela 1: Crack propagation velocig in MPa\/E ; da/dNin mm).

Points of Table 1 are plotted in Figure 5, togetiveh experimental data. To obtain a
better fitting with experiments, in general it iscessary to increase with AK. Then the
residual opening has the tendency to increase with decrease ofAK, which finds
experimental background considering that for bl a greater friction between crack faces
occur, leading to greater oxide build up. The greditiction with low AK values occurs
because crack is less opened and roughness isyfsae Figure 1).
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Figura 5. Experimental data [L4humerical simulation (Al 7075-T6)

Figure 6 shows the relatiam x AK for best data fitting. It is evident the descdbeend.
Besides, for greater R (greater average stress)atfer of oxides necessary to fit numerical
with experimental results has the tendency to bellemdue to smaller friction, which is

evident in the figure 5.
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Figura 6.a values fitted for different values AK and R.

4.2 Dynamic test

The example modeled consisted of a PMMA (Polimdtter of Metila) piece, in plane
strain under dynamic loading. The material is co@d elastic. The external loading is
monotonic crescent, however local unloading maypatthe crack tip, as it will be shown as
follows. The material properties are: elastic loandinal modulus E=3240 MPa; poisson
coefficientv = 0.35; specific masp = 1190 kg/ms3; normal fracture energy=352.3 J/m?;
tangential fracture energg=352.3 J/m?; maximum normal tractian,,=E/10=324 MPa;
maximum tangential tractiona=755.4 MPa; normal characteristic lengi0.4 x 10° m;
tangential characteristic lengd+0.4 x 10° m. The geometry is described in Figure 7.

X
rrrrrrrrrrry o,

.
G

Figure 7: Specimen geometry (L=6 mm; W=3 mm; a=0b)

Half of the specimen was modeled due to symmetrerface cohesive elements were
placed between all FEs (then, contrary to the pressexample, the crack is free to propagate
in all directions). 6400 volumetric FEs (quadrilale degenerated into triangles) and 9516
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interface elements were employed. The characteriBE dimension is 0.0375 mm.
Displacement g0 at x=0 from y=-W/2 to y=W/2. The other boundaonditions are defined
by equations below:

t
, W
uy(t):J'VyS(t)dt in y=E (15)
0
t
. W
u, (t)= v, (t)dt in y= - (16)
0
Vys={vst/tr for t<t, a7
VvV, for t>t,
V. = Vit/t, for t<t, (18)
Y vV, for t>t,

where \ is the impact velocity at the superior boundarg &is the impact velocity at the
inferior boundary. £0.1 ps. Total analysis time is 30s. The interface is considered cracked
for Ap = 50,.

The explicit Central Differences Method was used swve equilibrium equations.
Theoretically maximum time incremeit) for the method (CFL condition, see, for instance,
Hughes, 1990) isnln/cq Where kin is the minimal dimension of the FE angisthe velocity of
pressure waves of the material. This critical tisbep calculation will work out only if
interface elements are not used. The problem ioted by interface elements is thaf, |
value tends to zero. Then the CFL loses its apmdicehere and a much smaller time step
must be used in order to guarantee stability. éndase studied here a time-step around 200
times smaller than CFL condition (considering ostigndard FE) had to be used in order to
guarantee stability.

Due to the absence of oxides and assuming a fragitere, unloading will occur to origin,
or no residual opening is assumed. Figure 8 presestlts of the simulation for two different
situations: a) unloading following the original exyential relation (equation 3) and b)
unloading following a linear relation (equationad,in this case is variable). It can be seen
that, in case “a” a linear propagation occurs f®@0mm and then the crack bifurcates, while
for case “b” propagation before bifurcation occtos 0.75 mm. It can be concluded that a
local unloading at the crack tip effectively tookage, even for the monotonically crescent
applied loading. Also, it can be concluded thatissigation was introduced by the linear
unloading, which permitted that crack propagatetheuit bifurcation for a longer distance.
Also the results presented in Figure 8b are coemtidvith results presented by Xu and
Needleman (1994).

Different values of Yand \4 were studied in Machado (2007). The trend desdrdimve
was also found.
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Figure 8: Propagation after 8§8. V; =5 m/s and V= -5 m/s. a) exponential unloading; b) linear aaling.
Vertical line indicates begin of bifurcation forsea“a”.
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5 CONCLUSIONS

Direct use of cohesive interface methodology, &girally proposed, is not able to model
fatigue phenomenon correctly, unless some degreierefersibility be introduced in the
interface constitutive law. In this work, oxide fieation after crack opening was considered
the key factor leading to irreversibility. The ogidayer increases crack opening after each
cycle. This effect can also be associated to cobtteveen crack surface peaks and valleys.

The hypothesis leads to numerical results congistgh experiments, at least in the range
studied:

* Relatively high values a&K ranging from 0,6 to 0,95 K.

* Relatively small values of R ranging from 0 to 0,2.

To obtain a correct fitting with experimentshad to be changed:

* For larger values dAK, smaller values ofi had to be used. Physically this hypothesis

means that a greater oxide layer is created foHesmaalues ofAK.

* This trend decrease when R, or the average sinessases.

Experimental evidences subsidize this behavior: §woaller values ofAK the crack
opening is smaller and superficial roughness igemsed (Kamp et al., 2007). Friction
between surfaces should increase in this casantpsa enhanced oxide formation (Suresh et
al., 1981).

Besides oxide formation, a greater superficial hmegps can lead to a greater residual
opening due to peak/valley misfit caused by pladgformation or other effect, after each
cycle. Kamp et al. (2007) showed that misfit ofakrasurfaces may lead to early surface
contact even for large values&i.

The average value found here for the “m” expondrParis’ law (see equation 1), was
approximately 4, which is in accordance with valugsorted in the literature (Nguyen et al.,
2000 and Deshpande et al. 2002).

If only monotonically crescent loading is considkrg can be concluded that:

* Unloading of the cohesive law is important and canhbe neglected.

* A linear path during unloading leads to energy idestson, even when no residual
opening is introduced. This dissipation was hewhby retardation of bifurcation in
the impact of a fragile material.

As a byproduct of this research, it was concludied ¢hat critical time-step used in the

Central Difference Method, based on minimal FE ,sikz@n not be used when cohesive
interface are embedded in a standard FE mesh.
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