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Abstract. Micromechanical systems (MEMS) that employ actieegqelectric materials, typically in
thin-film form, show promise for a variety of agaliions and are currently the subject of research i

a number of laboratories. The development of ingiregly complex devices demands sophisticated
simulation techniques for design and optimizatifEMS devices typically involve multiple coupled
energy domains and media that can be modeled by usiset of partial differential equations,
including spatial and time variables. In this woekcomputational multi-field mechanics model of a
micro-structure with piezoelectric actuation aneépbelectric sensing has been developed as a design
tool for micro-resonators and micro-resonator arsayAlthough linear models of electrostatically
actuated microresonator arrays have been develapeihe literature, such models have not been
developed for piezoelectrically driven resonatorags. The developed dynamic model of MEMS
resonator array accounts for structural propertiaad electromechanical coupling effect through
finite element analysis. In the simulations, a bedement was used for the structural modeling. We
assume that the deflection is large and accountifergeometric nonlinearity. The mechanical strain,
however, is assumed to be small so that the lineastitutive relations are still valid. The admiitze
model is derived by combining the linear piezoeleconstitutive equations with the modal transfer
function of the resonator structure. The overadinsfer function describing the admittance between a
driven input and a sense output of a micro-resonatcay is obtained in the frequency domain. The
resonator receptance matrix is constructed througbdal summation by considering only a limited
number of dominant modes. The electromechanicablo@determination at the input and output
ports makes use of the converse and direct piezoeleffects. The coupled model can be used to
carry out sensitivity studies with respect to tbkofving: (i) the resonator beam thickness and teng

(ii) the influence of constant axial forces on tinensverse vibrations of clamped-clamped micro-
resonator arrays; (iii) geometry of the drive andnse electrodes; and (iv) imperfect boundary
conditions due to mask imperfections and fabricajwocedure. For micromechanical resonators,
these modeling uncertainties come in large partmfrmanufacturing tolerance, residual stresses,
irregular surface topology, and material propertgriations, among others. The developed model has
been validated by comparing with results availabiiethe literature for single clamped-clamped
resonators.
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1 INTRODUCTION

Microfabrication of filters, switches, choppers,ciiators, and related communication
system components has been recognized as a kelgef@bincreasing functionality while
reducing system size and power requirements forilmm@ommunicationsL(in et al., 1998
Nguyen, 1999 Compared to traditional surface acoustic wavAWS filters and bulk
acoustic mechanical resonators, micromechanicainegers are attractive candidates for
mobile communications and signal processing apgbics (e.g., Fourier transform
computations), since they offer many benefits idicig reduction in system size and
reduction in power requirements. Microscale polysit capacitive filters, which are based on
electrostatic actuation and capacitive sensing,ehbgen used to demonstrate devices
approaching 100 MHz center frequency with Q faciarshe range of 7,500. However, in
order to realize filters with center frequenciesha GHz range, the actuation and scaling will
need to be scaled to the micron and sub-micronthescales. As the polysilicon resonator
dimensions are reduced to the micron and sub-milenogth scales, neither the electrostatic
actuation characteristics nor the capacitive sensimaracteristics scale well. In this regard,
piezoelectric actuation and piezoelectric sensiagetd resonators are attractive for scaling
down to micron and sub-micron ranges and realifitbgrs with high center frequencies.
Apart from filters and other signal-processing aggilons, piezoelectrically driven systems
are also viable candidates for micropumps, micsojd energy reclamation devices.

Microscale polysilicon capacitive filters, whicheabased on electrostatic actuation and
capacitive sensing, have been explored by a nuwibgroups, most notably by C. Nguyen
and co-workers [see, for e.gNguyen, 1998 By using this technology, devices approaching
100 MHz with Q factors of 7,500 have been demotedrg/NVang et al., 2000 However,
neither electrostatic actuation nor capacitive isgnscale well as resonator dimensions are
reduced to the micron and sub-micron length scakesrequired for filters with center
frequencies in the GHz range and other high-frequessonators.

As demonstrated bipeVoe (2001) piezoelectric actuation and sensing can avoid thi
problem, and one can take advantage of this taddgiers with significantly higher center
frequencies. The clamped-clamped beam piezoleesonator, which is depicted kigure
1, is a simple example of such a device. This dewsas a thin film piezoelectric layer on the
top of a beam structure with input (drive) and otiffsense) electrodes positioned on opposite
sides of the beam. The composite beam structuttevien at one of its resonances, which is
typically the fundamental resonance frequency. ihpat (drive) voltage generates an electric
field between the top and bottom electrodes andides a strain in the drive side of the
resonator through the converse piezoelectric effébis strain results in a concentrated
moment applied at the terminal edge of the inpettebde. A bending moment results from
the offset of the piezoelectric layer from the beasutral axis. When the input voltage
frequency is near the fundamental frequency obtaam, the beam is in resonance amplifying
the piezoelectric strain on the sensing side ofréds®nator. This induces a current in the
sensor circuit at the resonance frequency of tleenbiarough the direct piezoelectric effect.
Collaborators at the Army Research Laboratory (ARdelphi, MD and the University of
Maryland have demonstrated similar devices baseplieroelectric thin films that operate at
9.2 MHz with Q factors on the order of 10@®dkarski et al., 2001

Above a critical frequency that is dependent onickegeometry, the coupling strength of
piezoelectric filters becomes significantly larglean capacitive devices. In addition, because
current micromechanical and nanomechanical resonasmd filters typically rely on
electrostatic or magnetic excitation, they suffeani significant limitations on achievable
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linear dynamic range and impedance. In additioa,di®zoelectric resonators can operate at
very low power and voltage levels compared to ebstatic devices, which require high-
voltage biasing for acceptable electromechanicapliog. If the system behavior is linear,
then as described WBallato (2001)for devices that operate in different energy demsauch

as electrical and mechanical domains, one can remhsin equivalent-circuit representation.
This resulting equivalent linear system repres@natan then be used for the subsequent
design. However, when nonlinear effects are prooednstudies need to be conducted to
identify the operational parameter ranges in whikdk type of linear representations can be
used. In order to design and fabricate piezoetenticroelectromechanical resonator systems,
a fundamental understanding of the oscillatory ati@ristics of these systems is needed.
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Figure 1: (a) SEM of a PZT resonator (courtesy, Wéand MEMs Laboratory) and (b) a schematic shovtirey
details PeVoe (2001)

Two types of resonators are considered here. Queedf/resonators will be referred to as
the AlGaAs resonator, and the other type of resmeawill be referred to as the PZT
resonator. Both types of resonators are compositetsres, and the PZT resonators have
asymmetric cross-sections, as discussed in prewous (DeVoe, 2001 Currano, 200 The
considered resonators are based on the piezoeletfect, as shown ikigure 1 The elastic
substrate is a SiO2 layer, on the top of which atimlm electrode layer is deposited
throughout the length of the structure. A thin tagé sol-gel piezoelectric film is located on
the top of this electrode layer. To complete tmacstire, another platinum layer is deposited
on the top of this piezoelectric film and this lagatends over one quarter of the length from
each anchor. The mid-section of the resonatoctsire is free from this platinum electrode.
Due to the asymmetry of the cross section, thetiposof the piezoelectric layer is offset from
the neutral axis, and in addition, (tensional) deal stress may also be introduced in each
layer during the fabrication process. The effedheke stresses is explored in this work.
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In order to design and fabricate piezoelectric oet@ctromechanical resonator systems, a
fundamental understanding of the oscillatory chiaréstics of these systems is needed. This
work is aimed at developing this fundamental un@eding, and in particular, in elucidating
the role of nonlinear mechanics in the design chsesonators and arrays of such resonators.

As pointed out in the authors’ recent work, theoregors also exhibit non-linear
characteristicsHreidikman, 2003Balachandran and Preidikman, 208&lachandran, 2005
These characteristics include Diffing oscillatd&eliresponse during resonance excitations,
temporal harmonics in the response, and spatitdrpatduring forced oscillations that cannot
be explained by conventional linear analysis. Tdrgths of the resonators considered in
previous studies typically range from 100 um®0 #tm, and the thickness of each platinum
electrode is in the range of 90 nm to 180 nm. Imesdypical uses of this resonator, the
structure is driven close to its first resonan@gfiency with the input at the drive electrode
having a DC bias in addition to the harmonic congminin this work, the authors discuss a
semi-analytical finite element based formulation, which transverse free vibrations of
composite, and axially stepwise varying propertmeigro-resonators and micro-resonator
arrays subjected to constant axial loads are cereid(sed-igure 2for a clamped-clamped
case). It is shown that the consideration of aloalds is important to predict the natural
frequencies of the resonators observed in the ewpats.

Suspended Beam Substrate Piezoelectric Film
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Figure 2: Clamped-clamped composite resonator stdgjeo a constant axial lo&d

In the last several years, there has been a groweey for accurate modeling and
simulation of microelectromechanical devices andtesys that employ piezoelectric
materials. This comes from the need to reduce desggations and speed up the product
development, and also to ensure reliability offthal product. Finite element analysis (FEA)
plays an important role in the simulation of MEMsvites, and this analysis generally covers
multiple domains for a single device, such as #mmad, thermal, electrostatic,
electromagnetic, and fluid domaingn Preissig and Kim (200@xamined techniques for
modeling thin-piezoelectric MEMs devices by usingsgng finite-element packages. In this
work, piezoelectrically actuated bending is examinkhe authors point out that, while it may
seem that the sheet-like nature of structures eaqgalectric MEMs would make them good
candidates for conducting FEA with plate elemestjd or “brick” elements can work
remarkably well. Finite element model (FEM) errassociated with the discretization of the
model have also been analyzed. An important issu®te is that meshing a thin sheet into
low-aspect-ratio elements requires a prohibitivalge number of elements, while too low a
mesh density might result in severe discretizagod element-shape errors. A four-node,
isoparametric, linear piezoelectric, plane-strdement from the ANSYS library has been
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used in this workWang and Ostergaard (1999%ed finite elements to develop a coupled
simulation method for piezoelectric transducersait attached electric circuit. In this work,
the weak form of the laws of conservation of momentand electric charge for a linear
piezoelectric medium are discretized by using FHeir method has been implemented in
the ANSYS softwareChen et al. (2002presented a two-dimensional analytical model of a
spiral-shaped PZT ceramic actuator. They used REAatidate the results obtained from
analytical model. In this work, the commerciallyadable software packages PATRAN and
ABAQUS are used. PATRAN is utilized as the pre-gssor and ABAQUS is used as a post-
processor to perform the linear elastic, piezogke@nalysis. In order to capture bending
effects accurately, the authors used eight-nodamharametric, plane strain, linear elastic,
piezoelectric elements. For achieving convergewbde keeping the length-to-width ratio of
the elements reasonable, they used meshes witlkaat L0 elements across the spiral
thickness. A typical finite element mesh of a twaoat spiral actuator has more than 3000
elements.
In this work, the coupling of electrical and mecieah fields that is intrinsic to a

piezoelectric material is accomplished in a nouditr@nal approach. From a filter design

standpoint, the admittance function relating inpoitage to output current, (w) NV, (w) is
an important frequency-response function to bergeted (sed-igure 3.

(@)

Portl Port 2

777777777,

Figure 3: Input and output quantities of interest {a) a clamped-clamped piezoelectric microresmnand (b)
a clamped-clamped piezoelectric microresonatorarra

This admittance function may be obtained by retptime mechanical transfer function of
the microresonator structure to the correspondiegtrécal input and output through the
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piezoelectric constitutive equations. In the secsedtion of this work, this admittance
function is determined for a composite microresonatith axially stepwise varying

properties. This microresonator is also subjectedcdnstant axial loads. The obtained
admittance function has the form

Y., () :%:Cs(a))H (o) * W

n

where HSA(a)) Is a “block” of the complex frequency responserimdbr the considered

microresonator (e.gRreidikman and Balachandran, ZQOGS(w) is a matrix that depends

on the material properties of the PZT material, ge@metry of the sensor, and the finite

element discretization of the microresonator; &fdis a vector that depends on the material
properties of the PZT, the geometry of the actyatee geometry of the suspended beam
substrate, and the finite element discretizationthe microresonator. Comparisons with

experimental results and results available in itieealture are presented. It is believed that the
numerical and analytical efforts presented in thk can be used as a basis to develop
design tools for piezoelectric microresonators launctoresonator arrays.

2 SEMI-ANALYTICAL TOOL BASED ON GEOMETRIC NONLINEARITIESFOR
MICRORESONATOR ARRAYSDESIGN

In this effort, a computational multi-field mechesi model of a micro-structure with
piezoelectric actuation and piezoelectric sensiag been developed as a design tool for
micro-resonators and micro-resonator arrays. Theldped model accounts for the structural
properties and the electromechanical coupling effeough finite element analysis. It is
assumed that the deflection is large and that ¢oengtric nonlinearity must be included. The
dynamic admittance model is derived by combining timear piezoelectric constitutive
equations with the modal transfer function of theltirdayered microresonator structure. The
resonator receptance matrix is constructed throongtial summation by considering a limited
number of dominant modes. The electromechanicablooy determination at the input and
output ports makes use of the converse and direzbglectric effects. In the development of
the finite-element models, the boundary conditiaghs, shapes of electrodes, and distributed
parameters such as varying elastic modulus adneskength of the structure have been taken
into account. The developed semi-analytical tool ba used to carry out parametric studies
with respect to the following: (i) the resonatoabethickness and length; (ii) the influence of
constant axial forces on the transverse vibratmhslamped-clamped microresonators; (iii)
the geometry of the drive and sense electrodes(i@nomperfect boundary conditions due to
mask imperfections and fabrication procedure. Témisanalytical development has been
validated by comparing the model predictions witiopresults available in the literature for
clamped-clamped resonators and experimental measuts.

2.1 Theequationsof motion in the frequency domain

The equations of motion of the microresonator aimmathe frequency domain are of the
form

{—aJZM +ja)C+K}d(a))=f(a)) (2)

wherej =v/-1, K =K +K is the global stiffness matrixM , K. andK; are the
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global mass matrix, elastic stiffness matrix, aedrgetrical stiffness matrix, respectively, and
d(w)and f (w) are the Fourier transforms of the nodal displacemd(t) and the nodal

forces f (t) respectively. The development of the time-domaiodel with the geometric
nonlinearity is detailed iRreidikman and Balachandran, 2066om (2), one obtains

d(w) =H(a)f (@) (3)
where
H(w)={-’M +jwC +K}~ 4)

is the complex frequency response matrix (the nmachh force-displacement transfer
function) of the beam micro-resonatoPré¢idikman and Balachandran, 2D06Since
proportional damping is assumed, the complex frequeesponse matrix can be constructed
from the modal summation as

w) = o)1= 3 4%
T S ey 2w ”

where r,s=1,2,.. n,, N, IS the number of degrees of freedom (dof) of timatef

element model is thelth natural frequency of the undamped system, gnds thelth
damping ratio of the microresonator. In (g), and g, are, respectively, thecomponent and

thes-component of th&h mass normalized mode shape of the microresarfataer, in (5),
N..q IS the number of dominant modes.

The damping ratio in (5) is, in general, determireegberimentally from the measured
quality factor,Q , which is given by,

— \/chch
Q ) ch _ch (6)

where the cutoff frequencies are given by

Q, =1~ 27 - Z 177 andQ,, =\1- 202+ 2,137 )

After substituting from (7) into (6) and using ayla's series expansion abo@ =0, the
result obtained is

=24 0o ®

Q'=2_Z._2

Hence, for very lightly damped microresonators IiHgy microresonators); that is
0< { <<1, the quality factor can be approximated as

1
2,

Now, in terms of the quality factors it is possibderewrite the degree of freedom (dof)-to-
dof mechanical complex frequency response functdnthe microresonator structure,

QO (9)
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H,.(w), as

Ho(w)=Y 4% (10)

At this point, one has the elements of the comgteguency response matrix, which
describes the resulting harmonic displacement efttihdof caused by a unit harmonic force
applied at theth dof.

2.2 Admittance M odd

In this section, a semi-analytical model descriltimg admittance function for a clamped-
clamped piezoelectric microresonator is developdte semi-analytical admittance model
may be obtained by relating the (numerical) medwnitransfer function of the
microresonator structure to the corresponding etatt input and output through the
(analytical) piezoelectric constitutive equation3.he overall frequency-response function

describing the admittanc‘ézl(a)) between the driven input (port 1) and the sengeubyport
2) of the beam resonator showigure lis defined as

V() =2l (1)

whereV, (w) is the voltage applied to the input port, andw) is the current measured at
the output port.

2.3 Actuator Side

In this work, the active film under consideratisrconsidered to be long, narrow, and thin,
so as to make the length much greater than the maximum value of the Whg!(h(), which
is much greater than the thickness(Figure 4.

x=0 L X=L

Drive Electrode

Piezoelectric Film

QA

Figure 4: Schematic view of the actuator port.
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Figure 5: External, transverse distributed forcé ganeralized finite element nodal forces.

Next, attention is focused on the case when theeafilm is driven by an AC voltagvl(t) :
The externally transverse distributed fortﬁvg(x, t) can be expressed in terms of the drive
voltageV (t) as

) =2 0B n T2y b (12)

where H (x) =U (x)-U(x- L), andU (x-a) is the Heaviside step function. The basis
for (12) is detailed irPreidikman and Balachandran, 2006 view of (12), the generalized
element nodal forcest; (t) and f; (t) can be written in terms of the drive voltagdt) as

f2(t) = 0,4,

f:(t)={§d31Epnjdzc?xgx)mz(x)dy} v(). 0.00, -

where Nz(x) is a shape function matrix, as discusse®ieidikman and Balachandran,

2006 Further,Q, ={x|0< x< L} denotes the sub-domain [#,L] occupied by the sensor

(iError! No se encuentra el origen de la referencia.). In the frequency domain, (13)
becomes

(W) =0,y f5(w)=F;V,(w), Q.0Q, (14)

where,V, (w), f7(w), andf;(w) are the Fourier transforms ®f(t),f7(t), andf;(t),

respectively, and=; is the frequency-independent vector of generaledlechent nodal forces
defined as

N,(¥dx Q. 0Q, (15)
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By using (14) and the assembly operator, the sgleveof generalized equivalent nodal
forces can be written as follows,

{OZXl}vl(w) =F*V,(w), edQ, (16)

(@) =A%
2

e

2.4 Sensor Side

On the sensor side, the attention is focused onliteet piezoelectric effect. As described
before, a key to developing a useful electromedahmodel of a piezoelectric model is the
determination of changes in electrode charges whenactive film is strained due to the
mechanical excitation of the microresonator. At sle@sor port, it is also considered that the
active film is long, narrow, and thin, so as to mé&ke lengthL, much greater than the

maximum value of the Widtrbz(x), which in turn is much greater than the thicknéss
(Figure 9.

L2

‘ Sense Electrode Piezoelectric Film

x=L-1, X=L
|
%l

........................................ =X
he[ Suspended Beam Substrate

Qg

Figure 6: Schematic view of the sensor port.
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Figure 7: Transverse displacements of the centraida and generalized finite element nodal disphaents.

Considering the relation between the output chaagd the output current, in the
frequency domain, the expression for the outputetuirecomes

2809



L a 02
1 (0)= 0. () = et g, [ b9 2oX ) BIWD gy

The integral in (17) can be split as

J (9% 0y (370 o

J (92l o L] XALGLPY 1)
Q.0Q,

where Qg ={x|L-L, < x< L} denotes the sub-domain ,L] occupied by the sensor
port (Figure 7). Hence the expression for the dutpt:rent becomes

|, (@)=Y [ A*(w)d;(w) + (0)]=C{w)d (w), eOQs (19)

e

where the sub-matrice&®(w) andB*®(w) are given by

oN
A®(w) =] wdSlEpJ- b, ( x)% dx 0Q,0Q,

N, (20)
B®(w) = —JwﬁdglE J'b a—zdx 0Q,0Q,

X2

At this point, it is convenient to rewrite the st (2) in the following block-partitioned
form

H™ (@) T HY (@) |1 " (w) (21)

NCIERCICR CIRC)

Figure 8: Schematic view of the clamped-clampedqméectric microresonator and the finite elemenshme

By considering that in the present case, bidt{w) and f*(w) are equal to zero, and
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using (16), it is possible to expres@(w) in terms of the mechanical force-displacement
transfer function and the driven voltage as follows

d®(w) =H N w)f w)=H Aw)F ¥, () (22)

Finally, combining (24) and (19), the admittancedtion relating input voltage to output
current, can be expressed as

v, (@) =249 - 5 () () F 23)

3 EXPERIMENTAL RESULTS, COMPARISONS, AND DISCUSSION

The developed coupled model enables one to inastithe following: i) the elastic
stability of the resonator, ii) the influence of@nstant axial force on the transverse vibrations
of a clamped-clamped resonator structure, andhi@)influence of a constant axial force on
the transverse vibrations of a free-free structure.

3.1 Prestressed Microresonators

A case of interest is one where the geometricn&t#$ is driven by a parametér, for
example, in the case of a microresonator subjecteah initial axial forceR, due to residual

stresses introduced during the fabrication of és®nators.

3.2 Influence of a constant axial force on the transver se vibrations of a clamped-
clamped resonator structure

In Figure 9, for a clamped-clamped AlGaAs resonatbe variations of the first four
natural frequencies are shown with respect to thiel doad. As expected, as the axial
stretching load increases, the natural frequeno@®ase. Similarly, they decrease with the
increase of the compressive axial load.

12

f (MHz)
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Figure 9: Variations of natural frequencies witlishioad for a AIGaAs micro-resonator.

When the compressive axial force reaches the vafughe Euler’s buckling load,
P, =1.248%F -2 N, the first natural frequency goes to zero. The posite material properties

and layer thickness values for the considered Alsesonators are listed irable 1 Each
AlGaAs microresonator has a particular orientabarthe wafer. The orientation on the wafer
is indicated, with respect to a reference orieatatby the so-called “wafer-angle” and this in
turn leads to a certain crystallographic directidthe AlGaAs structure. The variation of the
first natural frequency shown ihable 2has been obtained from experimental measurements
for different resonators.

As a representative example1@0 #m long resonator with 45 #m width is considered.
From the results shown irigure 1Q it can be seen that the numerically calculatddevaf
the first natural frequency i$501.5 kHz, in the absence of axial stresses. The first ahtur
frequency value shifts t@319.3 kHz, when the experimentally obtained values of residu
stresses are included in the modelFigure 11 an expanded plot of a portion lBigure 10is
shown. The horizontal lines represent the experiatignobtained values of the first natural
frequency corresponding to tH®0 & m resonator for different wafer angles. It can bense

that the numerically obtained values fall withirethange of experimental measurements,
which are listed imable 2

3000

Length =100 ym 3
Width = 15 ym I

Top AlGaAs:Si-h =0.5 ym, A ::r -80 Mpa
Middle AlGaAs (Undoped) - h = ]J‘.O pm, o, = -80 Mpa
Bottom AlGaAs:Si - h =2.0 um, % =-80 Mpa

2000 - ——--—--"———"-—"—"———"-"- -+ —

=1501.5055 kHz
f=1319.3259 kHz

f (kHz)

000~~~ S - ----————.——.—..—..>hiio -

|
Predicted First Natural Frequency = 1.5E+06 Hz

|
|
Po/ Re=-0.23354 ‘
0-l e 0 1 2
P/P
e

Figure 10: Variation of the first natural frequenigh axial load for a clamped-clamped AlGaAsomstor.
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Figure 11: Expanded plot dfigure 10in the vicinity of the first natural frequency othe AlGaAs resonator
predicted without residual stresses.

Thickness Residual Stress
Layer h o, [MPa]
Top AlGaAs:Si 0.5um -80
Middle AlGaAs
1.5um -
(Undoped) H 80
Bottom AlGaAs:Si 20um -80
Table 1: Characteristics of AIGaAs resonator.
Angle
15 21 27T 33 39
Length

80 um 2130 kHz | 2070 kHz | 2040 kHz | 1970 kHz | 1890 kHz

1004 m 1390 kHz | 1360 kHz | 1310 kHz | 1250 kHz | 1200 kHz

120 um 960 kHz | 920 kHz | 900 kHz | 860 kHz 830 kHz
Table 2: Experimentally obtained first natural fueqcies for different resonator lengths and wanefes.

3.3 Imperfect boundary conditions dueto mask imperfections and fabrication
procedure

As a second example, the effect of2ebum to 5um undercut introduced in each

resonator anchor by the etching processes duringcédion is considered (for illustrative
purposes only, please, see Figure 12).
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Figure 12: SEM of undercut introduced in a resonatehor by the etching processes during fabrinatio

Resonators oflO54#m and 1104 m lengths were studied to model the effect of the
undercut. InFigure 13 the variation of the first natural frequency withspect to the axial
load is shown forl00 m, 1054 m, and 1104 mlong microresonators. The experimentally
obtained values of the first natural frequenciesaso shown in the figure as horizontal lines
for making the comparisons. In Figure 14, an expdnabrtion ofFigure 13is shown around

182 3.8 kV X1.88K 38.8rm

[Courtesy, ARL, Adelphi, Maryland].

the 1400 kHz range.

f (kHz)

Figure 13: Variation of first natural frequency fixial loadP/ P, for a clamped-clamped AlGaAs resonator.
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Figure 14: Expanded plot dfigure 13around1400 kHz.

Here, the undercut has been simply modeled as arease in the extension of
microresonator length. The change in cross-seciia is not considered in this one-
dimensional model. This effect has been included iseries of two-dimensional models
developed by the authors, and in these models, rikdognized that the undercut region can
not be just modeled as a beam. Rather, a moreeckfiinite element model with plate
elements needs to be used to model more realstiocdary conditions which include changes
in the cross-section area.

3.4 Predictions of frequency response
The shapes of the drive and sense electrodes #ifeceésonator admittance througr( x)
and bz(x). For the resonators shown in this work, maximusettbmechanical coupling is

desired; that is, the electrodes must be shapdd M\Ql(a}) is maximized. This may be

achieved by clipping the electrodes at the qudrgaxm points, as depicted kigure 1b For
this electrode geometris (x) andb, (X) can be written as

3L

(4= V(Y- U ] |= ba( 3 andn, (=1 U x- 5 |- U(x- = ba( hee)

where bis the nominal width of both electrodes ahk(x) is the Heaviside unit step
function. By using (24), the terms involving thedlodes shapes simplify to

dZ
er:(%dﬂEprj j () NL(%) o (25)

and
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A (w) =] a)( hed31prjéJ o x)aN(;)((X) d>
el et of L o°N, (x) 29
(w)=~] a)(zhed:ﬂprj J' %( % P dx

In Figure 17 for a400um doubly-clamped AlGaAs resonator with quarter-beam
electrodes, the response (magnitude and phase eofntihmalized admittance function

2
YZl(a))/(; d,Eh bj ) are shown for three different values of the bBaad. As expected, as

the axial stretching load increases, the first retinequency increases. Similarly, it decreases
with the increase of the compressive axial loace €¢bmposite material properties and layer
thickness values for the considered AlGaAs resosatre listed imable 1

—~
om
ke
N—r
()
e}
>
=
c
(o))
©
=
I l
H
\ 3 0
3 -
— i H PO 0
g I H
g | P | semsssasas P =+25% P
~ | H 0
) Lo e Sl A I Dt S —
0 i | 1
g - o
o 1 | t
BB - - - - — - — - = — — -------q--- R e e e —
1 | '
\ | [
1 I I
-0 N l VR,
60 81.6 93.8 100 1045 140

Frequency (kHz)

Figure 15: Response of400 i/ m AlGaAs resonator for three different values & #xial load.

3.5 Analysesof Microresonator Arrays

Linear analyses have been carried out to deterthmmeesponses of micro-resonator arrays
to different excitation conditions. The admittaniceactions of clamped-clamped AlGaAs
resonator arrays (e.grigure 16 are being studied to aid the analysis and desfginese
devices. InFigure 17 representative amplitude response of two douldypled AlGaAs
composite beam resonator arrays is shown. Axialdp#o tune or detune composite micro-
resonator arrays, were used. The natural frequenesee shifted by applying a DC offset in
the input to the drive electrodes. fingure 18representative admittance functions of a 40
doubly-clamped AlGaAs composite beam resonatol ara shown.
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a = Connector position
b = Connector width
h = Connector length

Resonators thickness =3.5 um
Connectors thickness =2.0 pm

SetA:a=130 ym, b =5 pm, h =130 ym
SetB:a =130 pym, b=5 pm, h =200 pm

SetC:a =200 ym, b=5 pm, h =130 ym

SetD:a =200 pm, b=5 pm, h =200 pm
SetE: a=200 pm, b =10 pm, h =1 30 pm

P. Kumar, Maryland MEMS Laboratory

Figure 16: A sketch map of the composite micro-nesor array.
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Figure 17: Representative amplitude response ofiwubly-clamped AlGaAs composite beam resonatayarr
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Figure 18: Representative admittance functions4f doubly-clamped AlGaAs composite beam resorstary.

4 CONCLUSIONS

In this work, a semi-analytical computational metbha model of a composite
microstructure with piezoelectric actuation andzpedectric sensing has been developed as a
design tool for microresonators and microresonataays. The developed dynamic model of
microresonators accounts for structural properied the electromechanical coupling effect
through finite element analysis. The dynamic adiite model is derived by combining the
linear piezoelectric constitutive equations witk thodal transfer function of the multilayered
microresonator structure. The resonator receptanagix is constructed through modal
summation by considering only a limited number ofmghant modes. The electromechanical
coupling determination at the input and output gortakes use of the converse and direct
piezoelectric effects. The developed model has hadidated by comparing it with results
available in the literature for clamped-clampednredors. The numerical results are found to
be in good agreement with the experimental measemesnThe numerical simulations show
that the consideration of axial loads is importtntpredict the natural frequencies of the
resonators studied in the experiments. The micoma@ers studied in this work, which are
used as micromechanical filters, are importantniobile communication systems and signal
processing applications. It is believed that thenarical and analytical efforts presented in
this work can be used as a basis to develop désids for such systems.
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