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Abstract. An optimization technique, using a genetic algorithm, applied to plates and shells of 
laminate composite materials is presented in this work. Two examples are analyzed. In the first case 
weight and central deflection of a plate under a transverse pressure load are minimized, using as 
optimization variables thickness and the fiber angle of each layer (in this case a factor is introduced in 
the objective function in order to vary the relevance of each of the objectives to be minimized). In the 
second case, the stiffness maximization of a cylindrical shell, under a transverse pressure load, and 
with geometrically nonlinear behavior, is obtained using as optimization variable the fiber angle of 
each layer. Some aspects such as the number of structural analyses required for each case (where the 
finite element method is employed), as well as the algorithm reliability are also included, together with 
the results obtained for both examples. 
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1 INTRODUCTION 

In the recent decades the use of composite laminate materials on structural applications has 
been growing, requiring great effort on development of analysis and design techniques.  The 
large number of design variables and the complexity of the mechanical behavior are 
outstanding characteristics of composite material structures design. Such characteristics turn 
the project much more difficult and laborious than those involving conventional materials. 

Optimization methods have been used in the sense of turn the composite material structural 
design a more systematic and well defined task (Gürdal et al., 1999). Moreover, less 
dependence with respect to designer sensitivity and maximum material performance can be 
achieved. Initially, the same method used to optimize conventional materials structures was 
adopted for composite material structures optimization. This mathematical method works 
with continuous variables and performs the search for the best solution through de design 
space based on gradient information. The effort on using such methods met with limited 
success, since composite laminate design is, in practice, restricted by the manufacturing 
process that limit the variables to few discrete values. Moreover, typically exist many 
configurations close to optimal laminate configuration (locally optima regions) that can 
prevent the gradient based methods to reach the global optimum. 

  As alternative to gradient based methods, many other techniques were tested, having the 
genetic algorithm (GA) stand out the others because it perfectly adjusts to the problem 
characteristics. GAs are probabilistic optimization methods that seek to mimic the biological 
reproduction and natural selection process through random, but structured, operations. The 
design variables are coded as genes and grouped together on chromosomes strings that 
represent an organism (possible solution on the design space), what allow GAs to manipulate 
discrete variables. Instead of working with just one search point in the design space, GA uses 
a population of designs that, by reproduction operations, evolve through successive 
generations. Many search points dispersed in the design space prevent the GA to get stuck in 
a local optimum area, and avoiding a premature convergence of the process. New possible 
designs (organisms) are generated by applying genetic operators on existing population 
organisms (mimicking the natural genetic mechanisms). The evolution of successive 
generations towards the optimization objectives is achieved by using concept of survival of 
the fittest (where fittest organisms have more chances to reproduce and continue in the next 
generation) what mimic the natural selection process. The organism fitness is obtained 
directly from an objective function, that uses simple structure information. No gradient 
evaluation is necessary to perform the search by GA. 

Although GA has shown to be well adapted to composite laminate structural optimization 
problems, it requires a large number of analyses in each process, what is a fundamental 
drawback. In more complex problems, were numerical methods are necessary for the 
structural analysis, an excessive number of analyses can turn GA impracticable. Many 
techniques have been developed to minimize these problems. Essentially, the classical GA 
structure has been adapted to take advantage of composite laminates characteristics. The GA 
restructuring is done by a new variable codification and by the way new genetic operators act 
on the gene string. 

Two examples of GA application on composite laminate structure optimization are 
presented in this work. The first one consists on a multiobjective optimization problem where 
the total weight and central deflection of a square plate under a transverse pressure load are 
minimized. The objective function formulation is based on a technique for multiobjective 
problems optimization, were the emphasis given to each objective can be adjusted, allowing 
the GA to obtain the pareto-optimal set. The second example shows the use of GA to optimize 
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a cylindrical shell under pressure load, and with geometrically non-linear behavior. The 
optimization objective is to maximize the structure stiffness, using critical load and maximum 
central displacement as parameters to evaluate the feasible solutions. In both examples the 
whole design space was analyzed in order to prove that the GA is successful in finding global 
optimum at each case. The GA efficiency is evaluated by the number of analyses required for 
each optimization procedure and by the apparent reliability. 

2 STRUCTURAL ANALYSIS 

Real composite material structures optimization problems depends on a reliable structural 
analysis. Even for simple geometric configurations, the determination of the mechanical 
behavior is difficult in the case of composite materials. It happens because of the complex 
mechanisms like coupling between extension, bending and torsion deformations, depending 
on the stacking sequence. The available closed mathematical formulations introduce much 
simplification on the analysis or, in many cases, they are not able to predict the structural 
behavior, mainly for complex geometries. These make necessary to use numerical methods 
that can predict satisfactorily the structure response for a given design load. 

There are many works on the field of numerical simulation of composite material 
structures using the finite element method (FEM). However, the expressive number of 
analyses usually required by GA limits the use of FEM as an analysis tool because of the high 
computational cost for the analysis of each individual design. 

In this work, a triangular flat plate and shell element with 18 degrees of freedom called 
DKT (Discrete Kirchhoff Triangle) is used. This element was developed by Bathe and Ho 
(1981) for the non-linear analysis of isotropic plates and shells. Some modifications are 
introduced in the original formulation to allow the analysis of laminated composite structures. 
Additionally to the structure displacements, the analysis tool must be able to determinate the 
stress components at the composite layers in order to predict material failure. This is a very 
common constrain adopted in most of optimization problems, and it is used in this work too. 
The Tsai-Wu failure criterion (Daniel and Iashai, 1994) is used in the failure prediction, 
evaluated at both faces of each ply at each of the three numerical integration point of each 
finite element. In geometrically non-linear analysis the material failure is verified at each load 
step of the interactive solution method, which is stopped if material failure is detected. A 
safety factor against failure λf can be obtained using the Tsai-Wu failure function with the 
material strength parameter for traction, compression and shearing at each of the principal 
material axes. 

3 GENETIC ALGORITHMS FOR COMPOSITE LAMINATES 

This work uses a GA provided of many modifications with respect to the classical GA to 
adapt it to the specific case of composite structural optimization (Almeida, 2006). In the next 
sections special genetic operators and strategies are explained. None of the classical GA 
structure is presented, but the reader can find details about it in Goldberg (1989). 

3.1 Composite laminate codification 

In GA optimization process, the structure is considered as an organism with its 
characteristics defined in chromosomes, as occurs in natural organisms. Each stored 
information is seen as a gene that refers to one of the structure laminate plies. A 
computational representation of chromosomes is done by a string containing coded 
information of laminate properties. In this work each laminate is represented by a pair of 

374



chromosomes, as it was done by Soremekun (2001). In the first one, called “orientation 
chromosome”, information about fiber orientation of each laminate layer are stored. The 
second, called “material chromosome”, is used to point the layers material properties group 
(ply thickness, elastic and strength constants). So, a laminate layer is represented by a pair of 
genes, each in one of the two chromosomes but at the same relative position. The first pair is 
referred to the outermost layer, being the inner layers referred by the succeeding pairs. As 
only symmetric laminated are used in this work, just half of the laminate layers are coded in 
the gene strings, and so the total number of genes in a chromosome is proportional to half of 
the maximum admissible number of layers in a specific design. 

Integer numbers are used to form two gene alphabets, one for each chromosome, that are 
used to code a composite laminate into two gene strings. The numbers on an alphabet 
represent the discrete possible values for the design variables. In the orientation gene 
alphabet, each number represents a predefined stack in a layer, which can contain more than 
one ply.  The orientation genes define how many plies exists on a layer and how are the plies 
of these fiber oriented. Similarly to the orientation gene, material alphabet genes define the 
material properties group that can be assigned to each layer. Since in the examples included in 
this work no changes in the number of plies are possible, the laminate thickness variation can 
be achieved only by the change of individual ply thickness, using different discrete values 
that are coded in the material genes. 

3.2 Genetic operators for composite laminate optimization 

 
3.2.1 Crossover 

Crossover is an essential GA operator, having the fundamental task to generate new 
organisms (child) in a reproduction process, combining genetic information taken from a pair 
of organisms (parents) selected from a pre-existing population. The parents selection is a 
probabilistic process, but greater chance of selection is given to fitter organisms. The created 
child will hopefully be better than his predecessors, since his genes were part of organisms 
with good fitness. The crossover operator used in this work is similar to classical crossover 
operator with few modifications. A crossover point is randomly determined and the gene 
strings of both material and orientation chromosomes are split at the same point in both parent 
(Soremekun, 2001). The left part of parent 1 and the right part of parent 2 are combined to 
form a child. The probability of application of crossover operators is set to 100% in all the 
examples presented, because it is considered a fundamental operator in GA. 

3.2.2 Mutation 

The classical GA operator acts over the chromosomal string changing a gene value. It is 
implemented to each gene, at a small probability, introducing a different value chosen from 
the gene alphabet. In spite of the randomity of this process, it is possible to incorporate to the 
mutation operator some knowledge about mechanical response of composite materials when 
one or more of its characteristics are altered.  This may let to a less random process and guide 
the evolution towards optimization objectives. These modifications lead to new operators 
called orientation alteration, material alteration, replacing the classical mutation in the GA 
(Nagendra et al, 1996 and Soremekun, 2001). 

Orientation alteration and material alteration operators are implemented very similarly to 
classical mutation. The differences are based in the fact that they are independently applied to 
orientation and material chromosomes, respectively. Different orientation and material 
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operator probabilities (poa and pma) may be adopted, which is convenient, since orientation 
and material chromosome may converge at different velocities in an optimization process.  

3.2.3 Permutation 

The main characteristic of permutation operator is the ability to modify laminate stack 
sequence without changes of the total number of plies with fibers oriented on each 
permissible direction. This allows GA to change the bending behavior of the laminate without 
modifying its in-plane mechanical response. The permutation operator implemented in this 
work is equivalent to the gene-swap operator (Nagendra et al, 1996 and Soremekun, 2001), 
where two pairs of genes, are chosen randomly and have their position shifted in the 
chromosome, resulting on a new staking sequence. Such operation occurs at a given 
probability pper, usually with a larger value than those corresponding mutation operators 
probabilities. 

3.3 Selection Schemes 

There are many ways to obtain the population of successive generations in a GA. In 
classical algorithms new generations are formed only by children created from an existing 
population. This process has many drawbacks since there is no warranty of improvement or 
maintenance of achieved evolution when all population is replaced. To solve this problem 
new selection schemes were created, being one of them the elitism scheme, which consists in 
transfer good organisms from old population to a new generation, preserving desirable genetic 
information. This papers deals with a multiple elitist scheme (Soremekun,1997). 

In the multiple elitist scheme, both parent and child populations of size P are 
independently ranked from best to worst fitness. These two populations are then combined 
and ranked together, resulting in a combined population with 2P organisms. Then, best Ne 
individuals of the combined population are transferred to the new generation. The best 
individuals of child population that have not already been used are taken to fill the remainder 
of the new generation. The number of top elements (Ne) to be transferred to the new 
generation is a GA parameter to be adjusted at each application  

4 NUMERICAL APPLICATIONS 

In the following sections two examples of GA applied to optimize composite laminate 
structures are presented. To prove the success of the optimization procedure and to 
characterize the problem design space, all the possible laminate configurations are previously 
analyzed. Additionally, to obtain the algorithm reliability and computational cost, N 
optimizations with the GA are carried out for each example. The apparent reliability (R) is 
determined by taking the number of optimizations for which the GA finds at least one global 
optimum (No), divided by the total number of applications of the GA (N). It defines the 
chances of obtaining the global optimum in a single application of the GA. As the structural 
analysis employing the FEM is usually the most time consuming task in the optimization 
procedure, the GA cost is determined by 
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N

i

i
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where Xi
g is the total number of generations analyzed in the i-th optimization procedure. 

The criterion to stop the optimization process, used in both examples, is based in two 
parameters, the upper limit of the number of generations (NLG) and the maximum number of 
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generations with no improvement of the best design (NSD).  Once one of these limits is 
reached, the optimization process is stopped and the best laminate of the least generation is 
taken as the optimization result. NLG and NSD are defined in each optimization procedure, 
depending on the problem complexity. 

4.1 Weight and deflection minimization of a composite laminated plate under 
transverse load. 

This example deals with the optimization of a square plate of a composite laminate 
material and subjected to a uniform pressure load on its surface. The problem consists in a 
multiobjective optimization since weight and deflection are supposed to be minimized at the 
same time. Each one of these two objectives are opposite to the other because improvements 
in one of them leads to depreciation of the other. As a result of such characteristics this 
problem has a set of optimal solutions (pareto-optimal set) instead of a single solution as 
usually is found in simple optimization problems. The different points of the pareto-set are 
obtained by varying the emphasis given to each objective during an optimization process, 
which may be performed by introducing a weighting factor in the objective function. The 
material failure and a maximum value for thickness of contiguous plies with the same fiber 
orientation are taken as the optimization constraints. 

The structure geometry, boundary conditions and the mechanical properties of the 
composite material are presented in Fig. 1. The elastic constants are the Young’s modulus on 
fiber direction (E1) and transverse to fiber direction (E2), shear modulus (G12) and the 
Poisson’s ratio (ν12), respectively. Strength parameters for traction and compression for 
longitudinal and transversal directions are given by F1t, F1c, F2t, and F2c respectively. The 
remainder parameters are the shear strength (F6) and the specific weight (ρ). A finite element 
mesh with 288 elements and 169 nodes is used to represent the whole plate in the numerical 
analysis. The structure must support a design pressure load of 0.1 MPa with no material 
failure (Tsai-Wu failure function must be lower than 1.0 for the whole plate) and no more 
than 2mm of contiguous plies thickness with the same fiber orientation are allowed. 

 
Figure 1: Structure geometry, boundary conditions and composite properties 

 The laminate must be symmetric with 8 layers, being represented in the GA by a pair of 
chromosomes (with 4 genes each chromossome). The optimization variables are the fiber 
orientation and the thickness of each layer, defined by code values given in Table 1. The total 
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number of genes in each chromosome combined with the number of possible values of each 
variable leads to a total number of 65536 possible laminates. 

 
Orientation gene  alphabet Material gene alphabet 

code Orientation angle code Ply thickness 
1 1 ply at 0° 1 0.75mm 
2 1 ply at -45° 2 1.00mm 
3 1 ply at +45° 3 1.50mm 
4 1 ply at 90° 4 2.00mm 

Table 1: Gene alphabet and possible variable values 

A graphical representation of the distribution of weight and central displacement for all the 
feasible designs of the problem is shown in Fig. 2. The points A to P in this figure are the 
pareto-optimal designs, which must be obtained by the GA, according to the emphasis given 
to each of the objectives. Details of the pareto-optimal set are presented in Tab. 2. 

 
Figure 2: Weight and Central displacement of feasible designs 

To perform the search througth the design space, the GA must attribute a fitness value to 
each of the organisms created in the optimization process. In this example the fitness must 
consider both objectives, weight and deflection reduction, weighted by the factor α, and 
include some penalization for unfeasible designs that violate constrains of material failure or 
the limit of contiguous plies tickness with the same fiber orientation. The fitness evaluation is 
done by Eq. 2a, where W* and D* are the total weight and the central deflection nomalized by 
their maximum and minimum values. The lower and higher weigth limits can be easily 
obtained taking all the plies thickness equal to 0.75 mm or equal to 2.00 mm, respectively. 
The minimum and maximum values of displacement to be used for the normalization are 
obtained by the results of optimizations performed with values of  α equal to 0.0 and equal to 
1.0, respectively. When α is equal to 0.0 only the displacement is reduced, given a design that 
have the lowest displacement. Taking α equal to 1.0 the GA obtains the lightest structure. 
This structure may have a high displacement, which is used as the maximum value in the 
normalization. Using Eq. (2b) nulls values of W* and D* are avoided. 
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The penalization to unfeasible designs is done by the introduction of the parameters FF 
and Tv in the equation that determines the fittness. The first parameter represents the 
maximum value of the failure funcion evaluated in the structure. The parameter Tv is refered 
to the violation of the limit of contiguous plies thickness with the same fiber orientation. It is 
taken as 1.0 plus the exceding value that violates the limit. As an example, if the thickness of 
each one of two comtiguous plies with the same fiber orientation is equal to 1.5 mm, the 
exceding value violationg the limit that must be added to the parameter Tv is 1.0 mm, since 
this work adopts a limit of 2.0 mm. Then Tv = 1.0 + ( 1.5 x 2 - 2.0 ) = 2.0. 

 
Optimal 
design Laminate Weight 

(N) 
Deflection 

(mm) α 

A [ ]S0,10,20,20,2 45,90,45,90 −+  219.7 -7.9 0.0 – 0.20 
B [ ]S75,00,20,20,2 45,90,45,90 +−  211.9 -8.8 - 
C [ ]S0,10,275,10,2 45,90,45,90 +−  204,0 -9,6 0,25 
D [ ]S75,00,275,10,2 45,90,45,90 +−  196,2 -10,8 - 
E [ ]S0,10,20,10,2 45,90,45,90 +−  188,4 -11,8 0,30 
F [ ]S0,10,275,00,2 45,90,45,90 +−  180,5 -13,2 0,35 
G [ ]S75,00,275,00,2 45,90,45,90 +−  172,7 -15,0 0,40 
H [ ]S0,175,175,00,2 45,90,45,90 +−  164,8 -17,3 0,45 
I [ ]S75,075,175,00,2 45,90,45,90 +−  157,0 -19,9 0,50 
J [ ]S0,10,175,00,2 45,90,45,90 +−  149,1 -23,3 0,55 
L [ ]S75,00,175,00,2 45,90,45,90 +−  141,3 -27,2 0,60 
M [ ]S75,075,075,00,2 45,90,45,90 −−  133,4 -32,1 0,65 
N [ ]S0,10,10,1

2 90,45,90 −  125,6 -38,5 0,70 
O [ ]S0,175,00,1

2 45,45,90 −+  117,7 -46,6 0,75 - 0,85 
P [ ]S75,075,00,1

2 45,0,90 +  109,9 -59,5 0,90 – 1,0 

Table 2: Pareto-optimal designs 

In the optimization process, the GA is applied 50 times for each α, which is taken varying 
from 0.0 to 1.0 with increments equal to 0.05.  The GA is used with a population size P=50 
and the elitist scheme parameter Ne=5. The genetic operators are used with the following 
probabilities pao=3%, pam=2%, and pper=80%. The criterion parameters to stop the process are 
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NLG=200 and NSD=50. All these vairables are defined in sections 3.2 and 3.3.  
Good reliability value were obtained for the optimization with most of the α values, as can 

be seen in Table 3, where the column σ represents the standard deviation of the apparent 
reliability R. Even for those optimizations with lower values of the reliability, their values are 
not so far from a desirable value, suggesting that some modifications in the GA parameters 
could lead to better reliability levels. The average number of analyses required in each 
optimization process varied form 3682 to 4679, which represents 5.89% to 7.14% of the size 
of the complete design space. These values are low if compared with the total number of 
possibilities (65536), but a high computational effort is required to perform all these analyses. 

 

α Optimal 
designs R σ An α Optimal 

designs R σ An 

0.00 A 90% 4,2% 3906 0.55 J 88% 4,6% 4273 
0.05 A 96% 2,8% 4196 0.60 L 94% 3,4% 4183 
0.10 A 98% 2,0% 4022 0.65 M 94% 3,4% 4234 
0.15 A 86% 4,9% 4223 0.70 N 62% 6,9% 3920 
0.20 A 94% 3,4% 4356 0.75 O 86% 4,9% 4342 
0.25 C 74% 6,2% 4679 0.80 O 78% 5,9% 3905 
0.30 E 98% 2,0% 4154 0.85 O 80% 5,7% 4186 
0.35 F 90% 4,2% 4221 0.90 P 76% 6,0% 4195 
0.40 G 98% 2,0% 3862 0.95 P 80% 5,7% 4180 
0.45 H 96% 2,8% 4219 1.00 P 92% 3,8% 4222 
0.50 I 96% 2,8% 4099      

Table 3: GA optimization results. 

As can be seen in the Table 2 and Table 3, the GA is successful in finding most of pareto-
optimal designs, but the points B and D are not obtained. In fact this points are one of the 
solutions of the optimization, but they are located out of a convex curve defined by the other 
optimal points. This fact avoids the GA to find the points B and D, since the fitness is a 
convex combination of the objectives. The Fig 3a and 3b show the difference of the fitness of 
the points B and D with respect to their neighbor points in a range of α where the optimal 
solution changes from A to C and from C to E, respectively (see Table 3). The figures show 
that the fitness of the points B and D are never greater than those of their neighbor points at 
same time and so they can not be obtained by the GA, no matter the value of the weighting 
parameter. 
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Figure 3: Difference of fitness of points B and D to their neighbor points. 

(a) When FIT(B) > FIT(A), then FIT(C) > FIT(B) 
(b) When FIT(D) > FIT(C), then FIT(E) > FIT(D) 

4.2 Stiffness maximization of a composite laminated shell with geometrically non-linear 
behavior 

The cylindrical shell under uniform pressure load is shown in Fig .4. In the optimization 
process, the finite element analysis is carried out taken into account geometrically non-linear 
effects. It was considered that in the composite laminate material only the fiber angles may 
assume different discrete values, while all the other parameters remain fixed. Material failure 
and the number of contiguous plies with the same fiber orientation are considered as design 
constrains. This last constrain is imposed in order to avoid the failure of the composite 
material due to matrix rupture. 

 
Figure 4: Cylindrical shell under a uniform pressure load 

A finite element mesh for the whole domain having 800 elements and 441 nodes is adopted 
and the Generalized Displacement Control Method (Yang and Shieh, 1990) is used to solve 
the non-linear problem. In Fig. 4 are also included material properties (elastic constants, 
specific weight and strength parameters) corresponding to glass-epoxy. It is considered that 
the composite material is formed by 14 layers having a fixed total thickness h=12.6 mm. Each 
layer is formed by 2 plies that may have fiber orientations such as 0°2, ±45° and 90°2. 
Contiguous plies with same fiber orientation are limited to 4 plies. An orientation 
chromosome with 7 genes is used. Codes 1, 2 and 3 are attributed, respectively, to the 
laminate sequence 0°2, ±45° and 90°2. 
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To evaluate the shell stiffness two parameters, obtained form the structural analysis, are 
used. The first one is the critical load level (NCcrit) determined when the curve pressure x 
displacement at the central point A reaches the first peak. The second parameter is the 
maximum value of the displacement of the central point A (Umáx) at the end of the load 
increment or when material failure is observed. Two variables are used in order to consider 
situations where constrains are satisfied or they are violated. The first variable is the 
maximum load level acting on the structure without material failure (NCmáx) and the second 
variable is an integer number (Vnlc) indicating how many times the constrain referred to 
contiguous plies with the same fiber orientation have been violated. In Fig. 5 values of NCcrit 
and Umáx corresponding to situations where the two constrains are not violated (feasible 
designs) are shown. 

 
Figure 5: Critical load level x maximum central displacement of feasible designs 

The objective here is to maximize the structure stiffness, obtaining the maximum value of 
NCcrit associated to the minimum value of Umáx. The structure fitness is given in the GA by 
the following function: 
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In Eq. 3, NC2
máx is used to penalize structural failures before the application of the total 

load, whereas (Vnlc + 1) is employed to penalize configurations where the maximum number 
of plies with the same fiber orientation is greater than 4. The optimal solution, contained in 
Fig. 5, is defined by the stacking sequence ( )[ ]S224 90,45,90 ±  and the following value of the 
parameters: NCcrit=0.563, Umax=27.2 x 10-3 m and FIT=20.698. The curve load x displacement 
at point A for the optimal solution, indicated in Fig. 5, is presented in Fig. 6. The same curve 
for a configuration of the structure with a low fitness is also shown in Fig. 6. In this case the 
stacking sequence is [ ]S243 450,45 ±± , NCcrit=0.228, Umax=30.7 x 10-3 m and FIT=7.427. 
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Load level x central displacement for optimal and low fitness design 

In order to evaluate the parameter NLG (limit for the number of generations) and P (number 
of individuals in the population) with respect to the performance of the GA, 5 values of each 
of parameter are adopted and 50 optimizations are carried out for each of the 25 combinations 
of the two parameters. All these combinations of NLG and P are presented in Table 4, where 
Ne and NSD, associated with NLG and P had also been included.  The probability of fiber 
orientation alterations is taken in this case as being poa=4%, while for the probability of 
permutation pper=80% is adopted. The probabilities pam=0.0, since the thickness of layers 
remains fixed and only glass-epoxy is used. 

In Fig. 7, some results of the optimization are presented. The main goal of this case is 
reached because the design with the maximum stiffness is obtained for different sets of GA 
parameters. Additionally, the research about the effects of the values of NLG and P is shown in 
Fig. 7, where the variation of R and An with respect to these parameters is well defined. The 
best values for the GA parameters depend on the required reliability of the process, since the 
minimum average number of structural analyses demanded by the optimization procedure is 
proportional to R. 

 
Comb P (Ne) NLG (NSD) Comb P (Ne) NLG (NSD) Comb P (Ne) NLG (NSD) 

1 50 (8) 300 (100) 10 6 (1) 180 (60) 19 10 (1) 60 (20) 
2 30 (5) 300 (100) 11 50 (8) 108 (36) 20 6 (1) 60 (20) 

3 18 (3) 300 (100) 12 30 (5) 108 (36) 21 50 (8) 33 (11) 

4 10 (1) 300 (100) 13 18 (3) 108 (36) 22 30 (5) 33 (11) 

5 6 (1) 300 (100) 14 10 (1) 108 (36) 23 18 (3) 33 (11) 

6 50 (8) 180 (60) 15 6 (1) 108 (36) 24 10 (1) 33 (11) 

7 30 (5) 180 (60) 16 50 (8) 60 (20) 25 6 (1) 33 (11) 

8 18 (3) 180 (60) 17 30 (5) 60 (20)    

9 10 (1) 180 (60) 18 18 (3) 60 (20)    

Table 4: Study of some parameters used in the GA. 
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Figure 7: Average value of the number of structural analyses per optimization process and apparent reliability 

for each combination of the parameters of the GA 

Table 5 shows the combination with the lower computational cost for each value of R 
above 90%. In this table, J is the relationship between An and total number of solutions in the 
design space. As it can be observed in Fig. 6 and Table 5, 18 individuals is the ideal size for 
the population, appearing three times with the lower values of An and the best values of R. It 
is also observed that in combination number 18, with P=18, the apparent reliability is R=98%, 
the number of structural analyses is not very high (567) and, for this case, NLG=60. 

 
R Comb P NLG An J 

92% 23 18 33 394 18% 
94% 21 50 33 896 41% 
96% 5 6 300 793 36% 
98% 18 18 60 567 26% 
100% 13 18 108 893 41% 

Table 5: The best combinations according to increasing values of the apparent reliability R. 
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5 CONCLUSIONS 

The GA was applied successfully to optimize composite laminate structures. In the first 
example the objective function containing the optimization objectives normalized with respec 
to their limit values was able to find 13 of the 15 pareto-optimal points. An additional 
research was performed to show that the objective function is unable to find the two 
remaining points, even for smaller intervals of the weighting factor, because they are located 
out of the convex curve that is described by the other 13 points. For most of the values of α 
the GA presented good reliability and the average number of analyses required in a 
optimization process was found to be about 6% to 7% of the complete design space. In the 
second example a cylindrical shell with geometrically non-linear behavior was analyzed. In 
this problem the influence of different values of P and NLG, taking R and An as parameters, 
was studied. Using 25 combinations of P and NLG the tendency of R and An was analyzed. 
Finally, intervals of P and NLG where the GA is more efficient were determined. 
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