

de Mecánica Computacional

Mecánica Computacional Vol XXVI, pp.199-212 Sergio A. Elaskar, Elvio A. Pilotta, Germán A. Torres (Eds.) Córdoba, Argentina, Octubre 2007

VIBRACIONES LIBRES DE ARCOS CIRCULARES DE SECCIÓN TRANSVERSAL VARIABLE UTILIZANDO EL MÉTODO DE CUADRATURA DIFERENCIAL

Daniel H. Felix^a, Diana V. Bambill^{a,b}, Samanta J. Escanes^a

 ^aDepartamento de Ingeniería, Instituto de Mecánica Aplicada, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahía Blanca, Argentina http://www.uns.edu.ar
 ^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina E-mail: dhfelix@criba.edu.ar, dbambill@criba.edu.ar, sescanes@uns.edu.ar

Palabras Clave: vibraciones libres, cuadratura diferencial, arcos circulares, sección variable, inercia rotatoria, descomposición de dominio.

Resumen. En este trabajo se presentan los coeficientes de las primeras frecuencias de vibración libre en el plano de arcos delgados de directriz circular, cuya sección transversal no es constante y varía en forma escalonada. Se asumen distintas condiciones de borde en los extremos del arco: el caso del borde totalmente restringido a los desplazamientos, el caso articulado y el caso de borde libre. El problema planteado se resuelve utilizando el método de Cuadratura Diferencial, aplicando la técnica de descomposición de dominio. Se consideran los efectos de la inercia rotatoria, la deformación axil y la deformación por corte. Se comparan los resultados obtenidos con valores calculados por el método de elementos finitos o con valores disponibles en la literatura técnico-científica.

1 INTRODUCCIÓN

Como es bien sabido, el arco es un componente estructural fundamental en diversos campos de la ingeniería y consecuentemente, la vigencia y el interés por abordar estudios sobre el tema, se mantiene permanentemente renovada, tanto en el ámbito ingenieril como en el académico.

Continuando con el desarrollo de otros autores (Gutierrez y Laura, 1995; Wu and Chiang, 2004), y con la incorporación de desarrollos propios, se plantea aquí una alternativa de cálculo discreto, utilizando el método de cuadratura diferencial generalizado, que fue presentado inicialmente por Bellman a comienzos de la década del '70, (Bellman and Casti, 1971).

La dificultad que ocasiona la discontinuidad presente entre tramos adyacentes del arco de distinta sección transversal, se resuelve mediante la aplicación de la técnica de descomposición de dominio.

Se plantea el sistema de ecuaciones gobernante constituido por las ecuaciones diferenciales, las condiciones de borde y las ecuaciones de compatibilidad entre tramos de sección diferente y a continuación se obtiene un sistema de ecuaciones análogas, mediante la aplicación de las reglas de cuadratura diferencial, que permite obtener la solución buscada.

2 CARACTERÍSTICAS DEL MODELO ANALIZADO

Se analizan las vibraciones naturales en el plano de un arco circular delgado, de sección variable en forma escalonada. Un esquema del mismo puede verse en la Figura 1a. La teoría utilizada es aplicable a materiales elásticos lineales que se caracterizan mediante el módulo elástico *E*, la masa distribuida μ , el coeficiente de Poisson ν y el coeficiente de corte κ .

Cuando el arco ejecuta vibraciones naturales en el plano se generan desplazamientos y esfuerzos internos. Los desplazamientos del arco quedan determinados mediante 3 variables.

El desplazamiento axil v, el desplazamiento transversal w y el giro de la sección transversal ψ , mientras que los esfuerzos internos en el plano, generados por la vibración del arco, son: El esfuerzo axil N, el esfuerzo de corte Q y el momento flector M.

De acuerdo a la teoría de la elasticidad, los esfuerzos internos están relacionados con los desplazamientos mediante las ecuaciones constitutivas. En la Figura 1b se muestra la convención de signos utilizada para los corrimientos, y en la Figura 1c la correspondiente a los esfuerzos internos.

Se estudiaron arcos con vínculos en los extremos y se adoptaron, para los distintos casos analizados, condiciones de borde clásicas: Empotrado, Articulado y Libre.

Figura 1: a) Arco circular delgado, de sección variable en forma escalonada, b) Convención de signos adoptada para los desplazamientos, c) convención de signos adoptada para los esfuerzos internos.

Cada tramo quedó definido por su amplitud angular Θ_k y las características geométricas de la sección transversal, que son el área A_k y el momento de inercia I_k . La curvatura del arco se consideró constante y se denominó *R* a su radio de curvatura.

Una sección arbitraria del arco se identifica mediante la variable local s_k , medida sobre el eje del arco, desde el extremo izquierdo del tramo al que corresponde, como indica la Figura 1a). También se define la variable angular local θ_k , estando ambas relacionadas mediante la ecuación del arco de circunferencia correspondiente:

$$s_k = R \ \theta_k \tag{1}$$

3 SISTEMA DE ECUACIONES GOBERNANTE

Se consideró al arco compuesto de un número N de tramos de distinta sección transversal. Cada tramo queda gobernado por las ecuaciones de movimiento siguientes, que se obtienen por extensión del problema del arco de sección constante (Chidamparam and Leissa, 1993; Tseng et al., 1997):

$$\frac{\partial N_k}{\partial s_k} + \frac{Q_k}{R} = \rho A_k \ddot{v} \quad ; \quad \frac{\partial Q_k}{\partial s_k} - \frac{N_k}{R} = \rho A_k \ddot{w} \quad ; \quad \frac{\partial M_k}{\partial s_k} + Q_k = \rho I_k \ddot{\psi}$$
(2a, b, c)

En donde, N_k , Q_k y M_k son los esfuerzos internos en cada tramo k, que se relacionan con los desplazamientos mediante las ecuaciones constitutivas siguientes (Chidamparam and Leissa, 1993):

$$N_{k} = E A_{k} \left(\frac{\partial v}{\partial s_{k}} + \frac{w}{R} \right) \quad ; \quad Q_{k} = \kappa G A_{k} \left(\frac{\partial w}{\partial s_{k}} - \frac{v}{R} - \psi \right) \quad ; \quad M_{k} = E I_{k} \frac{\partial \psi}{\partial s_{k}} \tag{3a, b, c}$$

Reemplazando los esfuerzos internos en las ecuaciones de movimiento, mediante las ecuaciones constitutivas (3a-c), se tienen:

$$EA_{k}\left(\frac{\partial^{2}v}{\partial s_{k}^{2}}-\frac{\kappa}{2(1+\nu)}\frac{\nu}{R^{2}}\right)+\frac{EA_{k}}{R}\left(1+\frac{\kappa}{2(1+\nu)}\right)\frac{\partial w}{\partial s_{k}}-\frac{EA_{k}}{R}\frac{\kappa}{2(1+\nu)}\psi=\rho A_{k}\ddot{v}$$
(4a)

$$-\frac{EA_{k}}{R}\left(1+\frac{\kappa}{2(1+\nu)}\right)\frac{\partial\nu}{\partial s_{k}}+EA_{k}\left(\frac{\kappa}{2(1+\nu)}\frac{\partial^{2}w}{\partial s_{k}^{2}}-\frac{w}{R^{2}}\right)-EA_{k}\frac{\kappa}{2(1+\nu)}\frac{\partial\psi}{\partial s_{k}}=\rho A_{k}\ddot{w}$$
(4b)

$$-EA_{k}\frac{\kappa}{2(1+\nu)}\frac{\nu}{R}+EA_{k}\frac{\kappa}{2(1+\nu)}\frac{\partial w}{\partial s_{k}}+EI_{k}\frac{\partial^{2}\psi}{\partial s_{k}^{2}}-EA_{k}\frac{\kappa}{2(1+\nu)}\psi=\rho I_{k}\ddot{\psi}$$
(4c)

Los desplazamientos v, w y ψ , se expresaron en la forma clásica:

$$v = v(s,t) = V(s)e^{i\omega t} ; w = w(s,t) = W(s)e^{i\omega t} ; \psi = \psi(s,t) = \Psi(s)e^{i\omega t}$$
(5a, b, c)

y sus derivadas respecto del tiempo:

$$\ddot{v} = -\omega^2 V(s) e^{i\omega t} ; \ \ddot{w} = -\omega^2 W(s) e^{i\omega t} ; \ \ddot{\psi} = -\omega^2 \Psi(s) e^{i\omega t}$$
(6a, b, c)

Con lo cual es posible escribir el sistema de ecuaciones (4a-c) como:

$$EA_{k}\left(\frac{\kappa}{2(1+\nu)}\frac{V}{R^{2}}-\frac{d^{2}V}{ds_{k}^{2}}\right)-\frac{EA_{k}}{R}\left(1+\frac{\kappa}{2(1+\nu)}\right)\frac{dW}{ds_{k}}+\frac{EA_{k}}{R}\frac{\kappa}{2(1+\nu)}\Psi=\rho A_{k}\omega^{2}V$$
(7a)

$$\frac{EA_k}{R} \left(1 + \frac{\kappa}{2(1+\nu)} \right) \frac{dV}{ds_k} + EA_k \left(\frac{W}{R^2} - \frac{\kappa}{2(1+\nu)} \frac{d^2W}{ds_k^2} \right) + EA_k \frac{\kappa}{2(1+\nu)} \frac{d\Psi}{ds_k} = \rho A_k \omega^2 W$$
(7b)

$$EA_{k}\frac{\kappa}{2(1+\nu)}\frac{V}{R} - EA_{k}\frac{\kappa}{2(1+\nu)}\frac{dW}{ds_{k}} + EA_{k}\frac{\kappa}{2(1+\nu)}\Psi - r_{k}^{2}\frac{d^{2}\Psi}{ds_{k}^{2}} = \rho I_{k}\omega^{2}\psi$$
(7c)

Se adoptó como variable local adimensional:

$$x = \frac{\theta_k}{\Theta_k} = \frac{s_k}{R\Theta_k} \tag{8}$$

Resulta entonces:

$$\frac{\kappa}{2(1+\nu)}V - \frac{1}{\Theta_k^2}\frac{d^2V}{dx^2} - \frac{1}{\Theta_k}\left(1 + \frac{\kappa}{2(1+\nu)}\right)\frac{dW}{dx} + R\frac{\kappa}{2(1+\nu)}\Psi = \Omega^2 \frac{r_k^2}{R^2}V$$
(9a)

$$\frac{1}{\Theta_k} \left(1 + \frac{\kappa}{2(1+\nu)} \right) \frac{dV}{dx} + W - \frac{1}{\Theta_k^2} \frac{\kappa}{2(1+\nu)} \frac{d^2W}{dx^2} + \frac{R}{\Theta_k} \frac{\kappa}{2(1+\nu)} \frac{d\Psi}{dx} = \Omega^2 \frac{r_k^2}{R^2} W$$
(9b)

$$R\frac{\kappa}{2(1+\nu)}V - \frac{R}{\Theta_k}\frac{\kappa}{2(1+\nu)}\frac{dW}{dx} + R^2\frac{\kappa}{2(1+\nu)}\Psi - \frac{r_k^2}{\Theta_k^2}\frac{d^2\Psi}{dx^2} = \Omega^2\frac{r_k^2}{R^2}r_1^2\psi$$
(9c)

donde:

$$\Omega = \sqrt{\frac{\mu}{EI_1}} R^2 \omega \tag{10}$$

es el coeficiente de frecuencia natural adimensional de vibración en el plano del arco.

El sistema de ecuaciones gobernante del modelo queda completo con las condiciones de borde y las ecuaciones de compatibilidad entre tramos adyacentes de diferente sección transversal del arco.

Las condiciones de borde que se deben satisfacer en los extremos Empotrados son:

$$V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \Psi\Big|_{x=0}^{\text{Tramo 1}} = 0$$
(11a)

$$V\Big|_{x=1}^{\text{Tramo N}} = W\Big|_{x=1}^{\text{Tramo N}} = \Psi\Big|_{x=1}^{\text{Tramo N}} = 0$$
(11b)

en el caso de arcos con ambos extremos Articulados las condiciones de borde son:

$$V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \frac{d\Psi}{dx}\Big|_{x=0}^{\text{Tramo 1}} = 0$$
(12a)

$$V\Big|_{x=1}^{\text{Tramo N}} = W\Big|_{x=1}^{\text{Tramo N}} = \frac{d\Psi}{dx}\Big|_{x=1}^{\text{Tramo N}} = 0$$
(12b)

Para el arco con un extremo empotrado y el otro libre se tiene:

Borde empotrado:
$$V\Big|_{x=0}^{\text{Tramo 1}} = W\Big|_{x=0}^{\text{Tramo 1}} = \Psi\Big|_{x=0}^{\text{Tramo 1}} = 0$$
 (13a)

Borde libre:
$$\left[\frac{1}{\Theta_{N}}\frac{dV}{dx} + \frac{W}{R}\right]_{x=1}^{\text{Tramo N}} = \left[\frac{1}{\Theta_{N}}\frac{dW}{dx} - \frac{V}{R} - \psi\right]_{x=1}^{\text{Tramo N}} = \frac{d\Psi}{dx}\Big|_{x=1}^{\text{Tramo N}} = 0 \quad (13b)$$

Entre tramos adyacentes deben cumplirse tanto las ecuaciones de compatibilidad esenciales o geométricas como las naturales. Se tiene entonces para la compatibilidad geométrica:

$$V\Big|_{x=1}^{\operatorname{Tramo} k} = V\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(14a)

$$W\Big|_{x=1}^{\operatorname{Tramo} k} = W\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(14b)

$$\Psi\Big|_{x=1}^{\operatorname{Tramo} k} = \Psi\Big|_{x=0}^{\operatorname{Tramo} k+1}$$
(14c)

Mientras que para la compatibilidad natural o de esfuerzos resulta:

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \frac{dV}{dx} + \frac{W}{R} \right]_{x=1}^{\operatorname{Tramo} k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \frac{dV}{dx} + \frac{W}{R} \right]_{x=0}^{\operatorname{Tramo} k+1}$$
(15a)

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \frac{dW}{dx} - \frac{V}{R} - \psi \right]_{x=1}^{\operatorname{Tramo} k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \frac{dW}{dx} - \frac{V}{R} - \psi \right]_{x=0}^{\operatorname{Tramo} k+1}$$
(15b)

$$\alpha_k \frac{r_k^2}{r_l^2} \left[\frac{1}{\Theta_k} \frac{d\Psi}{dx} \right]_{x=1}^{\text{Tramo } k} = \alpha_{k+1} \frac{r_{k+1}^2}{r_l^2} \left[\frac{1}{\Theta_{k+1}} \frac{d\Psi}{dx} \right]_{x=0}^{\text{Tramo } k+1}$$
(15c)

Siendo:

$$\alpha_k = \frac{A_k}{A_1} \tag{16}$$

la relación entre el área del tramo k y el área del tramo 1 (usado como referencia). r_k/r_1 la relación entre radios de giro y Θ_k la amplitud angular del tramo k.

La amplitud angular total del arco resulta:

$$\Theta_{\rm T} = \sum_{k=1}^{\rm N} \Theta_k \tag{17}$$

4 APLICACIÓN DEL MÉTODO DE CUADRATURA DIFERENCIAL

La implementación del método se basa en la aplicación de las reglas de cuadratura diferencial para ecuaciones diferenciales ordinarias (Bellman and Casti, 1971), que en el caso que nos ocupa, se expresan de la siguiente forma:

$$V^{(q)}(x_i) = \frac{d^{q}V}{dx^{q}} \bigg|_{x=x_i} = \sum_{j=1}^{n} A^{(q)}_{ij} V_j$$
(18a)

$$W^{(q)}(x_i) = \frac{d^{q}W}{dx^{q}}\Big|_{x=x_i} = \sum_{j=1}^{n} A^{(q)}_{ij} W_j$$
(18b)

$$\Psi^{(q)}(x_i) = \frac{d^q \Psi}{dx^q} \bigg|_{x=x_i} = \sum_{j=1}^{n_k} A_{ij}^{(q)} \Psi_j$$
(18c)

donde el índice q representa el orden de derivación, las x_i son las coordenadas espaciales adimensionales de los nodos que forman el dominio discreto, los $A_{ij}^{(q)}$ son coeficientes denominados de peso, que deben ser previamente determinados y los V_j ; W_j ; Ψ_j los valores de desplazamiento en cada uno de los nodos.

De acuerdo a Bellman y sus colaboradores, en el método de cuadratura diferencial, el sistema gobernante, planteado en la sección anterior, es reemplazado por un conjunto de ecuaciones equivalentes denominado ecuaciones análogas de cuadratura, cuya solución nos permite resolver el problema planteado. El procedimiento a seguir puede ser resumido en los siguientes pasos:

- Discretizar el dominio.
- Obtener los coeficientes de peso asociados a la malla de puntos generada.
- Plantear las ecuaciones análogas de cuadratura del sistema diferencial gobernante, de las condiciones de borde y de las ecuaciones de compatibilidad.
- Ensamblar y resolver el sistema de ecuaciones resultante.

Cada tramo del arco fue discretizado utilizando una distribución irregular de puntos de prueba del tipo Chebyshev–Gauss–Lobato (Shu and Chen, 1999). La expresión que genera la malla resulta:

$$x_{i} = \frac{1 - \cos\left[(i-1)\pi/(n-1)\right]}{2} \qquad con \quad i = 1, 2, \dots n$$
(19)

Siendo *n* el número de nodos en cada tramo del arco y x_i la coordenada espacial adimensional del nodo *i*.

La Figura 2 muestra a modo de ejemplo, la malla de puntos generada, sobre el eje del arco, para el caso de un arco de 3 escalones y de apertura $\Theta_{\rm T} = 180^{\circ}$. Las coordenadas de los puntos sobre el eje del arco (coordenadas polares) en cada tramo, se determinaron mediante la aplicación de coordenada angular:

$$\theta_i \Big|^{\operatorname{Tramo} k} = \Theta_k \, x_i \tag{20}$$

Figura 2: Distribución irregular de nodos que conforman el modelo discreto en un arco de 3 escalones

Con las coordenadas espaciales adimensionales x_i , se obtienen los siguientes polinomios:

$$\Pi(x_i) = \prod_{\nu=1}^n (x_i - x_\nu)$$
(21)

Los coeficientes de peso utilizados en el método, correspondientes a las derivadas de primer orden (q=1), se pueden calcular de manera explícita utilizando los polinomios de la expresión (21), (Shu and Richards, 1992):

$$A_{ij}^{(1)} = \frac{\Pi(x_i)}{(x_i - x_j)\Pi(x_j)} \qquad con \quad i, j = 1, 2, ..., n$$

$$y \quad j \neq i, elementos fuera de la diagonal \qquad (22a)$$

$$A_{ii}^{(1)} = -\sum_{j=1}^{n} A_{ij}^{(1)} \qquad \begin{array}{c} con \quad i, j = 1, 2, \dots, n \\ y \quad j = i, \ elementos \ en \ la \ diagonal \end{array}$$
(22b)

Los coeficientes de peso correspondientes a derivadas de segundo orden y superiores, q > 1. Se obtienen de manera eficiente, mediante expresiones recursivas (Bert and Malik, 1996).

$$A_{ij}^{(q)} = A_{ii}^{(q-1)} A_{ij}^{(1)} - \frac{A_{ij}^{(q-1)}}{x_i - x_j} \qquad con \quad i, j = 1, 2, ..., n$$

$$y \quad j \neq i, elementos fuera de la diagonal$$
(23a)

$$A_{ii}^{(q)} = -\sum_{\substack{j=1\\con \ j\neq i}}^{n} A_{ij}^{(q)} \qquad \qquad con \quad i, j = 1, 2, ..., n \\ y \ j = i, \ elementos \ en \ la \ diagonal$$
(23b)

El sistema análoga de cuadratura de las ecuaciones diferenciales (9a-c), para cada tramo del arco resulta:

$$\left(\frac{\kappa}{2(1+\nu)}V_{i} - \frac{1}{\Theta_{k}^{2}}\sum_{j=1}^{n}A_{ij}^{(2)}V_{j}\right) - \frac{1}{\Theta_{k}}\left(1 + \frac{\kappa}{2(1+\nu)}\right)\sum_{j=1}^{n}A_{ij}^{(1)}W_{j} + R\frac{\kappa}{2(1+\nu)}\Psi_{i} = \Omega^{2}\frac{r_{1}^{2}}{R^{2}}V_{i} \quad (24a)$$

$$\frac{1}{\Theta_{k}}\left(1 + \frac{\kappa}{2(1+\nu)}\right)\sum_{j=1}^{n}A_{ij}^{(1)}V_{j} + \left(W_{i} - \frac{1}{\Theta_{k}^{2}}\frac{\kappa}{2(1+\nu)}\sum_{j=1}^{n}A_{ij}^{(2)}W_{j}\right)$$

$$+ \frac{R}{\Theta_{k}}\frac{\kappa}{2(1+\nu)}\sum_{j=1}^{n}A_{ij}^{(1)}\Psi_{j} = \Omega^{2}\frac{r_{1}^{2}}{R^{2}}W_{i} \quad (24b)$$

$$R\frac{\kappa}{2(1+\nu)}V_{i} - \frac{R}{\Theta_{k}}\frac{\kappa}{2(1+\nu)}\sum_{j=1}^{n}A_{ij}^{(1)}W_{j} + R^{2}\frac{\kappa}{2(1+\nu)}\Psi_{i} - \frac{r_{k}^{2}}{\Theta_{k}^{2}}\sum_{j=1}^{n}A_{ij}^{(2)}\Psi_{j} - =\Omega^{2}\frac{r_{1}^{2}}{R^{2}}r_{k}^{2}\Psi_{i} \quad (24c)$$

Las ecuaciones análogas de las condiciones de borde se obtienen a partir de las ecuaciones (11-13), de acuerdo al modelo que corresponda, (Kang et al, 1995):

De este modo se tiene para arcos con extremos Empotrado-Empotrado:

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \Psi_1 \Big|^{\text{Tramo 1}} = 0$$
(25a)

$$V_n \Big|^{\text{Tramo N}} = W_n \Big|^{\text{Tramo N}} = \Psi_n \Big|^{\text{Tramo N}} = 0$$
(25b)

Para arcos Articulado-Articulado:

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \sum_{j=1}^n A_{1j}^{(1)} \Psi_j \Big|^{\text{Tramo 1}} = 0$$
(26a)

$$V_n \Big|^{\text{Tramo N}} = W_n \Big|^{\text{Tramo N}} = \sum_{j=1}^n A_{nj}^{(1)} \Psi_j \Big|^{\text{Tramo N}} = 0$$
 (26b)

Para arcos Empotrado-Libre:

Borde empotrado:

$$V_1 \Big|^{\text{Tramo 1}} = W_1 \Big|^{\text{Tramo 1}} = \Psi_j \Big|^{\text{Tramo 1}} = 0$$
 (27a)

Borde libre:

$$\left[\frac{1}{\Theta_{N}}\sum_{j=1}^{n}A_{nj}^{(1)}V_{j} + \frac{W_{i}}{R}\right]_{x=1}^{\text{Tramo N}} = \left[\frac{1}{\Theta_{N}}\sum_{j=1}^{n}A_{nj}^{(1)}W_{j} - \frac{V_{i}}{R} - \psi_{i}\right]_{x=1}^{\text{Tramo N}} = \sum_{j=1}^{n}A_{nj}^{(1)}\Psi_{j}\Big|_{x=1}^{\text{Tramo N}} = 0$$
(27b)

Las ecuaciones análogas de compatibilidad se obtienen a partir de las ecuaciones de compatibilidad entre tramos adyacentes del arco, expresiones (14a-c) y (15a-c). Las correspondientes a la compatibilidad geométrica resultan:

$$V_n \Big|^{\operatorname{Tramo} k} = V_1 \Big|^{\operatorname{Tramo} k+1}$$
(28a)

$$W_n \Big|^{\operatorname{Tramo} k} = W_1 \Big|^{\operatorname{Tramo} k+1}$$
(28b)

$$\Psi_n \Big|^{\text{Tramo } k} = \Psi_1 \Big|^{\text{Tramo } k+1}$$
(28c)

Mientras que para las correspondientes a la compatibilidad natural o de esfuerzos se tiene:

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \sum_{j=1}^{n} A_{1j}^{(1)} V_{j} + \frac{W_{i}}{R} \right]^{\text{Tramo } k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^{n} A_{1j}^{(1)} V_{j} + \frac{W_{i}}{R} \right]^{\text{Tramo } k+1}$$
(29a)

$$\alpha_{k} \left[\frac{1}{\Theta_{k}} \sum_{j=1}^{n} A_{1j}^{(1)} W_{j} - \frac{V_{i}}{R} - \psi_{i} \right]^{\text{Tramo } k} = \alpha_{k+1} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^{n} A_{1j}^{(1)} W_{j} - \frac{V_{i}}{R} - \psi_{i} \right]^{\text{Tramo } k+1}$$
(29b)

$$\alpha_k \frac{r_k^2}{r_1^2} \left[\frac{1}{\Theta_k} \sum_{j=1}^n A_{1j}^{(1)} \Psi_j \right]^{\text{Tramo } k} = \alpha_{k+1} \frac{r_{k+1}^2}{r_1^2} \left[\frac{1}{\Theta_{k+1}} \sum_{j=1}^n A_{1j}^{(1)} \Psi_j \right]^{\text{Tramo } k+1}$$
(29c)

El sistema de ecuaciones de autovalores que resulta de ensamblar los tres grupos de ecuaciones análogas vistos, nos permiten calcular los coeficientes de frecuencia natural en el plano del arco, (Bert and Malik, 1996).

5 RESULTADOS NUMÉRICOS

El método descripto se utilizó para obtener las frecuencias naturales de arcos de sección variable con varias condiciones de borde, Empotrado-Empotrado, Articulado-Articulado y Empotrado-Libre, considerando en la formulación el efecto de la inercia rotatoria, y adoptando 15 nodos en la malla de cada tramo.

El primer modelo analizado, que se muestra en la Figura 3, es un arco de sección rectangular constituido por tres tramos de diferente altura h_i .

Figura 3: Arco circular escalonado de 3 tramos

Las relaciones adoptadas de acuerdo a las definidas en la formulación son:

$$\alpha_k = \frac{A_k}{A_1} = \frac{b_k h_k}{b_1 h_1} = \sqrt{\frac{I_k}{I_1}} \quad \text{con } k = 1, 2, 3$$
$$\Theta_{\mathrm{T}} = \sum_{k=1}^{\mathrm{N}} \Theta_k \quad \text{con } \mathrm{N} = 3$$

En la Tabla 1 se presentan valores del coeficiente de frecuencia fundamental $\Omega = \sqrt{\frac{\mu}{EI_1}} R^2 \omega$ calculados por el método de cuadratura diferencial propuesto y se los

compara con los valores obtenidos por Auciello y De Rosa, utilizando el método de Ritz, el método de elementos finitos y el método de discretización de celdas (CDM su sigla en inglés). (Auciello and De Rosa, 1994).

Los valores se calcularon para arcos circulares de sección rectangular formados por tres tramos de igual amplitud, $\Theta_1 = \Theta_2 = \Theta_3 = \Theta_T/3$, simétrico respecto al eje central.

Los valores de lo coeficientes adoptados para los modelos de la Tabla 1 fueron $\alpha_1 = 1$, $\alpha_2 = \eta$ y $\alpha_3 = 1$.

Se consideró el arco biarticulado, caso (a), con dos relaciones de η diferentes y cuatro valores de apertura angular Θ_{T} .

Se observa que los valores calculados con la formulación del método de cuadratura diferencial considerando el efecto de la inercia rotatoria, tienen una excelente concordancia con los valores obtenidos por Auciello y De Rosa.

El caso (b) corresponde al arco biempotrado y también en este caso los coeficientes obtenidos por el método propuesto tiene un muy buen acuerdo con los de Auciello y De Rosa.

Θ	Auci	Auciello and De Rosa, 1994					
0 _T	Rayleigh-Ritz	SAP IV	C.D.M.				
(a) Articulado- Articulado							
$\eta = 0.8$							
10°	1609.89	1518.62	1522.2	1518.06			
20°	400.256	377.605	378.54	377.626			
30°	176.287	166.365	166.77	166.327			
40°	97.9097	92.4315	92.666	92.4197			
$\eta = 1.25$							
10°	1044.59	1064.6	1065.93	1064.64			
20°	259.510	264.51	264.840	264.483			
30°	114.169	116.32	116.467	116.325			
40°	63.3170	64.487	64.5687	64.4839			
(b) Em	potrado-Empotra	ado					
$\eta = 0.8$							
10°	2512.66	2357.70	2355.85	2357.80			
20°	625.949	587.458	586.968	587.385			
30°	276.520	259.597	259.409	259.603			
40°	154.271	144.895	144.779	144.780			
$\eta = 1.25$							
10°	1636.48	1673.9	1670.6	1674.02			
20°	407.396	416.67	415.83	116.667			
30°	179.788	183.87	183.48	183.865			
40°	100.166	102.40	102.18	102.391			

Tabla 1: Comparación de los coeficientes de frecuencia fundamental $\Omega = \omega R^2 \sqrt{\mu/EI_1}$. Se consideran arcos inextensibles.

En la Tabla 2 se presentan los coeficientes de frecuencia fundamental de arcos de sección rectangular compuestos por dos tramos de igual longitud y distinta sección A_k .

Los parámetros adoptados para el modelo fueron: $\alpha_1 = 1$, $\alpha_2 = \eta = 0.8$ y $\Theta_1 = \Theta_2 = \Theta_T/2$, con $\Theta_T = 10^\circ, 20^\circ, \dots, 60^\circ$.

Nuevamente se los compara con los presentados por Auciello y De Rosa (Auciello and De Rosa, 1994) para tres casos diferentes de vinculación en los extremos.

Θ		Auciello et al, 1994		- Drasanta Estudio		
O_T	R-R	F.E.M.	C.D.M.	Presente Estudio		
(a) Empotrado-Empotrado						
10°	2277.9	_	2264.9	2277.3		
20°	567.10	566.86	564.05	567.15		
30°	250.37	-	249.10	250.47		
40°	139.62	139.72	138.88	139.65		
50°	88.439	-	87.887	88.371		
60°	60.540	60.604	60.206	60.537		
(b) Art	iculado- Articula	ado				
10°	1462.2	-	1456.0	1458.8		
20°	363.32	362.67	361.92	362.59		
30°	160.13	-	159.33	159.63		
40°	88.759	88.697	88.440	88.604		
50°	55.887	-	55.651	55.748		
60°	37.989	38.007	37.862	37.928		
(c) Arta	iculado -Empotr	ado				
10°	1868.5	-	1848.4	1853.7		
20°	464.76	461.15	460.03	461.34		
30°	205.03	-	202.95	203.52		
40°	114.16	113.36	112.98	113.30		
50°	72.103	-	71.363	71.564		
60°	49.269	48.978	48.775	48.911		

Tabla 2: Comparación de los coeficientes de frecuencia fundamental $\Omega = \omega R^2 \sqrt{\mu/EI_1}$. $\eta = 0.8$.

Las Tablas 3 y 4 contienen valores de los coeficientes Ω_i para un arco de sección rectangular de 180° de apertura con tres tramos, considerando: $\alpha_1 = \alpha_3 = 1$ y $\alpha_2 = \eta$ empotrado o articulado en ambos extremos. Se adoptaron seis relaciones diferentes para la relación η .

Se observa como los coeficientes de frecuencia para los seis primeros modos varían con la relación de altura η de las secciones transversales, siendo mayores los coeficientes de las relaciones de η menores.

η	Ω_1	$\Omega_{_2}$	$\Omega_{_3}$	Ω_4	Ω_5	$\Omega_{_6}$
0.6	8.10057	13.5352	22.9358	37.5365	53.3872	66.4054
0.8	6.68459	11.8248	19.8503	32.6680	46.3864	57.8181
0.9	6.22659	11.0320	18.5752	31.0245	43.8606	54.1609
1.1	5.49143	9.6007	16.6573	28.6378	39.3616	47.8754
1.25	5.0242	8.69969	15.6657	27.2134	36.2691	44.1848
1.4	4.60649	7.94912	14.9384	25.8734	33.4597	41.3422

Tabla 3: Primeros coeficientes de frecuencia $\Omega_i = \omega_i R^2 \sqrt{\frac{\mu}{EI_1}}$, de un arco Empotrado-Empotrado, de 3 escalones, para diferentes valores de η . $\Theta_T = \pi$; $\Theta_1 = \Theta_3 = \frac{\Theta_2}{2} = \frac{\pi}{4}$

η	Ω_1	$\Omega_{_2}$	$\Omega^{}_{3}$	Ω_4	Ω_5	$\Omega_{_6}$
0.6	3.16339	8.64273	18.8483	31.4847	43.3078	55.5181
0.8	3.09472	7.69318	16.0396	27.3942	37.9874	48.9061
0.9	2.9722	7.18524	15.0480	26.0508	35.8068	45.9564
1.1	2.70713	6.28630	13.6752	23.8898	31.8122	41176
1.25	2.49251	5.74689	12.9928	22.4269	29.1774	38.6012
1.4	2.28351	5.31434	12.4774	21.0103	26.9022	36.7274

Tabla 4: Primeros coeficientes de frecuencia $\Omega_i = \omega_i R^2 \sqrt{\frac{\mu}{EI_1}}$, de un arco Empotrado-Empotrado, de 3 escalones, para diferentes valores de η .

En las Tablas 5 y 6 se presentan los coeficientes Ω_i de arcos de dos tramos, con extremos empotrados y articulados respectivamente y con $\alpha_1 = 1$, $\alpha_2 = \eta$ y $\Theta_T = 135^\circ$.

η	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	$\Omega_{_6}$
0.6	11.3706	22.5481	39.9564	59.8415	81.9917	111.796
0.8	10.2386	20.5282	36.8043	53.843	75.9425	104.264
0.9	9.74475	19.6612	35.7003	51.3036	73.3903	101.328
1.1	8.83239	18.3668	33.8375	46.7031	69.7218	95.8084
1.25	8.21692	17.7065	32.3928	43.9968	67.8279	90.9803
1.4	7.68049	17.2118	30.7933	42.0552	66.1810	85.7578

Tabla 5: Primeros coeficientes de frecuencia $\Omega_i = \omega_i R^2 \sqrt{\frac{\mu}{EI_1}}$, de un arco Empotrado-Empotrado, de 2 escalones, para diferentes valores de η . $\Theta_r = \frac{3}{4}\pi$; $\Theta_1 = \frac{\pi}{4}$; $\Theta_2 = \frac{\pi}{2}$

η	Ω_1	Ω_{2}	Ω_3	Ω_4	Ω_5	$\Omega_{_6}$
0.6	5.63291	16.7299	31.8562	47.9133	70.2534	99.4069
0.8	5.38533	15.1275	29.1858	43.6123	65.2977	92.2112
0.9	5.19673	14.5055	28.2426	41.6590	63.2688	89.3389
1.1	4.75859	13.6246	26.4907	38.2872	60.3304	83.5249
1.25	4.45144	13.1770	25.1061	36.4463	58.6697	78.6709
1.4	4.18625	12.8295	23.6790	35.1613	57.0531	73.9830

Tabla 6: Primeros coeficientes de frecuencia $\Omega_i = \omega_i R^2 \sqrt{\frac{\mu}{EI_1}}$, de un arco Articulado-Articulado, de 2 escalones, para diferentes valores de η . $\Theta_T = \frac{3}{4}\pi$; $\Theta_1 = \frac{\pi}{4}$; $\Theta_2 = \frac{\pi}{2}$

Por último en la Tabla 7 están los coeficientes Ω_i de un arco cantilever con dos tramos de igual longitud y $\alpha_1 = 1$, $\alpha_2 = \eta$ y $\Theta_T = 90^\circ$ y se los compara con los calculados con modelos en elementos finitos utilizando el programa ALGOR, en los que se definió una malla de 500 elementos viga para modelar el arco.

$1/\eta$		Ω_1	Ω_{2}	Ω_{3}	Ω_4	Ω_5	$\Omega_{_6}$
1.0	MCD	1.49423	7.22624	22.8225	46.6754	78.579	118.52
1.0	EF	1.4981	7.2247	22.820	46.669	78.561	118.49
1.1	MCD	1.56542	7.02490	21.8165	44.4093	74.9231	112.784
	EF	1.5545	7.0239	21.815	44.404	74.908	112.75
1.25	MCD	1.62498	6.68059	20.6384	41.2583	70.4684	104.930
	EF	1.6264	6.6805	20.637	41.254	70.457	104.91
1.4	MCD	1.6840	6.32776	19.7097	38.4945	66.6805	98.3212
	EF	1.6837	6.3280	19.709	38.491	66.671	98.303

Se puede observar que existe una muy buena aproximación entre los valores determinados por cuadratura diferencial y por elementos finitos.

Tabla 7: Primeros coeficientes de frecuencia $\Omega_i = \omega_i R^2 \sqrt{\frac{\mu}{EI_1}}$, de un arco Empotrado-Libre, de 2 escalones, para diferentes valores de η . $\Theta_T = \frac{\pi}{2}$; $\Theta_1 = \Theta_2 = \frac{\pi}{4}$.

CONCLUSIONES

Los resultados obtenidos muestran excelente concordancia con los hallados en la literatura y con los valores calculados con el método de elementos finitos. Se observó que el esfuerzo computacional requerido fue muy bajo, en concordancia con lo expresado por otros autores, (Karami and Malekzadeh, 2004; Tüfekçi and Arpaci, 2004).

AGRADECIMIENTOS

El presente trabajo ha sido auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur, en el Departamento de Ingeniería y por el programa de Investigación y Desarrollo del CONICET.

REFERENCIAS

- ALGOR inc., *Linear Stress and Vibration Analysis Processor Reference Manual*. Part N° 6.000.501, Revision 5.00, Pittsburgh, PA, USA, (1999).
- Auciello N.M. and De Rosa M.A., Free vibrations of circular arches: A review. *Journal of Sound and Vibration*, 176(4): 433-458, 1994.
- Bellman R. and Casti J., Differential quadrature and long-term integration. J. Math. Anal. App, 34: 235-238, 1971.
- Bert C.W. and Malik M., Differential quadrature method in computational mechanics: A review. *Applied Mechanics Review*, 49: 1-28, 1996.
- Chidamparam P. and Leissa A.W., Vibrations of planar curved beams, rings and arches. *Applied Mechanics Reviews*, 46(9): 467-483, 1993.
- Gutiérrez R.H. y Laura P.A.A., Vibration of non-uniform rings studied by means of quadrature method. *Journal of Sound and Vibration*, 185: 239-257, 1995.
- Kang K.J., Bert C.W. and Striz A.G., Vibration analisys of shear deformable circular arches by the differential quadrature method. *Journal of Sound and Vibration*, 181(2): 353-360, 1995.
- Karami G. and Malekzadeh P., In-plane vibration analysis of circular arches with varying

cross-sections using differential quadrature method. *Journal of Sound and Vibration*, 274: 239-257, 2004.

- Tüfekçi E. and Arpaci A., Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects. *Journal of Sound and Vibration*, 209(5): 845-856, 1998.
- Shu C. and Chen W., On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates. *Journal of Sound and Vibration*, 222(2): 239-257, 1999.
- Shu C. and Richards B.E., Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations. *Int. J. Numer. Methods Fluids*, 15: 791-798, 1992.
- Tseng Y.P., Huang C.S. and Lin C.J., Dinamic stiffness analisys for in plane vibrations of arches with variable curvature. *Journal of Sound and Vibration*, 207(1): 15-31, 1997.
- Wu J.S. and Chiang L.K., A new approach for free vibration analysis of arches with effects of shear deformation and rotatory inertia considered. *Journal of Sound and Vibration*, 277: 49-71, 2004.