Asociacién Argentina AMCL

de Mecanica Computacional

Mecanica Computacional Vol XXVI, pp.2931-2942
Sergio A. Elaskar, Elvio A. Pilotta, German A. Torres (Eds.)
Cordoba, Argentina, Octubre 2007

NON LINEAR MODES AS A TOOL TO ANALYSE NONLINEAR
DYNAMICAL SYSTEMS

S. Bellizzi and R. Bouc

Laboratoire de Mcanique et d’Aoustique, Centre National de la Recherche Scientififjudnemin
Joseph Aiguier, 13402 MArseille, Frandgellizzi,bou¢ @Ima.cnrs-mr.fr,
http://ww. I ma.cnrs-nrs. fr

Keywords: Vibration, nonlinear, modal analysis.

Abstract. In structural analysis, the concept of normal modes is classically relatie lioear vibration
theory. Extending the concept of normal modes to the case where themgé$toces contain non-linear
terms has been a challenge to many authors mainly because the principle cflipegrosition does not
hold for non-linear systems. The aim of this paper is to show how the con€épe Noninear Modes
(NNMs) can be used to better understand the response of the nonling@amtal systems. The concept
of NNMs is introduced here in the framework of invariant manifold theorydgnamical systems. A
NNM is defined in terms of amplitude, phase, frequency, damping coeffiaighmode shape, where
the last three quantities are amplitude and phase dependent. An amplitisdet@imsformation is per-
formed on the nonlinear dynamical system, giving the time evolution of the nanlmede motion via
the two first-order differential equations governing the amplitude andepyesables, as well as the ge-
ometry of the invariant manifold. The formulation adopted here is suitableswith a Galerkin-based
computational procedure. It will be shown how the NNMs give accesset@xistence and stability of
periodic orbits such as limit cycle.
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1 INTRODUCTION

The modal analysis is the natural tool to characterize thesali mechanical systems (in par-
ticular for numerical modelling, prediction and experirtedrcharacterization). It is based on
the modal parameters (frequencies, modal shape and ratipiig), which constitute intrinsic
characteristics of the system. The modal analysis usessintdy the principle of superposition,
which allows to uncouple the equations from the movementtarekpress the free or forced
responses. For the non-linear systems, these techniqueddbe reformulated in particular
because the principle of superposition does not apply kottaltake account the dependencies
of the resonant frequencies (and more generally modal shapih respect to the amplitude of
the oscillations.

The extension of the modal theory to nonlinear mechanicstesys appears the first time
under the name Nonlinear Normal Modes linear (NNM) in the kvair Rosenberd1962 for
a system of:.-masses interconnected by nonlinear springs. The term NBddribes a vibra-
tion in unison, which means that "all masses execute egoitiermotions, all pass through
equilibrium at the same instant, all attain maximum disphaent at the same instant and the
position of any one mass at any given instant of time defineguety that of every other mass
at the same instant”. More precisely, a NNM is defined as alyaofiiperiodic solutions of the
equations of motion corresponding to simple curves in thidigaration space.

More recently,Shaw and Pierré1991) extended the concept of NNM in the context of
phase space . The proposed approach is geometric in natlitgibares the theory of invariant
manifolds for dynamical systems. A NNM of autonomous sysienefined as (seShaw and
Pierre(1993) "a two-dimensional invariant manifold in the phase spddas manifold passes
through a stable equilibrium point of the system and, atploatt, it is tangent to a plan, which
is an eigenspace of the system linearized about that equitib. In the manifold, the modal
equation of motion is a one-degree of freedom nonlineadlagmi. This definition is valid
for dissipative mechanical systems. A nonlinear supetiposiechnique is also proposed and
its validity is discussed ifellicano and MastroddiL997). The construction of the NNMs for
piecewise linear systems is considerediang et al(2004), the systems with internal resonance
IS treated inJiang et al(2009.

The invariant manifold approach is very close to the methiad®d on the theory of normal
forms (seelezequel and Lamarq{£991), Nayfeh (1993 and Touz et al.(2004) where the
invariant manifold and the modal equations of motion areaetéd from the minimal represen-
tation.

The review papeYakakis(1997) and the book/akakis et al (1996 contain an almost com-
plete account of the history of the subject. Moreover, thért@ol to analyse dynamical non-
linear systems can be found @Guckenheimer and Holmg4983, Nayfeh and Mool(1984)
andSzemplinska-Stupnick@d 990.

In this paper, the NNMs are introduced using an amplitudesptformulation recently pro-
posed inBellizzi and Bouc(2005 andBellizzi and Bouc(2007) in the line with the approach
developed irPesheck et al2002. For nonlinear conservative systems, as in the linear, case
a nonlinear mode is described ($ellizzi and Bouc(2009) in terms of mode shape and fre-
guency, where the distinctive feature that these two gtiestare amplitude and phase depen-
dent. For a given modal motion the amplitude is constant hadiime evolution of the modal
motion is defined by a first-order differential equation gowmeg the total phase motion, from
which the period of the oscillation can easily be deducedialt established that the frequency
and mode shape functions solveaperiodic (with respect to the phase variable) nonlinear
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differential eigenvalue problem. This formulation alsveg a parametric description of the as-
sociated invariant manifold. For autonomous mechanicstesys including displacement and
velocity nonlinear terms, a NNM is described (&adlizzi and Bouq2007) in terms of mode
shape, frequency and damping where these three functierssrglitude and phase dependent.
For a given modal motion the time evolution of the modal moi®defined by two first-order
differential equations governing the ampitude and thel fghase motions. This formulation
gives access to the parametric equation of the invariantfoldrassociated to the NNM in the
phase space. In terms of signal processing the frequencyidunand the damping function
give access to the amptitude modulation and frequency ntiotuaf the modal motions.

In addition to introducing the concept of NNMs, the objeetof this paper is to show that
the NNM can provide a valuable theoretical tool for underdiag some nonlinear phenomena.
We will focus on the limit cycle analysis of auto-oscillatisystems. We will show that the am-
plitude phase formulation gives, without explicit intefypa of the equations of motion, access
to the transient, the limit cycle, its period and its stafiliThe process will be illustrated for a
two-coupled van der Pol oscillators.

2 NONLINEAR MODES FORMULATION

Let’s consider the equations of motion

MQ(t) + F(Q(¢),Q(t)) = 0 (1)

where then-dimensional vector€) and Q represent displacement and velocity, respectively,
M denotes the mass matrix ahuis an-vector function defined from the forces and moment
acting on the system. We assume thatis symmetric positive definite matrix ard satisfies
F(0,0) = 0 (i.e. 0 is an equilibrium point).

2.1 Definition of a NNM

Let's consider a family of motions ofif who can express themselves in the form

{ (2(t> = v(t)X(v(t), (1)) ()
Q@) = v(®)Y(v(l), (1))

where the scalar functions and ¢, called amplitude and phase respectively, satisfy the two
first-order differential equations

o) = v®D), o) e [ 0(0) = a
{cb(t) = owm.em) { $0) = ¢ (3)

wherea andy are constant parameters defining the initial conditionfiefmotion.
We assume that

e X andY aren-vector functions2r-periodic with respect to the variable
e ¢ is aodd scalar function-periodic with respect to the variable
e ()is a positive scalar function-periodic with respect to the variable

If such a family of motions generated by equatio8s3) and parameterized by, ) for
(a,) € RT x [0,27] exists, it defines a NNM. Hence, each NNM is characterizedhbyfdur
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functionsX, Y, £ and2. The two vector functionsX andY, characterize the geometrical
properties of the NNM. For a given NNM, all the modal motioake place in an invariant set
of the phase space defined by

{ Q = aX(a, )
Q = aY(a,p)
The scalar function§ and¢ capture the dynamical properties of the NNM. The fast and slo

motions of the modal motions are characterized by the fregé&inction{) and the damping
function, respectively.

 (a,9) € RT x [0, 27]. (4)

2.2 Linear case
If F(Q, Q) — KQ + CQ, the linear modes ofl are classical defined by the eigenproblem

C M K 0
(M 0)m+(0 _M)\If:O. (5)

A solution (A, &) of equation §) (with ¥ = (wT,A¢T)T) defines a Linear Normal Mode
(LNM) if C =0 and a complex mode if not.
The modal motions associated(to W) take the form

{ Q(t) = ae (Y°cos(wt + p) — P’ sin(wt + )
Q(t) = ae™ ((ny° — wip®) cos(wi + ) — (NP° + W) sin(wt + ¢))

where) = 7 + iw (it is assume that > 0) andip = ¢ + i1p® with i> = —1. As previously,
the parameters and fix the initial conditions of the motion.
It is easy to verify that the expressior® €an be re-written in form of equation2-8) with

X(v,0) = P cosp —psing

Y(v,0) = (§¢°— Q1p®)cosp — (§¢° + Qp°) sin ¢
(v, 9) = 7 '
Qu,¢) = w

Hence the formulation2t3) appears as an extension of the linear modal analysis vherel
¢ are constant functions.

As it is well known, the invariant manifold associated toreekr mode is a vector subspace
of dimension2 and the modal motions can be, depending on the damping mpéitodic or
exponential decreasing.

(6)

(7)

2.3 Nonlinear conservative case

If F(Q,Q) = F(Q) with F(Q) = —F(—Q), without loss of generality, the NNM can be
sought under the form

Q(t) = aW(a, ¢(1)) cos p(t) with ¢(t) = Q(a, ¢(t)) andg(0) = (8)
where
e W is n-vector functionsy-periodic with respect to the variable

e (2 is a positive scalar function-periodic with respect to the variable
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The formulation 8) is evidently related to the formulatio@3) with

{ X(v,0) = ¥(v,0)cos ©)
{(v,0) = 0
and if such a NNM exists, all the modal motions are periodit the period is given by
et o
T(a) = /¢ a.0) dp = 2/0 mdqb (20)

showing that the period is only amplitude-dependent.
Substituting equatiorsj into equation 1), equation {) reduces to the following differential
equations in the variable

MW (Q? cos ¢ + %(02)(;3 sin¢) = L(Q?, ¥; ¢) + %F(\Pa cos ¢) (11)

where

L(Q2 W; ¢) = Q% cos oMW 45 — 207 sin MW, + %(92)¢ cos pMVW , (12)
and(.)y = a%(-)- The differential rulgQ?), = 2Q4, has been used to work with the unknown
function)? in place of(.

For fix a, (11) is a system o7 periodic partial differential equations with respect te th
two unknown functiongl and(2. A well-posed problem can be obtained imposing, as usual, a
normalization condition. As proposed Bellizzi and Bouc(2005, the scalar equation can be
used

UMW = 1, (13)

and it can be shown that for a well-defined periodic solutibeguations {1) and (3), we
always have

0*(a,¢) > 0, ¥(a,¢) (14)
andQ? can be expressed in terms®fas
2 @ ¢
V?(a,¢) = Py (/0 exp(—/a 6(a,u)dl/)](a,a)d0> (15)
where
I(a,¢) = sin p®" (a, p)F(¥(a, p)acos @)
and 5
cos . T (g a
Bla,6) = 29%(a,6) oo with 7%(a, ¢) = SGRAMER,

Inequality (L4) ensures the existence of a real positive resonance fregudanction () and
equation {5) reduces td)? = $TKW in the linear case.

Moreover, if we assume that the eigenvalues associatediveéithair of matricesM, 0xF(0))
are distinct (and are all positive) then we can prove thaefmha in some neighbourhood of
a = 0, there exist, well-defined solutions to equation$1) and (L3). Each solution is unique
in some neighbourhood af = 0. Consequently there existNNMs which can be viewed as a
continuation of the: LNMs of the underlying linear systeni). For each NNM, the invariant
set in the phase space is tangent to the vector subspace efslon2 characterizing to the
associated linear mode of the underlying linear system.
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2.4 Nonlinear autonomous case

In this case, the general formulatio®38) has to be considered to define the NNM. Sub-
stituting equations2) and @) into equation {), equation {) reduces to the following partial
differential equations in the variableandv

(X +0X,)E+ X2 =Y (16)

M (Y +0Y,) € + MY,Q + ~F(vY,vX) = 0 (17)
v

where(.), = #-(.) and(.)s = 75(.)-

As in the conservative case, a well-posed problem can bénelotdamposing, as usual, nor-
malization conditions. As proposedBellizzi and Bouq2007), the following two scalar equa-
tions

SI X% MX% + co2¢p X% MX = sin¢coLs, (18)

X MX singcosp = 0 (19)

can be used wherK°° (respectivelyX®s, X%, X9 denote the odd cosine (respectively even
cosine, odd sinus, even sinus) terms in the Fourier serigls (@spect to the variablg) of X
(i,e. X = X 4 X€¢+ X% + X®9. The normalization conditionl®) reduces to13) whereas
(29) is trivially satisfied in case of conservative systems. &bwer, noting that the functions
X% andX°s can be factored as

X*(v,¢) = ¥(v, p)cosp, X%(v,¢) = ¥*(v, $)sing (20)
whereWw* and s are eveng-periodic functions with respect t, equations18-19) reduce to
T M 4+ T MPS = |
T MWPS = 0,

in the linear case (see sectidr?).

Finally, a NNM is obtained solving the equatiori{19) with respect taX, Y, 2 and{ in
a domain[0, v,,q.] % [0,27]. A numerical approach based on Galerkin method is propased i
Bellizzi and Bouq2007).

3 SOME APPILCATIONS
3.1 A simple example
We consider the nonlinear conservative system also tréafeesheck et a(2002

{ T 4+ wizy + 040573 + 1.3423wy + 1.512125 + 0.34925 = 0

To + Wiz + 0.4487% + 1.5123wy + 1.052123 + 458025 = 0 (1)

wherew; = 0.689 andw, = 3.244 denote the natural frequencies of the underlying linear
system.

The NNM have been computed under the foBsplving the2r-periodic algebro-differential
equations 11)(13) using the balance harmonic principle with the truncatguhesions

No No
W (a,p) ~ Z W, (a) cos(2k)p andQ(a, ¢) ~ Z Ok (a) cos 2ko. (22)
k=0 k=0
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Figure 1: First (left colomn) and second (right colomn) NNsgstem 21). Top row: Resonance frequency
functions versus.. Middle row: modal motions with the initial conditioln = 0.25 ande = 0, NNM approach
(continuous lines), direct simulation (dotted lines). ®®at row: modal motions with the initial condition= 1.8
andy = 0, NNM approach (continuous lines), direct simulation (ddttines).

whereW,(a) and(2;(a) denote the unknown coefficients. Finally, the resultinghgic equa-
tions have been solved using the continuation method nansgchptotic Numerical Method
Cochelin et al(2007).

The behaviour of the two NNMs is illustrated in figutewhere the approximation®?2)
have been obtained witN, = 4. The backbone curves (top row in figutpshow a hardening
behaviour of the two NNMs. For each NNM, the backbone curvéeitned as the evolution
of the frequencyf = = versus the amplitude whereT denotes the period of the modal
motions (see equatioid)). Modal motions are also plotted (middle and bottom rowd)gure
1. Modal motions have been obtained for each NNM solving eqost@) over one period
given by equationX3) with two different initial valuesa = 0.25,p = 0 (middle row) and
a = 1.8, = 0 (bottom row). In order to check the validiy of the approximas, the reference
solutions (with initial conditions given by equatioB)(at¢ = 0) were computed by direct
solving of equation 41) using a Runge-Kutta method (plotted in dotted lines). Tleilis
indicate good agreemment. The nonlinearity does not affectwo NNM in the same way
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() MNL L: £(v, ¢) (d) MNL 2: £(v, 6)

Figure 2: Frequency ((a), (b)) damping ((c, (d)) functiohamcterizing the two MNLs of syster3).

in the configuration space. For the second NNM, the modalesunv the configuration space
(phase subspade;, X»)) are straight whereas, for the first NNM, the modal curvesareed.

3.2 A self-oscillation system
We consider the two-coupled van der Pol oscillators

e}

{ i+ g+ cioge —a(1— @2 =i+ = 3

Go + C21G1 + C2aGo — €2(1 — 0267 — ¢3)G2 +9¢2 = 0

with €1 = €3 = 0.5, (51 = (52 =2.5,c11 =Cyp =0 and012 = —cy; = 0.8.

The NNM have been computed under the fo&¥8J solving the2r-periodic algebro-partial
differential equations1(6-19) using the balance principle over the dom&inu,,..] x [0, 27|
with the truncated expansions:

X®v,¢) = Xi(9) + 25212&0}(;2%1”]?@5(2]?4‘1)¢

X(v,¢) ~ S STl XC 0P cos 2k (24)
X2(0,0) ~ Xi(0) + Yo Yopto XS o 0P sin(2k + 1)¢

Xo(v,¢) ~ Sty XS 0P sin 2k
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N,
Y, 0) ~ Y (o) + Z;V:”l Zlfvio Y g 0P cos(2k + 1)¢
Y, ¢) ~ Z;Vil Zﬁvjo Y 50 cos 2k¢ (25)
Ny .
Y, 0) =~ Yi(¢) + szl o Y op VP sin(2k + 1)¢
Y*o(v,0) =~ SRt Y 0P sin 2k
Qv,0) ~ Qn+ 20 Z]gio € 2 0P cos 2k (26)
§(v, ) =~ &in+ Z;V:”l > o Ep okt cos 2ke
whereXS,, .1, X, -, &.21 denote the unknown coefficients and the teifs, X3, Y,

Y:., Quin and¢, are selected from the modes of the associated linear systgneQuations
(7)). The complete procedure is describe®eillizzi and Bou(2007)).

Figure 2 shows the frequenc{ and dampings functions characterizing the two NNMs
obtained withv,,., = 2, N, = 2 and N, = 2 and from respectively

e Linear mode 17 = 0.23, w = 0.93, ¥° = (0.002, —0.092)7, ¢* = (0.995,0.023)
e Linear mode 25 = 0.27, w = 3.10, ¢¢ = (0.022,0.961)%, ¥* = (0.274, —0.006)".

For each mode, the damping functi@aecreases with from positive to negative values.
Figure3 shows the invariant manifold associated to each NNM.
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(@) MNL 1 in the phase subspacg(, Q1,Q>) (b) MNL 2 in the phase subspac@4, Q-, Q1)

Figure 3: Invariant manifold of the two MNLs of syste@3j.

The dynamic behaviour of the modal motions in the invariaahifold are governed by the
two first-order differential equation8), Hence, a periodic motion may occur on the invariant
manifold if there exits a periodic solution t8)(or equivalently to

Z—Z = u7(v, ) Where (v, ¢) = &v,9) :

(27)
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The existence of a periodic solution of equati@T)(can be deduced from the existence of
an equilibrium point in the associeated averaged equatisimg the average principle in the
context of perturbation theory, setale (1969)

dv 1 /2“(5(-705))

%:v<7>(v)where<7>(.):% Q(.0))
The functions< 7 > versusv are plotted in figurel for the two nonlinear modes. Equation

(28) takes the equilibrium point; = 1.89 in the first nonlinear mode and = 1.45 in the

second nonlinear mode. Each equilibrium point characeran asymptotically stablg%( <

T > (vf) < 0) limit cycle on the associated invariant manifold. The ap@mnations can

be improved by solving equatior2]). The harmonic balance method yields the following

truncated expansion

do. (28)

Figure 4: Evolution ok 7 > versusv for the nonlinear modes 1 (continuous line) and 2 (dashed.lin

vi(¢) = 1.906 + 0.046 cos2¢ — 0.017 cos 4¢ + 0.199 sin 2¢ + 0.006 sin 4¢,

v3(¢) = 1.453 4 0.003 cos 2¢ — 0.0004 cos 4¢ — 0.026 sin 2¢ — 0.0001 sin 4¢. (29)

giving the limit cycle approximations (with pericll = 6.58 and7, = 2.03) fori = 1,2

Q(t) > . ( Xi(v7 ((t)), o(t)) ) e \
: = v*(o(t 3 ' with ¢ = Q;(v; (¢), ¢), ¢(0) = . (30
(a6 )~y (L) 6= 01(0),6), 60) = . (30)
The last question, which now arises, is whether or not thé bgctles are stable in the phase
space. To answer this question Floquet's theory Kkde(1969) is applied. Rewriting equation
(23) in the first order autonomous differential system

d

%z(t) = G(Z(t)) with Z = (QQQT)

the stability of the periodic solution8Q) can be deduced from the eigenvalues of the mon-
odromy matrix associated with the fundamental matrix sofuof the 27-periodic variational
linear differential system (sddale (1969 page 119)

[0G2(Zi(9))|AZ(9). (31)
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The monodromy matrix is computed over one period, usingdlie ¢anonical basis vectors as
initial conditions successively. The computations shoat the periodic orbit«}) associated
with the first nonlinear mode is stable on its invariant maldifand unstable in the phase space
(two complex conjugate multipliers are outside the unitlely, whereas the periodic orbit}
associated with the second nonlinear mode is stable orvaisiamt manifold, as well as in the
phase space (one multiplier lies on the unit circle and alldtiners are located inside the unit
circle). The local and global stability are illustrated igure5 by solving numerically equation
(23). Motions are plotted with initial conditions (near the joelic orbit) on the invariant man-
ifold and outside the invariant manifold for the first NNM , dig 5(a), and the second NNM,
figure5(b).

(@) MNL 1 in the phase subspad@1, Q1,Q-) (b) MNL 2 in the phase subspac@{, Q», Q1)

Figure 5: lllustration of the local and global stability dfet limit cycle associated with the first (a) and the
second (b) nonlinear mode. Motions obtained by solvRfg) (vith initial conditions inside the invariant manifold
(continuous line) and outside the invariant manifold (bodatinuous line).

4 CONCLUSION

An amplitude-phase transformation procedure was destiifege for characterizing the
NNMs of the nonlinear mechanical systems in the frameworkwariant manifold theory. This
formulation is a natural extension of the linear tools anagian interpretation of the NNM in
terms of frequency, damping and mode shapes. A NNM can alsoeleed as a familly of
motions (damped motions, periodic orbits,...).

In addition to introducing the concept of NNMs, we have shdhat the NNM can pro-
vide a valuable theoretical tool for understanding somdinear phenomena. For example,
bifurcation analysis can be performed, and the existendestability of periodic orbits on the
associated invariant manifold can be studied from the tvet-Girder coupled differential equa-
tions governing the amplitude and phase variables, whishrdee the dynamics.
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