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Abstract. In structural analysis, the concept of normal modes is classically related tothe linear vibration
theory. Extending the concept of normal modes to the case where the restoring forces contain non-linear
terms has been a challenge to many authors mainly because the principle of linearsuperposition does not
hold for non-linear systems. The aim of this paper is to show how the concept of the Noninear Modes
(NNMs) can be used to better understand the response of the nonlinear mechanical systems. The concept
of NNMs is introduced here in the framework of invariant manifold theory for dynamical systems. A
NNM is defined in terms of amplitude, phase, frequency, damping coefficient and mode shape, where
the last three quantities are amplitude and phase dependent. An amplitude-phase transformation is per-
formed on the nonlinear dynamical system, giving the time evolution of the nonlinear mode motion via
the two first-order differential equations governing the amplitude and phase variables, as well as the ge-
ometry of the invariant manifold. The formulation adopted here is suitable for use with a Galerkin-based
computational procedure. It will be shown how the NNMs give access to the existence and stability of
periodic orbits such as limit cycle.
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1 INTRODUCTION

The modal analysis is the natural tool to characterize the linear mechanical systems (in par-
ticular for numerical modelling, prediction and experimental characterization). It is based on
the modal parameters (frequencies, modal shape and ratio damping), which constitute intrinsic
characteristics of the system. The modal analysis uses intensively the principle of superposition,
which allows to uncouple the equations from the movement andto express the free or forced
responses. For the non-linear systems, these techniques have to be reformulated in particular
because the principle of superposition does not apply but also to take account the dependencies
of the resonant frequencies (and more generally modal shapes) with respect to the amplitude of
the oscillations.

The extension of the modal theory to nonlinear mechanical systems appears the first time
under the name Nonlinear Normal Modes linear (NNM) in the work of Rosenberg(1962) for
a system ofn-masses interconnected by nonlinear springs. The term NNM describes a vibra-
tion in unison, which means that ”all masses execute equiperiodic motions, all pass through
equilibrium at the same instant, all attain maximum displacement at the same instant and the
position of any one mass at any given instant of time defines uniquely that of every other mass
at the same instant”. More precisely, a NNM is defined as a family of periodic solutions of the
equations of motion corresponding to simple curves in the configuration space.

More recently,Shaw and Pierre(1991) extended the concept of NNM in the context of
phase space . The proposed approach is geometric in nature and utilizes the theory of invariant
manifolds for dynamical systems. A NNM of autonomous systemis defined as (seeShaw and
Pierre(1993)) ”a two-dimensional invariant manifold in the phase space. This manifold passes
through a stable equilibrium point of the system and, at thatpoint, it is tangent to a plan, which
is an eigenspace of the system linearized about that equilibrium”. In the manifold, the modal
equation of motion is a one-degree of freedom nonlinear oscillator. This definition is valid
for dissipative mechanical systems. A nonlinear superposition technique is also proposed and
its validity is discussed inPellicano and Mastroddi(1997). The construction of the NNMs for
piecewise linear systems is considered inJiang et al.(2004), the systems with internal resonance
is treated inJiang et al.(2005).

The invariant manifold approach is very close to the methodsbased on the theory of normal
forms (seeJezequel and Lamarque(1991), Nayfeh(1993) andTouźe et al.(2004)) where the
invariant manifold and the modal equations of motion are extracted from the minimal represen-
tation.

The review paperVakakis(1997) and the bookVakakis et al.(1996) contain an almost com-
plete account of the history of the subject. Moreover, the main tool to analyse dynamical non-
linear systems can be found inGuckenheimer and Holmes(1983), Nayfeh and Mook(1984)
andSzemplinska-Stupnicka(1990).

In this paper, the NNMs are introduced using an amplitude-phase formulation recently pro-
posed inBellizzi and Bouc(2005) andBellizzi and Bouc(2007) in the line with the approach
developed inPesheck et al.(2002). For nonlinear conservative systems, as in the linear case,
a nonlinear mode is described (seeBellizzi and Bouc(2005)) in terms of mode shape and fre-
quency, where the distinctive feature that these two quantities are amplitude and phase depen-
dent. For a given modal motion the amplitude is constant and the time evolution of the modal
motion is defined by a first-order differential equation governing the total phase motion, from
which the period of the oscillation can easily be deduced. Itwas established that the frequency
and mode shape functions solve a2π-periodic (with respect to the phase variable) nonlinear

2932



differential eigenvalue problem. This formulation also gives a parametric description of the as-
sociated invariant manifold. For autonomous mechanical systems including displacement and
velocity nonlinear terms, a NNM is described (seeBellizzi and Bouc(2007)) in terms of mode
shape, frequency and damping where these three functions are amplitude and phase dependent.
For a given modal motion the time evolution of the modal motion is defined by two first-order
differential equations governing the ampitude and the total phase motions. This formulation
gives access to the parametric equation of the invariant manifold associated to the NNM in the
phase space. In terms of signal processing the frequency function and the damping function
give access to the amptitude modulation and frequency moduation of the modal motions.

In addition to introducing the concept of NNMs, the objective of this paper is to show that
the NNM can provide a valuable theoretical tool for understanding some nonlinear phenomena.
We will focus on the limit cycle analysis of auto-oscillation systems. We will show that the am-
plitude phase formulation gives, without explicit integration of the equations of motion, access
to the transient, the limit cycle, its period and its stability. The process will be illustrated for a
two-coupled van der Pol oscillators.

2 NONLINEAR MODES FORMULATION

Let’s consider the equations of motion

MQ̈(t) + F(Q̇(t),Q(t)) = 0 (1)

where then-dimensional vectorsQ andQ̇ represent displacement and velocity, respectively,
M denotes the mass matrix andF is an-vector function defined from the forces and moment
acting on the system. We assume thatM is symmetric positive definite matrix andF satisfies
F(0,0) = 0 (i.e. 0 is an equilibrium point).

2.1 Definition of a NNM

Let’s consider a family of motions of (1) who can express themselves in the form
{

Q(t) = v(t)X(v(t), φ(t))

Q̇(t) = v(t)Y(v(t), φ(t))
(2)

where the scalar functionsv andφ, called amplitude and phase respectively, satisfy the two
first-order differential equations

{

v̇(t) = v(t)ξ(v(t), φ(t))

φ̇(t) = Ω(v(t), φ(t))
with

{

v(0) = a

φ(0) = ϕ
(3)

wherea andϕ are constant parameters defining the initial conditions of the motion.
We assume that

• X andY aren-vector functions,2π-periodic with respect to the variableφ;

• ξ is a odd scalar functionπ-periodic with respect to the variableφ;

• Ω is a positive scalar functionπ-periodic with respect to the variableφ.

If such a family of motions generated by equations (2-3) and parameterized by(a, ϕ) for
(a, ϕ) ∈ R

+ × [0, 2π] exists, it defines a NNM. Hence, each NNM is characterized by the four
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functionsX, Y, ξ andΩ. The two vector functions,X andY, characterize the geometrical
properties of the NNM. For a given NNM, all the modal motions take place in an invariant set
of the phase space defined by

{

Q = aX(a, ϕ)

Q̇ = aY(a, ϕ)
, (a, ϕ) ∈ R

+ × [0, 2π]. (4)

The scalar functionsΩ andξ capture the dynamical properties of the NNM. The fast and slow
motions of the modal motions are characterized by the frequency functionΩ and the damping
functionξ, respectively.

2.2 Linear case

If F(Q, Q̇) = KQ+CQ̇, the linear modes of (1) are classical defined by the eigenproblem
(

C M

M 0

)

Ψλ +

(

K 0

0 −M

)

Ψ = 0. (5)

A solution (λ,Ψ) of equation (5) (with Ψ =
(

ψT , λψT
)T

) defines a Linear Normal Mode
(LNM) if C = 0 and a complex mode if not.

The modal motions associated to(λ,Ψ) take the form
{

Q(t) = aeηt (ψc cos(ωt + ϕ) − ψs sin(ωt + ϕ))

Q̇(t) = aeηt ((ηψc − ωψs) cos(ωt + ϕ) − (ηψs + ωψc) sin(ωt + ϕ))
(6)

whereλ = η + iω (it is assume thatω > 0) andψ = ψc + iψs with i2 = −1. As previously,
the parametersa andϕ fix the initial conditions of the motion.

It is easy to verify that the expressions (6) can be re-written in form of equations (2-3) with














X(v, φ) = ψc cos φ − ψs sin φ

Y(v, φ) = (ξψc − Ωψs) cos φ − (ξψs + Ωψc) sin φ

ξ(v, φ) = η

Ω(v, φ) = ω

. (7)

Hence the formulation (2-3) appears as an extension of the linear modal analysis whereΩ and
ξ are constant functions.

As it is well known, the invariant manifold associated to a linear mode is a vector subspace
of dimension2 and the modal motions can be, depending on the damping matrix, periodic or
exponential decreasing.

2.3 Nonlinear conservative case

If F(Q, Q̇) = F(Q) with F(Q) = −F(−Q), without loss of generality, the NNM can be
sought under the form

Q(t) = aΨ(a, φ(t)) cos φ(t) with φ̇(t) = Ω(a, φ(t)) andφ(0) = ϕ (8)

where

• Ψ is n-vector functions,π-periodic with respect to the variableφ;

• Ω is a positive scalar functionπ-periodic with respect to the variableφ.
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The formulation (8) is evidently related to the formulation (2-3) with
{

X(v, φ) = Ψ(v, φ) cos φ

ξ(v, φ) = 0
(9)

and if such a NNM exists, all the modal motions are periodic and the period is given by

T (a) =

∫ ϕ+2π

ϕ

1

Ω(a, φ)
dφ = 2

∫ π

0

1

Ω(a, φ)
dφ (10)

showing that the period is only amplitude-dependent.
Substituting equation (8) into equation (1), equation (1) reduces to the following differential

equations in the variableφ

MΨ(Ω2 cos φ +
1

2
(Ω2)φ sin φ) = L(Ω2,Ψ; φ) +

1

a
F(Ψa cos φ) (11)

where

L(Ω2,Ψ; φ) = Ω2 cos φMΨφφ − 2Ω2 sin φMΨφ +
1

2
(Ω2)φ cos φMΨφ (12)

and(.)φ = ∂
∂φ

(.). The differential rule(Ω2)φ = 2ΩΩφ has been used to work with the unknown
functionΩ2 in place ofΩ.

For fix a, (11) is a system of2π periodic partial differential equations with respect to the
two unknown functionsΨ andΩ. A well-posed problem can be obtained imposing, as usual, a
normalization condition. As proposed inBellizzi and Bouc(2005), the scalar equation can be
used

ΨTMΨ = 1, (13)

and it can be shown that for a well-defined periodic solution of equations (11) and (13), we
always have

Ω2(a, φ) > 0, ∀(a, φ) (14)

andΩ2 can be expressed in terms ofΨ as

Ω2(a, φ) =
2

a sin2 φ

(
∫ φ

0

exp(−
∫ φ

σ

β(a, ν)dν)I(a, σ)dσ

)

(15)

where
I(a, φ) = sin φΨT (a, φ)F(Ψ(a, φ)a cos φ)

and

β(a, φ) = 2γ2(a, φ)
cos φ

sin φ
with γ2(a, φ) = ∂Ψ

T (a,φ)
∂φ

M
∂Ψ(a,φ)

∂φ
.

Inequality (14) ensures the existence of a real positive resonance frequency function Ω and
equation (15) reduces toΩ2 = ΨTKΨ in the linear case.

Moreover, if we assume that the eigenvalues associated withthe pair of matrices(M, ∂XF(0))
are distinct (and are all positive) then we can prove that foreacha in some neighbourhood of
a = 0, there existn well-defined solutions to equations (11) and (13). Each solution is unique
in some neighbourhood ofa = 0. Consequently there existn NNMs which can be viewed as a
continuation of then LNMs of the underlying linear system (1). For each NNM, the invariant
set in the phase space is tangent to the vector subspace of dimension2 characterizing to the
associated linear mode of the underlying linear system.
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2.4 Nonlinear autonomous case

In this case, the general formulation (2-3) has to be considered to define the NNM. Sub-
stituting equations (2) and (3) into equation (1), equation (1) reduces to the following partial
differential equations in the variableφ andv

(X + vXv) ξ + XφΩ = Y (16)

M (Y + vYv) ξ + MYφΩ +
1

v
F(vY, vX) = 0 (17)

where(.)v = ∂
∂v

(.) and(.)φ = ∂
∂φ

(.).
As in the conservative case, a well-posed problem can be obtained imposing, as usual, nor-

malization conditions. As proposed inBellizzi and Bouc(2007), the following two scalar equa-
tions

sin2φXocT

MXoc + cos2φXosT MXos = sin2φcos2φ, (18)

XocT

MXosT sinφcosφ = 0 (19)

can be used whereXoc (respectivelyXes, Xos, Xes) denote the odd cosine (respectively even
cosine, odd sinus, even sinus) terms in the Fourier series (with respect to the variableφ) of X

(i.e. X = Xoc + Xec + Xos + Xes). The normalization condition (18) reduces to (13) whereas
(19) is trivially satisfied in case of conservative systems. Moreover, noting that the functions
Xoc andXos can be factored as

Xoc(v, φ) = Ψc(v, φ)cosφ, Xos(v, φ) = Ψs(v, φ)sinφ (20)

whereΨc andΨs are even,π-periodic functions with respect toφ, equations (18-19) reduce to

ΨcT

MΨc + ΨsT

MΨs = 1

ΨcT

MΨs = 0,

in the linear case (see section2.2).
Finally, a NNM is obtained solving the equations (16-19) with respect toX, Y, Ω andξ in

a domain[0, vmax] × [0, 2π]. A numerical approach based on Galerkin method is proposed in
Bellizzi and Bouc(2007).

3 SOME APPILCATIONS

3.1 A simple example

We consider the nonlinear conservative system also treatedin Pesheck et al.(2002)
{

ẍ1 + ω2
1x1 + 0.405x3

1 + 1.34x2
1x2 + 1.51x1x

2
2 + 0.349x3

2 = 0
ẍ2 + ω2

2x2 + 0.448x3
1 + 1.51x2

1x2 + 1.05x1x
2
2 + 4.580x3

2 = 0
(21)

whereω1 = 0.689 andω2 = 3.244 denote the natural frequencies of the underlying linear
system.

The NNM have been computed under the form (8) solving the2π-periodic algebro-differential
equations (11)(13) using the balance harmonic principle with the truncated expansions

Ψ(a, φ) ≈

Nφ
∑

k=0

Ψk(a) cos(2k)φ andΩ(a, φ) ≈

Nφ
∑

k=0

Ωk(a) cos 2kφ. (22)
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Figure 1: First (left colomn) and second (right colomn) NNM of system (21). Top row: Resonance frequency
functions versusa. Middle row: modal motions with the initial conditiona = 0.25 andϕ = 0, NNM approach
(continuous lines), direct simulation (dotted lines). Bottom row: modal motions with the initial conditiona = 1.8
andϕ = 0, NNM approach (continuous lines), direct simulation (dotted lines).

whereΨk(a) andΩk(a) denote the unknown coefficients. Finally, the resulting algebraic equa-
tions have been solved using the continuation method named Asymptotic Numerical Method
Cochelin et al.(2007).

The behaviour of the two NNMs is illustrated in figure1 where the approximations (22)
have been obtained withNφ = 4. The backbone curves (top row in figure1) show a hardening
behaviour of the two NNMs. For each NNM, the backbone curve isdefined as the evolution
of the frequencyf = 1

T
versus the amplitudea whereT denotes the period of the modal

motions (see equation (13)). Modal motions are also plotted (middle and bottom rows) in figure
1. Modal motions have been obtained for each NNM solving equations (8) over one period
given by equation (13) with two different initial valuesa = 0.25, ϕ = 0 (middle row) and
a = 1.8, ϕ = 0 (bottom row). In order to check the validiy of the approximations, the reference
solutions (with initial conditions given by equation (8) at t = 0) were computed by direct
solving of equation (21) using a Runge-Kutta method (plotted in dotted lines). The results
indicate good agreemment. The nonlinearity does not affectthe two NNM in the same way
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Figure 2: Frequency ((a), (b)) damping ((c, (d)) functions characterizing the two MNLs of system (23).

in the configuration space. For the second NNM, the modal curves in the configuration space
(phase subspace(X1, X2)) are straight whereas, for the first NNM, the modal curves arecurved.

3.2 A self-oscillation system

We consider the two-coupled van der Pol oscillators
{

q̈1 + c11q̇1 + c12q̇2 − ǫ1(1 − q2
1 − δ1q

2
2)q̇1 + q1 = 0

q̈2 + c21q̇1 + c22q̇2 − ǫ2(1 − δ2q
2
1 − q2

2)q̇2 + 9q2 = 0
(23)

with ǫ1 = ǫ2 = 0.5, δ1 = δ2 = 2.5, c11 = c22 = 0 andc12 = −c21 = 0.8.
The NNM have been computed under the form (2-3) solving the2π-periodic algebro-partial

differential equations (16-19) using the balance principle over the domain[0, vmax] × [0, 2π]
with the truncated expansions:



















Xce(v, φ) ≈ Xc
lin(φ) +

∑Nv

p=1

∑Nφ

k=0 Xc
p,2k+1v

p cos(2k + 1)φ

Xco(v, φ) ≈
∑Nv

p=1

∑Nφ

k=0 Xc
p,2kv

p cos 2kφ

Xse(v, φ) ≈ Xs
lin(φ) +

∑Nv

p=1

∑Nφ

k=0 Xs
p,2k+1v

p sin(2k + 1)φ

Xso(v, φ) ≈
∑Nv

p=1

∑Nφ

k=1 Xs
p,2kv

p sin 2kφ

(24)
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

















Yce(v, φ) ≈ Yc
lin(φ) +

∑Nv

p=1

∑Nφ

k=0 Yc
p,2k+1v

p cos(2k + 1)φ

Yco(v, φ) ≈
∑Nv

p=1

∑Nφ

k=0 Yc
p,2kv

p cos 2kφ

Yse(v, φ) ≈ Ys
lin(φ) +

∑Nv

p=1

∑Nφ

k=0 Ys
p,2k+1v

p sin(2k + 1)φ

Yso(v, φ) ≈
∑Nv

p=1

∑Nφ

k=1 Ys
p,2kv

p sin 2kφ

(25)

{

Ω(v, φ) ≈ Ωlin +
∑Nv

p=1

∑Nφ

k=0 Ωp,2kv
p cos 2kφ

ξ(v, φ) ≈ ξlin +
∑Nv

p=1

∑Nφ

k=0 ξp,2kv
p cos 2kφ

(26)

whereXc
p,2k+1, Xc

p,2k,· · · , ξp,2k denote the unknown coefficients and the termsXc
lin, Xs

lin, Yc
lin,

Ys
lin, Ωlin andξlin are selected from the modes of the associated linear system (see equations

(7)). The complete procedure is described inBellizzi and Bouc(2007)).
Figure 2 shows the frequencyΩ and dampingξ functions characterizing the two NNMs

obtained withvmax = 2, Nv = 2 andNφ = 2 and from respectively

• Linear mode 1:η = 0.23, ω = 0.93, ψc = (0.002,−0.092)T , ψs = (0.995, 0.023)T

• Linear mode 2:η = 0.27, ω = 3.10, ψc = (0.022, 0.961)T , ψs = (0.274,−0.006)T .

For each mode, the damping functionξ decreases withv from positive to negative values.
Figure3 shows the invariant manifold associated to each NNM.
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Figure 3: Invariant manifold of the two MNLs of system (23).

The dynamic behaviour of the modal motions in the invariant manifold are governed by the
two first-order differential equations (3). Hence, a periodic motion may occur on the invariant
manifold if there exits a periodic solution to (3) or equivalently to

dv

dφ
= vτ(v, φ) where τ(v, φ) =

ξ(v, φ)

Ω(v, φ)
. (27)
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The existence of a periodic solution of equation (27) can be deduced from the existence of
an equilibrium point in the associeated averaged equation (using the average principle in the
context of perturbation theory, seeHale(1969))

dv

dφ
= v < τ > (v) where < τ > (.) =

1

2π

∫ 2π

0

(
ξ(., φ))

Ω(., φ))
dφ. (28)

The functions< τ > versusv are plotted in figure4 for the two nonlinear modes. Equation
(28) takes the equilibrium pointv∗

1 = 1.89 in the first nonlinear mode andv∗

2 = 1.45 in the
second nonlinear mode. Each equilibrium point characterizes an asymptotically stable (d

dv
<

τ > (v∗

i ) < 0) limit cycle on the associated invariant manifold. The approximations can
be improved by solving equation (27). The harmonic balance method yields the following
truncated expansion

0 0.5 1 1.5 2
v

-0.5

0

0.5

1

1.5

<
Τ
>

v

Figure 4: Evolution of< τ > versusv for the nonlinear modes 1 (continuous line) and 2 (dashed line).

v∗

1(φ) = 1.906 + 0.046 cos 2φ − 0.017 cos 4φ + 0.199 sin 2φ + 0.006 sin 4φ,

v∗

2(φ) = 1.453 + 0.003 cos 2φ − 0.0004 cos 4φ − 0.026 sin 2φ − 0.0001 sin 4φ.
(29)

giving the limit cycle approximations (with periodT1 = 6.58 andT2 = 2.03) for i = 1, 2

(

Q(t)

Q̇(t)

)

i

= v∗

i (φ(t))

(

Xi(v
∗

i (φ(t)), φ(t))
Yi(v

∗

i (φ(t), φ(t))

)

with φ̇ = Ωi(v
∗

i (φ), φ), φ(0) = ϕ. (30)

The last question, which now arises, is whether or not the limit cycles are stable in the phase
space. To answer this question Floquet’s theory (seeHale(1969)) is applied. Rewriting equation
(23) in the first order autonomous differential system

d

dt
Z(t) = G(Z(t)) with Z =

(

QT , Q̇T
)T

the stability of the periodic solutions (30) can be deduced from the eigenvalues of the mon-
odromy matrix associated with the fundamental matrix solution of the2π-periodic variational
linear differential system (seeHale(1969) page 119)

d

dφ
∆Z(φ) =

1

Ωi(v∗

i (φ), φ)
[∂GZ(Zi(φ))]∆Z(φ). (31)
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The monodromy matrix is computed over one period, using the four canonical basis vectors as
initial conditions successively. The computations show that the periodic orbit (v∗

1) associated
with the first nonlinear mode is stable on its invariant manifold and unstable in the phase space
(two complex conjugate multipliers are outside the unit circle), whereas the periodic orbit (v∗

2)
associated with the second nonlinear mode is stable on its invariant manifold, as well as in the
phase space (one multiplier lies on the unit circle and all the others are located inside the unit
circle). The local and global stability are illustrated in figure5 by solving numerically equation
(23). Motions are plotted with initial conditions (near the periodic orbit) on the invariant man-
ifold and outside the invariant manifold for the first NNM , figure5(a), and the second NNM,
figure5(b).
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(a) MNL 1 in the phase subspace (Q1, Q̇1, Q2)
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Figure 5: Illustration of the local and global stability of the limit cycle associated with the first (a) and the
second (b) nonlinear mode. Motions obtained by solving (23) with initial conditions inside the invariant manifold
(continuous line) and outside the invariant manifold (boldcontinuous line).

4 CONCLUSION

An amplitude-phase transformation procedure was described here for characterizing the
NNMs of the nonlinear mechanical systems in the framework ofinvariant manifold theory. This
formulation is a natural extension of the linear tools and gives an interpretation of the NNM in
terms of frequency, damping and mode shapes. A NNM can also beviewed as a familly of
motions (damped motions, periodic orbits,...).

In addition to introducing the concept of NNMs, we have shownthat the NNM can pro-
vide a valuable theoretical tool for understanding some nonlinear phenomena. For example,
bifurcation analysis can be performed, and the existence and stability of periodic orbits on the
associated invariant manifold can be studied from the two first-order coupled differential equa-
tions governing the amplitude and phase variables, which describe the dynamics.
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