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Abstract. Recent experimental results have shown that the vibration induced by the tire air 
cavity resonance is transmitted into the vehicle cabin and may be responsible for significant 
interior noise. The tire acoustic cavity is excited by the road surface through the contact 
patch on the rotating tire. The effect of the cavity resonance is that results in significant 
forces developed at the vehicle’s spindle, which in turn drives the vehicle’s interior acoustic 
field. This tire-cavity interaction phenomenon is analytically investigated by modeling the 
fully coupled tire-cavity systems. The tire is modeled as an annular shell structure in contact 
with the road surface. The rotating contact patch or a harmonic point force is used as a 
forcing function in the coupled tire-cavity governing equation of motion. The contact patch is 
defined as a prescribed deformation that in turn is expanded in its Fourier components. The 
response of the tire is then separated into static and dynamic components. The coupled 
system of equations is then solved in closed form in order to obtain the tire acoustic and 
structural responses. The influence of the acoustic cavity resonance on the spindles forces is 
shown to be very important. Therefore, the tire cavity resonance effect must be reduced in 
order to control the tire contribution to the vehicle interior noise.  The modeling and analysis 
of an approach to control the tire acoustic cavity resonances is investigated. The approach 
consists in the incorporation of secondary acoustic cavities to detune and damp out the main 
tire cavity resonance.  The model is used to show that the secondary cavities are effective at 
suppressing the tire cavity resonance and thus the forces at the spindle.  
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1 INTRODUCTION 

The main aim of this work is to derive the model of the dynamic response of a deformed 
tire. The general steps in the development of the deformed tire model are shown in Figure 1 
and it is based on the work by Molisani1. The region of the tire deformed due to the contact 
with the ground is assumed to be perfectly defined by the geometry of the problem. That is, 
the tire deforms from a circular sector to a flat surface called contact patch as shown in Figure 
1(a). The contact patch imposes a prescribed deformation of the tire that needs to be defined. 
The size of this region (footprint) is completely defined by the static contact patch depth, h  . 
The prescribed deformation function in turn induces a static displacement field on the rest of 
the tire which is shown in Figure 1(b). This static displacement field is obtained by using the 
classical equations for the elastic shells.   After the static displacement field is obtained, a 
harmonic motion of the contact patch around the equilibrium position, defined by the contact 
patch depth, is superimposed. This contact patch harmonic motion produces a dynamic 
displacement field due to the inertia properties of the elastic shell. A representation of the 
dynamic displacement is shown in Figure 1(c). Thus, the formulation of the deformed tire 
case involves the modeling of the prescribed, static, and dynamic displacement fields.  
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Figure 1: Schematic of the contact patch modelling. 

 
 

2 PRESCRIBED DEFORMATION 

The prescribed displacement is assumed symmetric with respect to d(x,θ). The prescribed 
displacement function   is assumed to be affecting only the radial direction, i.e. a point on the 
tire in contact with the ground moves along the radial direction. This modeling assumption is 
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shown in Figure 2 and it is critical for the next step in finding the static displacement.  
 

                    
Figure 2: Contact patch definition at x=LT/2. 
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The domain of definition for the “contact patch” is given by 
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where LT  is tire width. The prescribed displacement function is then given by 
 
                                         ( ) ( ){ } ( ), sec (Td x h a a H x L H xθ θ⎡ ⎤= −  − − − − 0)⎡ ⎤⎣ ⎦⎣ ⎦                         (2) 

 
where (.)H  is the Heaviside’s unit step function.                 

 

3 STATIC DISPLACEMENT 

The prescribed deformation function d(x,θ) induces a static deformation in the elastic shell 
as shown in Figure 1(b). In order to find the static displacement, the prescribed deformation is 
approximated by the eigenfunctions of the shell. The selection of these functions simplifies 
the approach because they satisfy the shell equations and the simply supported boundary 
conditions (shear diaphragms2). That is, 
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Note that the static displacement in (3) is written only for the radial component of the 

displacement field. The other two components of the displacement field is defined later using 
the elasticity equations1.  The aim now is to solve for the unknown modal amplitude ( )3

mnW . To 
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this end, the radial component of the static displacement in (3) is forced to match the 
prescribed displacement (2) over the contact patch sector. This matching yields a linear 
system of equations given by 
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                      (4) 

Terms are included in the series until the contact patch is well approximated and therefore 
the match is satisfied. In Figure 3, the radial static displacement field  is shown. The upper 
figure represents the complete tire shell. The lower figure shows the contact patch region in 
detail. Therefore, the three-dimensional form of the contact patch modeled in this effort can 
be appreciated.  

Sw

 

 

Deformed 
Tire  

Contact patch area 

Figure 3: Radial displacement field [m] for tire. Sw
 

In Figure 4, the static displacement predicted by the model is compared with experimental 
data collected by Yamauchi and Akiyoshi3 for a tire size 195/65 R15. This figure shows the 
radial displacement of the “deformed tire”, ws, and the prescribed displacement function, 
d(x,θ),  around the tire in the azimuth direction at the center line x=LT /2. The radial 
displacement, ws, matches the contact patch very well. However, a very significant oscillation 
is observed and it is due to the (1,8) mode. In order to compare the experimental data, a 
moving average of the static displacement away from the contact patch is also plotted (blue 
line). The average curve shows similar trend as the experiments. This suggests that the model 
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overemphasizes the high order mode component not observed experimentally.  Note that this 
(1,8) mode component associated to the oscillation will not contribute to the spindle forces 
because it does not correspond to a “beam” mode1 with n=1. The predicted results shown in 
this figure are in relatively good agreement with the measured results in the contact patch 
area. 
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Figure 4: Comparison of predicted and experimental radial displace
from Yamauchi and Ak

 

The formulation up to this point allows finding the 
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4 DYNAMIC DISPLACEMENT  

The dynamic motion of the system is assumed to b
motion of the tire as shown in Figure 1(c). The vertical m
variation of the contact patch depth that can be expressed
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roughness of the road. The displacement induced now by the time dependant contact patch 
depth, h(t),  oscillating with radial frequency ω induces inertial forces in the tire shell.  

The inertial effects will produce a dynamic response that needs to be superimposed to the 
static deformation. To solve for the time-dependant displacement vector, small motion are 
assumed i.e. hε . Therefore,  h  is substituted by h(t) in the system of equations of eq. (4),  
and linearized with respect to h(t) by using Taylor’s series expansion evaluated around the 
equilibrium position h . Thus, the complete static displacement field and the time-dependant 
part are fully defined, i.e. { } { } { }, , , , , ,

T Ts s s s s s s s su v w u v w u v w= +
T .  It is important to note that it was 

found that the axial and tangential time variation displacement components can be neglected 
since their contribution to the response is insignificant1.  

The dynamic response due to the oscillating component of the static displacement 
field,{ }, ,

Ts s su v w , can now be determined. Applying the shell Donnell-Mushtari operator to the 
total displacement vector {ut} as follow 
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where the total displacement vector is the contribution of the dynamic displacement due to the 
shell inertia and the time-dependant part of the static displacement due to the contact patch 
oscillation around h . The dynamic response of the “deformed tire” model is then used to 
compute the forces at the spindle. 

5 COUPLED STRUCTURAL-ACOUSTIC PROBLEM 

The cavity-structure interaction problem is now solved. Figure 5 illustrates the problem of 
a structure and the interior acoustic pressure. Here a brief description of the coupled problem 
will be presented for a general understanding of the solution approach. 
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Figure 5: Structure radiating into an enclosed volume. 
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The approach to solve the coupled problem is to include in the equation of motion of the 
tire the force due to the interior pressure, i.e. fluid loading. However, the fluid forces depend 
on the velocity response of the structure which leads to a fluid feedback problem. The 
equation of motion of the system including the fluid loading is written as 
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The forcing function { }, , T

u v wf f f  in equation  (7) is the external load. The external load is 
the contact patch forcing function for the “deformed tire” model. The model also permits to 
change the forcing function to excite the undeformed or “free tire”, i.e. a harmonic force4. The 
last vector in (7) represents the acoustic pressure acting on the tire5, given by the following 
equation  

 

                                  
2

0 0

( , , ) ( , ) ( , , , , )  d   
TL
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π
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where ( , )o ow x θ  is the radial component of the shell velocity response, ρ is the air density, 
εℑ is the integration constant related to de Dirac delta, and ( , , , , )o oG x r x aθ θ  is the Green’s 
function1. 

To demonstrate the capability of the model, the analytical tire model was validated against 
experimental results1. The test cases were a free tire driven by a point force (referred as 
undeformed case) and the deformed tire driven by the contact patch forcing function. Figure 6 
shows both cases (a) undeformed and (b) deformed tire. In each plot, there are three curves 
corresponding to the in vacuo model (without the effect of the tire cavity) in red dotted line, 
the coupled model in blue solid line, and the experimental results from a test measurement 
performed by Yamauchi and Akiyoshi3 in a green dash-dotted line. The results from this 
simple analytical model show qualitatively similar trends as the experimental observation, i.e. 
blue line for the coupled case and green line for experimental results. The green line 
corresponding to the experimental data shows also the presence of the rigid body motion, 
which is not accounted for the model. The dynamic of the tire structure is clearly represented 
and the effect of the tire acoustic cavity is very well predicted in both cases i.e. undeformed 
and deformed tire. 

The model was then used to predict the forces at the spindle of the car for the undeformed 
and deformed tire cases. In both cases, the force predicted by the model shows a significant 
effect due to the tire acoustic cavity resonance1.  
 

Leonardo R. Molisani* and Ricardo A. Burdisso

1605



 

    0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

  
            Frequency [Hz] 

0 50 100 150 200 250 300 350 400
-160

-140

-120

-100

-80

-60

-40

-20

0

20

      Frequency [Hz] 

M
ag

. A
cc

el
er

an
ce

 [d
B

-r
ef

. 1
m

/s
ec

2  /N
] 

M
ag

. A
cc

el
er

an
ce

 [d
B

-r
ef

. 1
m

/s
ec

2  /N
] 

In vacuo Tire cavity 
resonance 

Tire cavity 
resonance 

Experiment

Experiment

In vacuo 

Coupled 
Coupled 

(b) (a) 

Figure 6: Magnitude of the Point Accelerance (a) the free and (b) deformed tire model measured at the wheel 
center. 

6 CAVITY ACOUSTIC CONTROL 

The influence of the acoustic cavity dynamics results in a sharp increase of the spindle 
forces around the tire cavity resonance. Therefore, the tire cavity resonance effect must be 
reduced in order to control the tire contribution to the structural born noise. The approach 
proposed here is the incorporation of secondary acoustic cavities to detune and damp out the 
main tire cavity resonance.  The secondary cavity control approach is similar to the concept of 
Dynamic Vibration Absorber (DVA) used in structures6.  The DVA concept is applied to 
detune the tire acoustic cavity resonance by using secondary cavities, i.e. the (0,1,0) acoustic 
mode4. The effect of the rotation of the tire is accounted by using two secondary cavities 
placed 90o apart from each other.  

The tire main and secondary cavities are interconnected by openings which are referred 
here as the “coupling interfaces”. To introduce damping in the system, sound absorptive 
screens such as wiremesh, perforate plates, and so forth can be implemented at these 
interfaces. The model is illustrated in Figure 7 and involves first separating the secondary 
cavities from the tire cavity. Then, the effect of the secondary cavities on the tire cavity is 
considered or modeled as an additional moving boundary in the formulation, i.e. in addition to 
the elastic shell motion. For simplicity and without loss of generality, the secondary cavities 
are modeled as a constant cross section straight waveguide (tube) as shown in Figures 7. The 
size of the tube cross section is assumed much smaller than the acoustic wavelength. Since for 
typical tires the acoustic resonance (0,1,0) is at few hundred Hertz, this assumption is valid 
and implies that the motion of the boundary at the coupling interfaces can be modeled as a 
piston sources with unknown normal velocity with  1,2jz j = . The couple response of the tire 
structure and acoustic cavity (tire and secondary cavities) is again the solution of the system 
(7). 
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Figure 7: Tire and secondary cavities acoustic modelling. 

 
The expression for the acoustic pressure ( , , )p x aθ  has now to include the effect of the 

secondary cavities, i.e. piston sources.    
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To illustrate the performance of the control approach, Figure 8 shows the magnitude of the 

vertical force at the spindle for (a) the free tire model and (b) the deformed tire model. 
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Figure 8:  Magnitude of the vertical force at the spindle (a) the free tire model and (b) deformed tire model. 
 

The figure shows the cases for the in vacuo model (red line), the coupled model without 
the secondary cavities (blue line), and the coupled model with the secondary cavities (green 
line). From the results in the figure, it can be observed that the concept is very effective at 
suppressing the acoustic cavity resonance for the undeformed and deformed tire cases. The 
secondary cavities successfully achieve the acoustic resonance control. 
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7 CONCLUSION  

A model for the coupled tire-cavity was developed and validated against experimental 
results. The model shows that the acoustic cavity resonance has a very dominant effect in the 
response of the tire. In addition, the model was also used to investigate a control approach 
consisting on adding secondary cavities to suppress the adverse effects of the acoustic cavity 
in the tire response. This method is effective and can be easily implemented in practice. 
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