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Abstract. Micromechanical systems (MEMS) that employ active piezoelectric materials, typically in 
thin-film form, show promise for a variety of applications and are currently the subject of research in 
a number of laboratories. The development of increasingly complex devices demands sophisticated 
simulation techniques for design and optimization. MEMS devices typically involve multiple coupled 
energy domains and media that can be modeled by using a set of partial differential equations, 
including spatial and time variables. In this work, a computational multi-field mechanics model of a 
micro-structure with piezoelectric actuation and piezoelectric sensing has been developed as a design 
tool for micro-resonators and micro-resonator arrays. Although linear models of electrostatically 
actuated microresonator arrays have been developed in the literature, such models have not been 
developed for piezoelectrically driven resonator arrays. The developed dynamic model of MEMS 
resonator array accounts for structural properties and electromechanical coupling effect through 
finite element analysis. In the simulations, a beam element was used for the structural modeling. We 
assume that the deflection is large and account for the geometric nonlinearity. The mechanical strain, 
however, is assumed to be small so that the linear constitutive relations are still valid. The admittance 
model is derived by combining the linear piezoelectric constitutive equations with the modal transfer 
function of the resonator structure. The overall transfer function describing the admittance between a 
driven input and a sense output of a micro-resonator array is obtained in the frequency domain. The 
resonator receptance matrix is constructed through modal summation by considering only a limited 
number of dominant modes. The electromechanical coupling determination at the input and output 
ports makes use of the converse and direct piezoelectric effects. The coupled model can be used to 
carry out sensitivity studies with respect to the following: (i) the resonator beam thickness and length; 
(ii) the influence of constant axial forces on the transverse vibrations of clamped-clamped micro-
resonator arrays; (iii) geometry of the drive and sense electrodes; and (iv) imperfect boundary 
conditions due to mask imperfections and fabrication procedure. For micromechanical resonators, 
these modeling uncertainties come in large part from manufacturing tolerance, residual stresses, 
irregular surface topology, and material property variations, among others. The developed model has 
been validated by comparing with results available in the literature for single clamped-clamped 
resonators. 

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr02800-2819
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+
Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

2800



 

1 INTRODUCTION 

Microfabrication of filters, switches, choppers, oscillators, and related communication 
system components has been recognized as a key enabler for increasing functionality while 
reducing system size and power requirements for mobile communications (Lin et al., 1998; 
Nguyen, 1999). Compared to traditional surface acoustic wave (SAW) filters and bulk 
acoustic mechanical resonators, micromechanical resonators are attractive candidates for 
mobile communications and signal processing applications (e.g., Fourier transform 
computations), since they offer many benefits including reduction in system size and 
reduction in power requirements. Microscale polysilicon capacitive filters, which are based on 
electrostatic actuation and capacitive sensing, have been used to demonstrate devices 
approaching 100 MHz center frequency with Q factors in the range of 7,500. However, in 
order to realize filters with center frequencies in the GHz range, the actuation and scaling will 
need to be scaled to the micron and sub-micron length scales.  As the polysilicon resonator 
dimensions are reduced to the micron and sub-micron length scales, neither the electrostatic 
actuation characteristics nor the capacitive sensing characteristics scale well. In this regard, 
piezoelectric actuation and piezoelectric sensing based resonators are attractive for scaling 
down to micron and sub-micron ranges and realizing filters with high center frequencies. 
Apart from filters and other signal-processing applications, piezoelectrically driven systems 
are also viable candidates for micropumps, microjets, and energy reclamation devices. 

Microscale polysilicon capacitive filters, which are based on electrostatic actuation and 
capacitive sensing, have been explored by a number of groups, most notably by C. Nguyen 
and co-workers [see, for e.g., Nguyen, 1999]. By using this technology, devices approaching 
100 MHz with Q factors of 7,500 have been demonstrated (Wang et al., 2000). However, 
neither electrostatic actuation nor capacitive sensing scale well as resonator dimensions are 
reduced to the micron and sub-micron length scales as required for filters with center 
frequencies in the GHz range and other high-frequency resonators. 

As demonstrated by DeVoe (2001), piezoelectric actuation and sensing can avoid this 
problem, and one can take advantage of this to design filters with significantly higher center 
frequencies.   The clamped-clamped beam piezoelectric resonator, which is depicted in Figure 
1, is a simple example of such a device. This device uses a thin film piezoelectric layer on the 
top of a beam structure with input (drive) and output (sense) electrodes positioned on opposite 
sides of the beam. The composite beam structure is driven at one of its resonances, which is 
typically the fundamental resonance frequency. The input (drive) voltage generates an electric 
field between the top and bottom electrodes and induces a strain in the drive side of the 
resonator through the converse piezoelectric effect. This strain results in a concentrated 
moment applied at the terminal edge of the input electrode. A bending moment results from 
the offset of the piezoelectric layer from the beam neutral axis. When the input voltage 
frequency is near the fundamental frequency of the beam, the beam is in resonance amplifying 
the piezoelectric strain on the sensing side of the resonator. This induces a current in the 
sensor circuit at the resonance frequency of the beam through the direct piezoelectric effect. 
Collaborators at the Army Research Laboratory (ARL), Adelphi, MD  and the University of 
Maryland have demonstrated similar devices based on piezoelectric thin films that operate at 
9.2 MHz with Q factors on the order of 1000 (Piekarski et al., 2001). 

Above a critical frequency that is dependent on device geometry, the coupling strength of 
piezoelectric filters becomes significantly larger than capacitive devices. In addition, because 
current micromechanical and nanomechanical resonators and filters typically rely on 
electrostatic or magnetic excitation, they suffer from significant limitations on achievable 
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linear dynamic range and impedance. In addition, the piezoelectric resonators can operate at 
very low power and voltage levels compared to electrostatic devices, which require high-
voltage biasing for acceptable electromechanical coupling. If the system behavior is linear, 
then as described by Ballato (2001) for devices that operate in different energy domains such 
as electrical and mechanical domains, one can construct an equivalent-circuit representation. 
This resulting equivalent linear system representation can then be used for the subsequent 
design. However, when nonlinear effects are pronounced, studies need to be conducted to 
identify the operational parameter ranges in which this type of linear representations can be 
used. In order to design and fabricate piezoelectric microelectromechanical resonator systems, 
a fundamental understanding of the oscillatory characteristics of these systems is needed.  

 
(a)

(b)

(a)

(b)

 
Figure 1: (a) SEM of a PZT resonator (courtesy, Maryland MEMs Laboratory) and  (b) a schematic showing the 

details [DeVoe (2001)]. 

Two types of resonators are considered here. One type of resonators will be referred to as 
the AlGaAs resonator, and the other type of resonators will be referred to as the PZT 
resonator. Both types of resonators are composite structures, and the PZT resonators have 
asymmetric cross-sections, as discussed in previous work (DeVoe, 2001; Currano, 2002). The 
considered resonators are based on the piezoelectric effect, as shown in Figure 1. The elastic 
substrate is a SiO2 layer, on the top of which a platinum electrode layer is deposited 
throughout the length of the structure. A thin layer of sol-gel piezoelectric film is located on 
the top of this electrode layer. To complete the structure, another platinum layer is deposited 
on the top of this piezoelectric film and this layer extends over one quarter of the length from 
each anchor.  The mid-section of the resonator structure is free from this platinum electrode. 
Due to the asymmetry of the cross section, the position of the piezoelectric layer is offset from 
the neutral axis, and in addition, (tensional) residual stress may also be introduced in each 
layer during the fabrication process. The effect of these stresses is explored in this work. 
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In order to design and fabricate piezoelectric microelectromechanical resonator systems, a 
fundamental understanding of the oscillatory characteristics of these systems is needed. This 
work is aimed at developing this fundamental understanding, and in particular, in elucidating 
the role of nonlinear mechanics in the design of such resonators and arrays of such resonators. 

As pointed out in the authors’ recent work, the resonators also exhibit non-linear 
characteristics (Preidikman, 2003; Balachandran and Preidikman, 2004; Balachandran, 2005). 
These characteristics include Düffing oscillator like response during resonance excitations, 
temporal harmonics in the response, and spatial patterns during forced oscillations that cannot 
be explained by conventional linear analysis.  The lengths of the resonators considered in 
previous studies   typically range from 100 µm to 400 µm, and the thickness of each platinum 
electrode is in the range of 90 nm to 180 nm. In some typical uses of this resonator, the 
structure is driven close to its first resonance frequency with the input at the drive electrode 
having a DC bias in addition to the harmonic component. In this work, the authors discuss a 
semi-analytical finite element based formulation, in which transverse free vibrations of 
composite, and axially stepwise varying properties micro-resonators and micro-resonator 
arrays subjected to constant axial loads are considered (see Figure 2 for a clamped-clamped 
case). It is shown that the consideration of axial loads is important to predict the natural 
frequencies of the resonators observed in the experiments. 
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Figure 2: Clamped-clamped composite resonator subjected to a constant axial load P. 

In the last several years, there has been a growing need for accurate modeling and 
simulation of microelectromechanical devices and systems that employ piezoelectric 
materials. This comes from the need to reduce design iterations and speed up the product 
development, and also to ensure reliability of the final product. Finite element analysis (FEA) 
plays an important role in the simulation of MEMs devices, and this analysis generally covers 
multiple domains for a single device, such as structural, thermal, electrostatic, 
electromagnetic, and fluid domains. von Preissig and Kim (2000) examined techniques for 
modeling thin-piezoelectric MEMs devices by using existing finite-element packages. In this 
work, piezoelectrically actuated bending is examined. The authors point out that, while it may 
seem that the sheet-like nature of structures in piezoelectric MEMs would make them good 
candidates for conducting FEA with plate elements, solid or “brick” elements can work 
remarkably well. Finite element model (FEM) errors associated with the discretization of the 
model have also been analyzed. An important issue to note is that meshing a thin sheet into 
low-aspect-ratio elements requires a prohibitively large number of elements, while too low a 
mesh density might result in severe discretization and element-shape errors. A four-node, 
isoparametric, linear piezoelectric, plane-strain element from the ANSYS library has been 
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used in this work. Wang and Ostergaard (1999) used finite elements to develop a coupled 
simulation method for piezoelectric transducers with an attached electric circuit. In this work, 
the weak form of the laws of conservation of momentum and electric charge for a linear 
piezoelectric medium are discretized by using FEM. Their method has been implemented in 
the ANSYS software. Chen et al. (2002) presented a two-dimensional analytical model of a 
spiral-shaped PZT ceramic actuator. They used FEA to validate the results obtained from 
analytical model. In this work, the commercially available software packages PATRAN and 
ABAQUS are used. PATRAN is utilized as the pre-processor and ABAQUS is used as a post-
processor to perform the linear elastic, piezoelectric analysis. In order to capture bending 
effects accurately, the authors used eight-noded, isoparametric, plane strain, linear elastic, 
piezoelectric elements.  For achieving convergence, while keeping the length-to-width ratio of 
the elements reasonable, they used meshes with at least 10 elements across the spiral 
thickness. A typical finite element mesh of a two-turn spiral actuator has more than 3000 
elements. 

In this work, the coupling of electrical and mechanical fields that is intrinsic to a 
piezoelectric material is accomplished in a non-traditional approach. From a filter design 
standpoint, the admittance function relating input voltage to output current ( ) ( )m nI Vω ω   is 

an important frequency-response function to be determined (see Figure 3).  
 

Port 1 Port 2

( )1V ω ( )2I ω

Port 1 Port 2
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( )nV ω
( )mI ω

mn
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(b)
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( )1V ω ( )2I ω

( )nV ω
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( )nV ω
( )mI ω
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Figure 3: Input and output quantities of interest for: (a) a clamped-clamped piezoelectric microresonator, and (b) 

a clamped-clamped piezoelectric microresonator array. 

This admittance function may be obtained by relating the mechanical transfer function of 
the microresonator structure to the corresponding electrical input and output through the 
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piezoelectric constitutive equations. In the second section of this work, this admittance 
function is determined for a composite microresonator with axially stepwise varying 
properties. This microresonator is also subjected to constant axial loads.  The obtained 
admittance function has the form 

 ( ) ( )
( ) ( ) ( )m S SA A

mn
n

I
Y

V

ω
ω ω ω

ω
= = C H F  (1) 

where ( )SA ωH  is a “block” of the complex frequency response matrix for the considered 

microresonator (e.g., Preidikman and Balachandran, 2006); ( )S ωC  is a matrix that depends 

on the material properties of the PZT material, the geometry of the sensor, and the finite 
element discretization of the microresonator; and AF  is a vector that depends on the material 
properties of the PZT, the geometry of the actuator, the geometry of the suspended beam 
substrate, and the finite element discretization of the microresonator. Comparisons with 
experimental results and results available in the literature are presented. It is believed that the 
numerical and analytical efforts presented in this work can be used as a basis to develop 
design tools for piezoelectric microresonators and microresonator arrays. 

2 SEMI-ANALYTICAL TOOL BASED ON GEOMETRIC NONLINEARITIES FOR 
MICRORESONATOR ARRAYS DESIGN    

In this effort, a computational multi-field mechanics model of a micro-structure with 
piezoelectric actuation and piezoelectric sensing has been developed as a design tool for 
micro-resonators and micro-resonator arrays. The developed model accounts for the structural 
properties and the electromechanical coupling effect through finite element analysis. It is 
assumed that the deflection is large and that the geometric nonlinearity must be included. The 
dynamic admittance model is derived by combining the linear piezoelectric constitutive 
equations with the modal transfer function of the multi-layered microresonator structure. The 
resonator receptance matrix is constructed through modal summation by considering a limited 
number of dominant modes. The electromechanical coupling determination at the input and 
output ports makes use of the converse and direct piezoelectric effects.  In the development of 
the finite-element models, the boundary conditions, the shapes of electrodes, and distributed 
parameters such as varying elastic modulus across the length of the structure have been taken 
into account. The developed semi-analytical tool can be used to carry out parametric studies 
with respect to the following: (i) the resonator beam thickness and length; (ii) the influence of 
constant axial forces on the transverse vibrations of clamped-clamped microresonators; (iii) 
the geometry of the drive and sense electrodes; and (iv) imperfect boundary conditions due to 
mask imperfections and fabrication procedure. The semi-analytical development has been 
validated by comparing the model predictions with prior results available in the literature for 
clamped-clamped resonators and experimental measurements. 

2.1 The equations of motion in the frequency domain 

The equations of motion of the microresonator array in the frequency domain are of the 
form 

 { } ( ) ( )2 jω ω ω ω− + + =M C K d f  (2) 

where 1j = − , E G= +K K K  is the global stiffness matrix, M , EK  and GK  are the 
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global mass matrix, elastic stiffness matrix, and geometrical stiffness matrix, respectively, and 

( )ωd and ( )ωf are the Fourier transforms of  the nodal displacements ( )td  and the nodal 

forces ( )tf , respectively. The development of the time-domain model with the geometric 

nonlinearity is detailed in Preidikman and Balachandran, 2006. From (2), one obtains 

 ( ) ( ) ( )ω ω ω=d H f  (3) 

where 

 ( ) { } 12 jω ω ω
−

= − + +H M C K  (4) 

is the complex frequency response matrix (the mechanical force-displacement transfer 
function) of the beam micro-resonator (Preidikman and Balachandran, 2006). Since 
proportional damping is assumed, the complex frequency response matrix can be constructed 
from the modal summation as 

 ( ) ( )
( ) ( )

mod

22
1 1 2

n
lr ls

rs
l l l l l

H
j

φ φω ω
ω ω ω ζ ω ω=

 
 = =     − +

  

∑H  (5) 

where , 1,2, , dofr s n= K , dofn  is the number of degrees of freedom (dof) of the finite 

element model, lω  is the lth natural frequency of the undamped system, and lζ  is the lth 

damping ratio of the microresonator. In (5), lrφ  and lsφ  are, respectively, the r-component and 

the s-component of the lth mass normalized mode shape of the microresonator. Further, in (5), 

modn  is the number of dominant modes. 

The damping ratio in (5) is, in general, determined experimentally from the measured 
quality factor, lQ , which is given by, 

 cu cl
l

cu cl

Q
Ω Ω

=
Ω − Ω

 (6) 

where the cutoff frequencies are given by 

 2 21 2 2 1cl l l lζ ζ ζΩ = − − −  and 2 21 2 2 1cu l l lζ ζ ζΩ = − + −  (7) 

After substituting from (7) into (6) and using a Taylor’s series expansion about 0lQ = , the 

result obtained is 

 3 41 3 9
( )

2 2 4l l l l
l

Q Oζ ζ ζ
ζ

= − − +  (8) 

Hence, for very lightly damped microresonators (high-Q microresonators); that is 
0 1ζ< << , the quality factor can be approximated as 

 
1

2l
l

Q
ζ

≅  (9) 

Now, in terms of the quality factors it is possible to rewrite the degree of freedom (dof)-to-
dof mechanical complex frequency response function of the microresonator structure, 
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( )rsH ω , as 

 ( )
mod

2
1

2 1
1

n
lr ls

rs
l

l
l l l

H

j
Q

φ φω
ω ωω
ω ω

=

=
    
 − +   
     

∑  (10) 

At this point, one has the elements of the complex frequency response matrix, which 
describes the resulting harmonic displacement of the rth dof caused by a unit harmonic force 
applied at the sth dof.   

2.2 Admittance Model 

In this section, a semi-analytical model describing the admittance function for a clamped-
clamped piezoelectric microresonator is developed. The semi-analytical admittance model 
may be obtained by relating the (numerical) mechanical transfer function of the 
microresonator structure to the corresponding electrical input and output through the 
(analytical) piezoelectric constitutive equations.  The overall frequency-response function 
describing the admittance ( )21Y ω  between the driven input (port 1) and the sense output (port 

2) of the beam resonator shown Figure 1 is defined as 

 ( ) ( )
( )

2
21

1

I
Y

V

ω
ω

ω
=  (11) 

where ( )1V ω  is the voltage applied to the input port, and ( )2I ω  is the current measured at 

the output port. 

2.3 Actuator Side 

In this work, the active film under consideration is considered to be long, narrow, and thin, 
so as to make the length 1L  much greater than the maximum value of the width ( )1b x , which 

is much greater than the thickness ph  (Figure 4).   

1x L=

x

0x =

Piezoelectric FilmDrive Electrode

eh
( )1V t

Suspended Beam Substrate

( )31 1, , ,p pd E h b x
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AΩ

1x L=

x

0x =

Piezoelectric FilmDrive Electrode

eh
( )1V t

Suspended Beam Substrate

( )31 1, , ,p pd E h b x

1L

AΩ  
Figure 4: Schematic view of the actuator port. 
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Figure 5: External, transverse distributed force and generalized finite element nodal forces. 

Next, attention is focused on the case when the active film is driven by an AC voltage ( )1V t . 

The externally transverse distributed force ( ),wf x t  can be expressed in terms of the drive 

voltage ( )1V t  as 

 ( ) ( ) ( ) ( )
2

1
31 12

1
,

2w p e

d b x
f x t d E h V t H x

dx
=  (12) 

where ( ) ( ) ( )1H x U x U x L= − − , and ( )U x a−  is the Heaviside step function. The basis 

for (12) is detailed in Preidikman and Balachandran, 2006. In view of (12), the generalized 
element nodal forces, ( )1

e tf  and ( )2
e tf  can be written in terms of the drive voltage ( )1V t  as 

 

( )

( ) ( ) ( ) ( )

1 2 1

2
1

2 31 2 12

,

1
,

2
e

e

e
p e e A

t

d b x
t d E h x dx V t

dx

×

Ω

=

  = Ω ⊆ Ω 
  

∫

f 0

f N
 (13) 

where ( )2 xN  is a shape function matrix, as discussed in Preidikman and Balachandran, 

2006. Further, { }1| 0A x x LΩ = ≤ ≤  denotes the sub-domain of [ ]0,L  occupied by the sensor 

(¡Error! No se encuentra el origen de la referencia.). In the frequency domain, (13) 
becomes 

 ( ) ( ) ( )1 2 1 2 2 1, ,e e e
e AVω ω ω×= = Ω ⊆ Ωf 0 f F  (14) 

where, ( )1V ω , ( )1
e ωf , and ( )2

e ωf  are the Fourier transforms of ( )1V t , ( )1
e tf , and ( )2

e tf , 

respectively, and 2
eF  is the frequency-independent vector of generalized element nodal forces 

defined as 

 
( ) ( )

2
1

2 31 22

1
,

2
e

e
p e e A

d b x
d E h x dx

dxΩ

= Ω ⊆ Ω∫F N  (15) 
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By using (14) and the assembly operator, the sub-vector of generalized equivalent nodal 
forces can be written as follows, 

 ( ) ( ) ( )2 1
1 1

2

,A A
Aee

V V eω ω ω× 
= = ∈Ω 

 

0
f F

F
A  (16) 

2.4 Sensor Side 

On the sensor side, the attention is focused on the direct piezoelectric effect. As described 
before, a key to developing a useful electromechanical model of a piezoelectric model is the 
determination of changes in electrode charges when the active film is strained due to the 
mechanical excitation of the microresonator. At the sensor port, it is also considered that the 
active film is long, narrow, and thin, so as to make the length 2L  much greater than the 

maximum value of the width ( )2b x , which in turn is much greater than the thickness ph   

(Figure 6). 
x L=
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eh

SΩ

2L
x L=

x

2x L L= −

Piezoelectric FilmSense Electrode
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Figure 6: Schematic view of the sensor port. 
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Figure 7: Transverse displacements of the centroidal axis and generalized finite element nodal displacements. 

Considering the relation between the output charge and the output current, in the 
frequency domain, the expression for the output current becomes 
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 ( ) ( ) ( ) ( ) ( )
2

2
0 0

2 2 31 2 2

, ,

2

L
e

p

L L

u x w xh
I j Q j d E b x dx

x x

ω ω
ω ω ω ω

−

 ∂ ∂
= = − ∂ ∂ 

∫  (17) 

The integral in (17) can be split as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

2

0 0
2 2

2 2
0 0

2 22 2

, ,
,

, ,
,

e

e

L

eL L

L

eL L

e S

u x u x
b x dx b x dx

x x

w x w x
b x dx b x dx

x x

ω ω

ω ω
− Ω

− Ω

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

Ω ⊆ Ω

∑∫ ∫

∑∫ ∫  (18) 

where { }2|S x L L x LΩ = − ≤ ≤  denotes the sub-domain of [ ]0,L  occupied by the sensor 

port (Figure 7). Hence the expression for the output current becomes 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 ,e e e e S S
S

e

I eω ω ω ω ω ω ω = + = ∈Ω ∑ A d B d C d  (19) 

where the sub-matrices ( )e ωA  and ( )e ωB  are given by 

 

( ) ( ) ( )

( ) ( ) ( )

1
31 2

2
2

31 2 2

,

,
2

e

e

e
p e S

e e
p e S

x
j d E b x dx

x

xh
j d E b x dx

x

ω ω

ω ω

Ω

Ω

∂
= ∀Ω ⊆ Ω

∂

∂
= − ∀Ω ⊆ Ω

∂

∫

∫

N
A

N
B

 (20) 

At this point, it is convenient to rewrite the system (2) in the following block-partitioned 
form 

 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

A AA AM AS A

M MA MM MS M

S SA SM SS S

ω ω ω ω ω
ω ω ω ω ω
ω ω ω ω ω

     
     

=    
    
     

d H H H f

d H H H f

d H H H f

 (21) 

where A  stands for “Actuator”, M  for “Midspan”, and S  for  “Sensor” (Figure 8). 
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Figure 8: Schematic view of the clamped-clamped piezoelectric microresonator and the finite element mesh. 

By considering that in the present case, both ( )M ωf  and ( )S ωf  are equal to zero, and 
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using (16), it is possible to express ( )S ωd  in terms of the mechanical force-displacement 

transfer function and the driven voltage as follows 

 ( ) ( ) ( ) ( ) ( )1
S SA A SA AVω ω ω ω ω= =d H f H F  (22) 

Finally, combining (24) and (19), the admittance function   relating input voltage to output 
current, can be expressed as 

 ( ) ( )
( ) ( ) ( )2

21
1

S SA AI
Y

V

ω
ω ω ω

ω
= = C H F  (23) 

3 EXPERIMENTAL RESULTS, COMPARISONS, AND DISCUSSION 

The developed coupled model enables one to investigate the following: i) the elastic 
stability of the resonator, ii) the influence of a constant axial force on the transverse vibrations 
of a clamped-clamped resonator structure, and iii) the influence of a constant axial force on 
the transverse vibrations of a free-free structure. 

3.1 Prestressed Microresonators 

A case of interest is one where the geometric stiffness is driven by a parameter λ ; for 
example, in the case of a microresonator subjected to an initial axial force 0P  due to residual 

stresses introduced during the fabrication of the resonators. 

3.2 Influence of a constant axial force on the transverse vibrations of a clamped-
clamped resonator structure 

In Figure 9, for a clamped-clamped AlGaAs resonator, the variations of the first four 
natural frequencies are shown with respect to the axial load.  As expected, as the axial 
stretching load increases, the natural frequencies increase. Similarly, they decrease with the 
increase of the compressive axial load. 
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Figure 9: Variations of natural frequencies with axial load for a AlGaAs micro-resonator. 

When the compressive axial force reaches the value of the Euler’s buckling load, 
1.2489 -2 NcrP E= , the first natural frequency goes to zero. The composite material properties 

and layer thickness values for the considered AlGaAs resonators are listed in Table 1. Each 
AlGaAs microresonator has a particular orientation on the wafer. The orientation on the wafer 
is indicated, with respect to a reference orientation, by the so-called “wafer-angle” and this in 
turn leads to a certain crystallographic direction of the AlGaAs structure.  The variation of the 
first natural frequency shown in Table 2 has been obtained from experimental measurements 
for different resonators. 

As a representative example, a 100 mµ  long resonator with a 15 mµ  width is considered. 
From the results shown in Figure 10, it can be seen that the numerically calculated value of 
the first natural frequency is 1501.5 kHz, in the absence of axial stresses. The first natural 
frequency value shifts to 1319.3 kHz, when the experimentally obtained values of residual 
stresses are included in the model. In Figure 11, an expanded plot of a portion of Figure 10 is 
shown. The horizontal lines represent the experimentally obtained values of the first natural 
frequency corresponding to the 100 mµ  resonator for different wafer angles. It can be seen 
that the numerically obtained values fall within the range of experimental measurements, 
which are listed in Table 2. 
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Figure 10: Variation of the first natural frequency with axial load   for a clamped-clamped AlGaAs resonator. 
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Figure 11: Expanded plot of  Figure 10 in the vicinity of the first natural frequency of   the AlGaAs resonator 

predicted without residual stresses. 

Layer 
Thickness 

kh  
Residual Stress 

0  [MPa]σ  

Top AlGaAs:Si 0.5 mµ  80−  
Middle AlGaAs 

(Undoped) 
1.5 mµ  80−  

Bottom AlGaAs:Si 2.0 mµ  80−  
Table 1: Characteristics of AlGaAs resonator. 

 

     Angle 
 

Length 
15o  21o  27o  33o  39o  

80 mµ  2130 kHz 2070 kHz 2040 kHz 1970 kHz 1890 kHz 

100 mµ  1390 kHz 1360 kHz 1310 kHz 1250 kHz 1200 kHz 

120 mµ  960 kHz 920 kHz 900 kHz 860 kHz 830 kHz 
Table 2: Experimentally obtained first natural frequencies for different resonator lengths and wafer angles. 

3.3 Imperfect boundary conditions due to mask imperfections and fabrication 
procedure 

As a second example, the effect of a 2.5 mµ  to 5 mµ  undercut introduced in each 
resonator anchor by the etching processes during fabrication is considered (for illustrative 
purposes only, please, see Figure 12).   
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Figure 12: SEM of undercut introduced in a resonator anchor by the etching processes during fabrication 

[Courtesy,  ARL, Adelphi, Maryland]. 

Resonators of 105 mµ  and 110 mµ  lengths were studied to model the effect of the 
undercut. In Figure 13, the variation of the first natural frequency with respect to the axial 
load is shown for 100 mµ , 105 mµ , and 110 mµ long microresonators. The experimentally 
obtained values of the first natural frequencies are also shown in the figure as horizontal lines 
for making the comparisons. In Figure 14, an expanded portion of Figure 13 is shown around 
the 1400 kHz range. 
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Figure 13: Variation of first natural frequency with axial load eP P  for a clamped-clamped AlGaAs resonator. 
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Figure 14: Expanded plot of  Figure 13 around 1400 kHz. 

Here, the undercut has been simply modeled as an increase in the extension of 
microresonator length. The change in cross-section area is not considered in this one-
dimensional model. This effect has been included in a series of two-dimensional models 
developed by the authors, and in these models, it is recognized that the undercut region can 
not be just modeled as a beam.  Rather, a more refined finite element model with plate 
elements needs to be used to model more realistic boundary conditions which include changes 
in the cross-section area. 

3.4 Predictions of frequency response 

The shapes of the drive and sense electrodes affect the resonator admittance through ( )1b x  

and ( )2b x . For the resonators shown in this work, maximum electromechanical coupling is 

desired; that is, the electrodes must be shaped such that ( )21Y ω  is maximized. This may be 

achieved by clipping the electrodes at the quarter beam points, as depicted in Figure 1b. For 
this electrode geometry, ( )1b x  and ( )2b x  can be written as 

 ( ) ( ) ( )1 14

L
b x b U x U x b g x

  = − − =  
  

 and ( ) ( ) ( )2 2

3

4

L
b x b U x U x L b g x

  = − − − =  
  

(24) 

where b is the nominal width of both electrodes and ( )U x  is the Heaviside unit step 

function. By using (24), the terms involving the electrodes shapes simplify to 

 
( ) ( )

2
1

2 31 22

1

2
e

e
p e

d g x
d E h b x dx

dxΩ

 =  
 

∫F N  (25) 

and 
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( ) ( ) ( )

( ) ( ) ( )

1
31 2

2
2

31 2 2

1 2

2

1

2

e

e

e
e p

e

e
e p

x
j h d E b g x dx

h x

x
j h d E b g x dx

x

ω ω

ω ω

Ω

Ω

∂ =   ∂ 

∂ = −   ∂ 

∫

∫

N
A

N
B

 (26) 

In Figure 17 for a 400 mµ  doubly-clamped AlGaAs resonator with quarter-beam 
electrodes, the response (magnitude and phase of the normalized admittance function 

( )
2

21 31

1
2 p eY d E h bω  

 
 

 ) are shown for three different values of the axial load. As expected, as 

the axial stretching load increases, the first natural frequency increases. Similarly, it decreases 
with the increase of the compressive axial load. The composite material properties and layer 
thickness values for the considered AlGaAs resonators are listed in Table 1. 
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Figure 15: Response of a 400 mµ  AlGaAs resonator  for three different values of the axial load. 

3.5 Analyses of Microresonator Arrays 

Linear analyses have been carried out to determine the responses of micro-resonator arrays 
to different excitation conditions. The admittance functions of clamped-clamped AlGaAs 
resonator arrays (e.g., Figure 16) are being studied to aid the analysis and design of these 
devices. In Figure 17 representative amplitude response of two doubly-clamped AlGaAs 
composite beam resonator arrays is shown. Axial loads, to tune or detune composite micro-
resonator arrays, were used. The natural frequencies were shifted by applying a DC offset in 
the input to the drive electrodes. In Figure 18 representative admittance functions of a 40 
doubly-clamped AlGaAs composite beam resonator array are shown. 
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Figure 16: A sketch map of the composite micro-resonator array. 

 
Figure 17: Representative amplitude response of two doubly-clamped AlGaAs composite beam resonator arrays. 
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Figure 18: Representative admittance functions of a 40 doubly-clamped AlGaAs composite beam resonator array. 

4 CONCLUSIONS 

In this work, a semi-analytical computational mechanics model of a composite 
microstructure with piezoelectric actuation and piezoelectric sensing has been developed as a 
design tool for microresonators and microresonator arrays. The developed dynamic model of 
microresonators accounts for structural properties and the electromechanical coupling effect 
through finite element analysis. The dynamic admittance model is derived by combining the 
linear piezoelectric constitutive equations with the modal transfer function of the multilayered 
microresonator structure. The resonator receptance matrix is constructed through modal 
summation by considering only a limited number of dominant modes. The electromechanical 
coupling determination at the input and output ports makes use of the converse and direct 
piezoelectric effects. The developed model has been validated by comparing it with results 
available in the literature for clamped-clamped resonators. The numerical results are found to 
be in good agreement with the experimental measurements. The numerical simulations show 
that the consideration of axial loads is important to predict the natural frequencies of the 
resonators studied in the experiments. The microresonators studied in this work, which are 
used as micromechanical filters, are important for mobile communication systems and signal 
processing applications. It is believed that the numerical and analytical efforts presented in 
this work can be used as a basis to develop design tools for such systems. 
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