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Abstract.  
The intertemporal inconsistency problem in decision making refers to those cases in which the 
individual has chosen in favor of those alternatives that ensure a delayed retribution, but in the interim 
he changes his choice to an alternative that is realizable early, even when the alternative available in 
long time is optimal for him. 
This kind of inconsistencies over choices has been modeled as the interaction between two systems: a 
cool system which has an automatic and slow operation, and another hot system which operates in a 
fast and automatic fashion. The hot system makes its choices biased towards those alternatives with 
early realization while the cool system has a remarked preference for the delayed gratification 
alternatives. The individual decision results as the solution to the competition in operation between the 
two systems.  
In this article, we model the dynamical mechanisms that govern both systems functioning and their 
interaction when they are engaged in decision making. These mechanisms are revealed by an analysis 
of a neurocaomputational approximation to the network operations. Then we consider the dynamical 
system that measures the activation of the minimal network when a stimulus input excites both 
systems.  
As each system's activation is represented by nonlinear equations, the nullclines structure generates 
multiple equilibrium nodes which are found and classified given its local stability. As a final exercise, 
this work studies the relevance of each parameter in the dynamics of the system, and in the 
determination of the final decision. 
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1 INTRODUCTION 

In microeconomic theory the individual behavior is explained as the result of the 
individual’s choices oriented to the pursuit of his goals. Any decision problem that the 
economic agent faces is characterized by a set of options and a preference relation that ranks 
the alternatives. Thus, the “decision problem” consists of choosing the available alternative 
that occupies the highest position in the preference ranking. A preference order satisfying 
completeness, transitivity and continuity, it is called a “rational” and it can be represented by 
an increasing monotone utility function. The solution to a decision problem is the alternative 
that maximizes this utility function. The Theory of Rational Choice was extensively applied 
to many economic problems with successful results in explanation and tractability (Mas 
Collel, Whinston and Green, 1995). For this reason, this approach turned into the cornerstone 
in economics and social sciences. The generalization of this theory to capture decisions where 
time is involved as a property of the goods implies more restricted preferences for a rational 
individual. Particularly, when the individual has to choose between two alternatives which are 
available in two different time periods; the utility of future alternatives has to be discounted 
by an “invariable in time” discount rate to make them comparable with the utility of present 
alternatives. Although this discounting assumption implies a restricted behavior for the agent, 
it does not generate any cost for the tractability property of the models. 

The choices produced by a rational individual are not supported by the empirical evidence 
collected in laboratory experiments (Rabin, 1998; Camerer, 1995; Camerer et. al.,2005, 
Frederick et. al., 2002). A case where the traditional framework fails to find explanation 
refers the situation where the individual changes his choice from an option that is the most 
preferred in a time horizon but is delayed in gratification in favor to another alternative that is 
immediate in gratification. This bias is called the “intertemporal inconsistency of choices” 
and is associated to known pathological behaviors as addictions, procrastination and other 
impulsive behaviors.  

To study this phenomenon, Metcalfe and Mischel (1999) proposed a theoretical framework 
where the intertemporal inconsistency of choices is the result of the competition between an 
emotional and a cognitive system which engage in the evaluation of the alternatives. The 
emotional or hot system operates in a simple, automatic and fast way while the cognitive or 
cool system is deliberative, reflective and slow. Although, this framework characterizes both 
systems, the interaction between them is presented by a static graph analysis without 
enlightening the dynamics mechanisms that govern the functioning of each systems and their 
interaction in the definition of a choice.  

This work has the goal of understanding both dynamics mechanisms that govern the 
functioning both the hot and the cool systems and the competition between them in the study 
of the intertemporal inconsistency of choices. We present a model where both sub-systems are 
represented by a network. To capture the biological insights in the operations of the cool and 
the hot systems in the brain, the dynamics of both systems and their interactions are 
represented by a neurocomputational model. The participation of the cool and hot networks in 
the decision procedure is summarized in a dynamical system that represents the activation’s 
evolution of the network’s nodes. The study of this dynamical system let us understand the 
functioning of the dynamical mechanism that defines which systems is in charge of the 
decision. 

The article is organized as follows. In Section 2, there are reviewed the key ideas 
developed in the economic literature about the intertemporal decision problem and the duality 
between emotion and cognition. Then, in Section 3 there is presented the insights that 
characterize the Cool-Hot System framework developed by Metcalfe and Mischel (1999) and 
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the neural network model that represents the hot and cool systems. Section 4 analyses the 
dynamical system analysis of the neural network presented in the former section. A 
bifurcation analysis of the system’s equilibriums is presented in the Section 5. Finally, the 
principal ideas of the article are summarized with the conclusions in the last Section. 

 

2 BACKGROUND 

To explain the inconsistencies in choices situated in different periods of times, the 
developments found in behavioral economic’s literature has modified the utility function that 
represents the individual preferences. In these kind of models called quasihiperbolic 
discounting approach, incorporate a term in the discount factor which varies with the period 
of time considered. With this upgrade, the extended approach represents accurately the results 
collected in the experiments (Ainslie, 2002, Ainslie and Monterosso, 2004, Laibson D., 1997; 
Frederick, Loewenstein and O’Donoghue, 2002).  

Other kind of economic models have represented the individual as an agent composed by 
two agents, each one with different preferences: one of them was more concerned with the 
long time while the other one had preferences biased to those alternatives which are available 
early (Thaler and Shefrin, 1981; Fudenberg and Levine, 2006). The negotiation problem 
between the two agents represented the willpower weakness of the agent when he faces the 
temptation for the early alternative. When the individual wanted to control his temptations, he 
could exert willpower control but he has to face a cost measured by a utility loss.  

Another class of models that has appeared were inspired in developments and experimental 
evidence found in other disciplines like psychology and neuroscience. These studies propose 
a basic model as an explanation of the decision process, in which the choice is the result of 
the competition of two subsystems: one automatic system oriented to immediately alternatives 
or stimulus; while the other system operates under planned control and orientated his choices 
to alternatives that are optimal for the whole problem, included those decisions considered in 
the short time. While the automatic subsystem operates evaluating the emotional components 
that compose the decision problem, the controlled subsystem is in charge of those cognitive 
operations and rational judgments.  

The cognitive-emotional duality argument was first applied in psychology to study the 
functioning of the working memory under posttraumatic stress situations (Metcalfe and 
Jacobs, 1996). Nevertheless, it was adapted to study the weakness of willpower when the 
individual faces emotional stimulus (Metcalfe and Mischel, 1999). This ideas and the 
supporting evidence discovered in neuroscience’s experiments (McClure et. al., 2004) has 
guided the development of economic models of impulsiveness and the willpower optimal 
practice. In this kind of models, the optimization problem has two motivational functions to 
maximize that represent each cognitive and emotional system (Loewenstein G. and 
O’Donoghue T, 2004). The agent defines a plan of action that maximizes his utility function 
in the long term, but when he faces a temptation, he must exert a control over the emotional 
system which motivates the defection of the plan. If the inhibition of the emotional systems is 
not effective enough because to exert self-control is too expensive measured in utiles, he 
surrenders to the effect of the temptation and the emotions contributes to define the decision 
(Benhabib and Bisin, 2005). 

The psychological model has depicted how the two systems compete between them to take 
control over the decision, but it lacks of a formal elaboration. On the other side, the 
economical models present a formal specification of the decision problem but the 
representation of the system’s relations is not an adequately description of the dynamical 
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mechanism that operate in the brain for the decision formation.  
This work proposes a formulation of the self control regulation that the cognitive system 

exerts to control the human behavior. There is applied a model from mathematical 
neuroscience that explain how two populations of neurons can behave when one group is 
inhibiting the activity of the other.  

 

3 THE COGNITIVE – EMOTIONAL APPROACH OF SELF-CONTROL 
REGULATION.  

3.1 The Cool-Hot Systems Framework 

The model we study in this paper is based on the framework presented by Metcalfe and 
Mischel (1999) to study several aspects of the self-control regulation problem. In this Section 
we present the main ideas of this approach.  

According this framework two different systems, cool and hot, interact during the decision 
making process. The cool system is cognitive, deliberative, strategic, complex, reflective, 
slow processing and is where the self-control function takes place. In contrast, the hot system 
is emotional, automatic, simple, quick functioning and it is sensitive to stimulus effects.  

As an illustration of how the cool system regulates the activity of the hot system let us 
consider the following example. An individual has committed himself to give up smoking. 
Whenever he faces the stimulus of being offered a cigarette he has two alternatives, to accept 
or reject the offer. Driven only by the emotional (hot) system, the individual would have a 
strong tendency to smoke. However, the cognitive (cool) system will "remind" the individual 
of his commitment, and his decision is expected to be deviated towards not smoking 
(rejecting the cigarette).  

In Metcalfe and Mischel ‘s framework both systems are represented as directed graphs; 
i.e., a set of nodes and a set of edges. In their description the authors identified these graphs 
with neural networks. Even though there is no biophysical description of the participating 
elements, the hot and cool systems can be thought of as abstractions of the amygdala and the 
orbitofrontal cortex and hippocampus respectively.  

As we mentioned in the introduction there is no dynamics associated with the participating 
elements (nodes and edges) of the graphs, and the network is used merely to illustrate the 
author's conclusions.  

The assumptions of the M&M framework: 
 

1) The cool nodes are highly interconnected while there are no connections among the 
hot nodes.  

2) There is a cool node connected to each hot node. Note that there may be isolated 
cool nodes.  

3) Activation of a node causes activation of all nodes to which it connects.  
 

3.2 The Neural Network Model  

The small neural network modeled in this section represents the crucial stage where the 
cognitive system inhibits the emotive system (Figure 1). The diagram shows the two inputs 
currents (SC and SH) incoming to each node in the cognitive (blue nodes) and emotional (red 
nodes) systems. When the hot node receives the stimulus, it activates itself generating an 
output current that innervates the final stage where there is evaluated if the output current is 
strong enough to execute an action or not (the brackets with the plus symbol represent an 
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operator that translates the output current in an action if the current is positive or not in the 
other case). In the cognitive system, the excitatory node receives the input current from the 
stimulus and produces two output currents: one innervates the last stage which evaluate if the 
current is strong enough to produce an action; and the other current activates the inhibitor 
cognitive node which regulates the activation of the cognitive and the emotional nodes.  

 
 

 
 

Figure 1. The Cognitive-Emotional Neural Network. 
The blue node belongs to the cool systems and the red one 
belongs to the emotive system. The discontinuous square 
delimits the formal model presented in this work.  

 
In the final stage of the network there is supposed to be an operator that evaluates the 

outputs currents from both cognitive and emotional systems. If those currents are positives, 
then the operator allows to being available the alternative associated to each node for a next 
evaluation by motivational functions like the ones proposed in Loewenstein and O’Donoghue 
(2004). So, the approach of neural networks suggests a constructive framework of these 
utilities functions.  

The formal small model of the next section represents the evolution of the firing rate of the 
two nodes in the inhibition stage (in figure 1, the section of the network remarked by the 
discontinuous square, and figure 2). Making focus over these two nodes is justified because 
the reduction of dimensions to identify and visualize the main parameters that affect the role 
of regulation and self-control. The simplification reduces the excitation-inhibition relation 
between the cognitive nodes to an incoming input that activates the inhibitor cognitive node 
(BC in Figure 2). The remainder components of the network stay without change. 
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Figure 2. Diagram of the Small Neural Network. 
The reduced model supposes that the inhibitor node fires when 
the incoming input from the excitatory node arrives by the BC 
receptor.  

 

4 THE FORMAL MODEL OF THE REDUCED NEURAL NETWORK 

4.1 The Dynamical System Problem 

The neural network sketched in the figure 2 is formalized by a model of the firing rates 
generated in both nodes. In mathematical neuroscience, the firing rate models measure the 
neuron’s rate of spike’s generation because the change in voltage in its soma; given its initial 
voltage level, the input incoming currents from the external stimulus and from the synaptic 
connections with other neurons.  

The cognitive-inhibitor node of the model has a local action in the network. It only can be 
activated by the excitatory inputs from another cognitive node which transfers the effect of 
the stimulus to other nodes of the systems. Once the inhibitor nodes is active its outputs 
inhibits the nodes which it connects.  

The hot-excitatory node, receives the input currents from the stimulus and the inhibitory 
current from cognitive node. Due to the change in its voltage, it is activated and fires an 
output current that innervates itself and which also is transferred to the final stage. In this first 
approximation to model the cool-hot framework, the hot node has the property to be in a rest 
or activated mode and the change in mode is conditional to initial parameters as the initial 
firing rate of the node, the strength of the synapses, and the magnitude of the stimulus. All 
this conditions defines the threshold level which if it is exceeded, then the node is activated.  

The Firing Rate Model for the network is:  
 
Cognitive-inhibitor node: 
 

 2( )  with I Ic c f b= − + 1( )
1 exp( )

f u
u

=
+ −

 (1) 

 

Hot-excitatory node: 
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  (2) 3
3 32 33h b w c w h h= + + −

 

The equation (1) expresses how the hot node changes its voltage given the initial level (cI), 
when the node receives the input stimulus (b2). The term f(b2) is the activation function which 
transform the stimulus into a firing rate. The sigmoid form is commonly used in this kind of 
models because it is a monotone, continuous and differentially function that saturates in 1 as 
the arguments increases indefinitely.  

Seemingly, the equation (2) measures the firing rate evolution of the emotional node. The 
first two terms in the right hand side are the inputs currents incoming from the stimulus 
source, the cool node and from the auto-synapses of the same hot node. The cubic term allows 
the existence of two modes: rest and activation states. The coefficient of this term has to equal 
(-1) in order for the systems to be bounded and an equilibrium point exist (Izhikevich E., 
1996). The strength of the connections between nodes is measured by the weights w32 and 
w33. The weights are positives when the node is excitatory and negative when it is inhibitory. 
For reason of tractability, it will be considered [ ]3 33, 0b w ∈ ;1  and [ ]32 1;0w ∈ − . The weight w33 
measures the capability of the hot node to remain near the excitability after it had fired and no 
stimulus is present.  

In the dynamical models of neural networks, the equilibrium firing rate is determined when 
equations (1) and (2) equals zero. Since the cool node is uncoupled, then its firing rate level 
of equilibrium equals: 

 

 
2

2

*

1

b

I b

ec
e

=
+

 (3) 
 

Then, when the incoming current from the excitatory cool node is positive and bigger 
enough the inhibitory node reaches in a fast way its activation.  

Given the value of the cool node, the hot node could presents three possible cases were the 
equilibrium varies from one to three (Figure 3).  

From the figure 3, it can be seen that in the case (a), the node is hyperpolarized in the 
equilibrium. Then for every stimulus, the node will continue deactivated. In the case (b) the 
equilibrium point correspond to an activated state, then, any stimulus, even the less, could 
activate the node. In the third case (c), both equilibriums are available and the external 
stimulus defines the final states of the node. 

 

 
 

Figure 3. Possible equilibriums of the hot node 
Case (a) The node is depolarized and it is a stable equilibrium. Case (b) In contrast, 
the node is in an stable and activated equilibrium. Case (c) There are two stable 
equilibriums and a third unstable that works as a threshold. 
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The possibility of three equilibrium points also appears in the general systems and it could 

be seen from the phase diagram sketched in the Figure 4. It could be seeing three equilibriums 
points. One situated in the origin is characterized by a saddle whose convergent paths delimit 
the basin of attraction of the other two stable node equilibriums.  

 

 
Figure 4. Nullclines of the Dynamical Systems 

Example of nullclines determining three equilibrium points, with w32=-0.5, w33=0.3and 
b3=0.5, b1=100. It could be identified two stable equilibrium points: one is associated to 
complete inhibition of the emotional node; the other node belongs to the state where the 
node is active. A third unstable equilibrium point defines the basin of attraction of both 
stable equilibriums. 
 

Proposition 1: “The neural network that represents the inhibition relation between the 
cognitive systems and the emotional systems in the self-control problem presents three 
equilibriums points: two nodes separated by a saddle, where one each node is associated to a 
deactivation /activation situation of the emotional systems, and the saddle delimits the 
threshold level to go from one modality to the other.”  

Proof: 
As the ordinary differential equations in the dynamical system are continuous and 

nonlinear, and the systems has the characteristics decrypted (the cool activation function is 
monotone and the equation 2 is bounded), then there exists at less one equilibrium point. 

The classification of the equilibriums into saddle and nodes could be checked by the 
determinant (Δ, equation 5) and trace (τ, equation 6) of the Jacobian matrix (equation 4) 
derived from the dynamical system (Strogatz, 1994).  

 

 2
31 33

1 0
3

Jacobian
w h w
−⎡ ⎤

= ⎢ ⎥− +⎣ ⎦
 (4) 

 

  (5) 2
333h wΔ = −

 

  (6) 2
33( 1) 3wτ = − − h

33

 

  (7) 2
1 2: 1 , 3Eigenvalues h wλ λ= − = − +

 

Because w33 cannot be bigger than one then the trace is always negative. As the 
eigenvalues of the linealized system takes real negative values; then the equilibrium could be 

508



a node if equation 8 verifies or a saddle in the opposite case. 
 

 33*
3

wh > ±  (8) 
 

So, the dynamical systems that represents the neural network of the section 2.1, presents a 
single stable node as equilibrium or three equilibriums where two are stables nodes and the 
third is a saddles between them.  

When there three equilibriums, the nodes define two particular situations: one in which the 
emotional systems is turned off, particularly when the activation rate is negative; and one in 
which the emotional systems is active with a positive firing rate and commanding an order to 
the final stage of the network.  

4.2 Bifurcation analysis 

The system has a single stable node as solution and when the parameters are changed then 
two new equilibriums arise. This generation of new equilibriums is called as bifurcation in 
dynamical systems theory (Strogatz, 1994).  

As the cool node is uncoupled and activated with a minimal stimulus, the parameter b2 
doesn’t affect the number of equilibriums. The only parameters that count for this analysis are 
b3, w33 and w32.  

Let consider a simplification replacement that allows us to make use of special graphs to 
analyze the changes in the parameters. The equation 2 now will be simplified to equation 9 
where z3 = b3+w32*cI ; as w32<0 and [ ]0;1Ic ∈ , so, [ ]3 1;1z ∈ − : 

 

 3  (9) 3 33( )g h h z w h h= = + −
 

The bifurcation point is identified to happen when g(h)=0 and gh(h)=0, indeed when  
 

 33

3
wh = ±  (10) 

 

Proposition 2: “The emotional systems can be perfectly inhibited only when the incoming 
current from the external stimulus is lesser than  

 

 
3/ 2
33

3 3
( 2) 3

9 I
wb w−< − 2c   (11) 

 

Proof: 
From the equation (10), replaced in the equation (9), there can be obtained the equations of 

the two branches of the cusp curve in the parameters w33 and z3 plane. The curve is  
 

 
3/ 2
33

3 3 32
( 2) 3( )

9I
wz b w c −= + = ±  (12) 

 
The condition of the equation (11) is derived from the left locus of the bifurcation curve 

(Figure 5 and Figure 6).  
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Figure 5. Cusp Catastrophe.  

The surface folds over itself creating the bifurcation curve 
shown in figure 6 projected itself over the axes. (Adapted from 
Hoppensteadt and Izhikevich, 1997). 

 
 

 
Figure 6. Cusp Bifurcation curve over the parameters plane. 

Given the coordinates of the parameters, the point that they conforms falls in one 
of the three zones where there can be one or three equilibrium points. 

 

The Figure 5 shows the zones delimited between the net input current (z3) of the hot node 
and the excitability weight, where can be identified a single equilibrium point in two different 
qualitative zones and a third where there are the two stable nodes separated by the saddle. As 
the graphic demark in the left region are all the combinations of the parameters that make 
possible that the cognitive systems inhibit completely the emotional systems. The parameter 
z3<0; what means that the stimulus is weaker that the inhibition current and the hot node is 
not stronger enough to generate the excitability by itself1. In the biestability zone, the 
combination of the values of z3 with w33 reduces the threshold that is necessary to exceed for 
the hot node activation. Finally, in the right zone either z3 or w33 are bigger enough to 
potentiate the activation of the emotional system. 

                                                           
1 It must be remembered that w33 measures the predisposition of the systems to be active after the node have 
fired and there is no external stimulus. 
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5 FURTHER EXTENSIONS.  

 
The formal model of the neural network presented in the former two sections, applies 

correctly to the self-control exercise of an agent that is trying to avoid temptations. But it is a 
very simplified version for the whole intertemporal inconsistency decision problem. The short 
version of the model is useful to visualize the results and analyze the relations between the 
parameters to understand how the regulation process works. Nevertheless, the complete 
model portrayed in the figure 1 includes the interaction between the two cognitive nodes, and 
the results could changes when the external stimulus perceived by the cognitive system is 
weak. Analyzing these complete model gains in realism but losses in tractability, especially in 
the resolution of the dynamical system. 

The second issue that the modelization must treat is about the learning process that 
generates the weights considered in the network. An evolutionary approach of the behavior 
could determine what weights warranties an optimal decision process. An example in the 
study of the working memory for goal-directed behavior was modeled by Nakahara and Doya 
(1998). In his case, the more fitted agents presents values of the parameters near the saddle-
node bifurcation; but in our case the suspect goes in the reverse direction. 

Finally, the last stage of the networks where the firing rates produced by both systems are 
evaluated to define if the command is executed or not; could present a more inflexible 
operation like a threshold which limits the cases where each system can commands an order 
and generates a consecutive action.  

 

6 CONCLUSIONS  

 
The self-control regulation of the emotional system was represented by a small neural 

network. In face of an external stimulus both cognitive and emotional systems turn active. 
The excitatory cool node activates the inhibitory cool node that regulates its activity and the 
emotional node’s firing rate. From the cognitive systems and action is commanded which is 
evaluated in the final stage. The emotional node, otherwise, has the characteristic to remain in 
an excitation mode after the stimulus was perceived. This property allows to the emotional 
systems to fires when perceives the stimulus, even when its initial condition is to be in a rest 
position. This operating form is agreed with the weakness of willpower to the control the 
behavior under the effect of temptations.  

The described approach was formalized by a dynamical system that measures the 
generation of firing rates by the cool inhibitor node and the emotional hot node. The solution 
to ordinary dynamical equations was found as a stable node in lower levels of firing rates for 
the hot node given the values of the parameters. But while the parameters are changed; two 
new equilibriums appears: a saddle and another stable node for higher level of firing rates of 
the hot node. If the parameters are increased again; the lower node and the saddle disappears, 
only surviving the equilibrium where the emotional systems indefectible ends in an active 
sate.  

The values of the parameters that delimit the zones in which the equilibrium are feasible 
determine the threshold value of the excitability weight so the cognitive system always 
inhibits the emotional node. The strategies that the individual exercises to override the effects 
of temptation, extensively depict in Metcalfe and Mischel (1999) could be identified to 
particular values of the model’s parameters.  

511



The objective of this work was to propose a basic structural model of the decision process 
that could be a constructive version of the other models presented in the introductory section. 
The extensions proposed goes in this direction. Finding the adequate representation of the 
individual cognitive process makes possible the objective to find a general benchmark to 
takes as reference for comparison of the behavioral models recently developed in economics.  
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