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Abstract. The main concern of the present work is the computation of dynamic loads of wind turbine
power trains, with particular emphasis on planetary gearbox loads. The applied mathematical approach
relies on a nonlinear finite elements method, which is extended by multibody systems functionalities,
and aerodynamics based on the Blade Element Momentum theory. The Finite Elements model used to
simulate the behavior of wind turbines is introduced in detail. A comparison between numerical results
and experimental data is shown. Fatigue diagrams by means of rainflow counting of load cycles and
corresponding load duration distributions are also presented for some elements of the model.

Eqr{tkijv"B"4229"Cuqekcekôp"Ctigpvkpc"fg"Ogeâpkec"Eqorwvcekqpcn"
jvvr<11yyy0coecqpnkpg0qti0ct

Ogeâpkec"Eqorwvcekqpcn"Xqn"ZZXK."rr02985-3004
Ugtikq"C0"Gncumct."Gnxkq"C0"Rknqvvc."Igtoâp"C0"Vqttgu"*Gfu0+

Eôtfqdc."Ctigpvkpc."Qevwdtg"4229

2985

http://www.samcef.com


1 INTRODUCTION

With a service life of about 20 years, wind turbine power trains are subjected to a very diverse
spectrum of dynamic loads. Due to the high number of load cycles which occur during the life
of a turbine, fatigue considerations are of particular importance in wind turbine design.

The respective load spectrum, in terms of load amplitudes and associated load cycles, de-
pends on the dynamic properties of the complete mechatronical wind turbine system and can-
not be calculated properly without detailed three-dimensional models. External excitations in
terms of aerodynamic blade loads and electromagnetic generator torques, depend implicitly on
control strategies for blade pitch and generator electronics, as well as on the general dynamic
properties of the whole turbine. The purely dynamic character of certain gearbox loads, such as
the axial loads on planet bearings, stresses the need for detailed dynamic power train models.

New standards for design and specification of gearboxes for wind turbines recommend to
include all dynamic effects in the load computations (AGMA Foundation the American Gear
Manufacturers Association, 2003; Germanischer Lloyd Windenergie GmbH, 2006; Cardona
et al., 1991; Samtech SA, 2007). In order to cope with these requirements, the proposed fatigue
procedure relies on a complete wind turbine model, which includes a detailed gearbox model.
Accordingly, the load transients are extracted from the global model for each gearbox compo-
nent and fatigue cycle counting is performed individually for each power train component. This
procedure has the advantage that the frequency content and the associated amplitudes of the
local transients take into account the nonlinear character of dynamic amplifications within the
power train and respect the implicit dependence of the excitations on the dynamic properties of
the entire mechatronical system. The fatigue load spectra, which are obtained from the global
wind turbine model in terms of component wise load transients, take into account for local dy-
namic effects within the gearbox as well. Various topics will be dealt with as follows: First, a
brief summary of the mathematical approach is presented. The methodology couples structures
presented by the finite elements method (Géradin and Cardona, 2001; Bathe, 1982; Hughes,
1987; Géradin and Rixen, 1993), mechanisms and control loops using a multibody systems ap-
proach (Géradin and Cardona, 2001; Haug, 1989; Peeters, 2006) and aerodynamics in terms
of Blade Element Momentum theory (Spera, 1994; Burton et al., 2001; Manwell et al., 2002).
Some recommendations for the numerical analysis techniques involved in the computation of
wind turbine power trains are given. Afterwards, a description of the aerodynamic-mechanical
wind turbine model, including a detailed gearbox which is based on two planetary stages and
one parallel helical stage is provided. Next, a grid loss event with subsequent emergency stop
has been chosen as an example. Different aerodynamic results and detailed load transients
for a gearbox with two planetary stages are presented. Then, the derivation of fatigue spectra
of dynamic power train loads is given (Amzallag et al., 1994; Bishop and Sherratt, 1989b,a,
1990; Sutherland, 1994; Pitoiset, 2001). Fatigue diagrams of bearings are presented in terms of
Rain Flow Counts (RFC) of bearing load cycles and corresponding Load Duration Distributions
(LDD). Finally, the article ends with the study’s conclusions.

2 COUPLING MECHANISM, STRUCTURAL ANALYSIS AND AERODYNAMICS

2.1 Prerequisites for numerical simulation of dynamic wind turbine power train loads

Wind turbine drive train loads are composed of loads which can be associated, on the one
hand, with excitations induced by aerodynamic rotor blade loads and electro-magnetic generator
torque and, on the other hand, with the proper dynamics of the entire dynamic system, includ-
ing all control mechanisms. Decoupling of the dynamic wind turbine system into sub-systems
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is difficult because dynamic coupling effects prevail during many operation modes. As a con-
sequence, a coupled aerodynamic-mechanical approach is recommended for the evaluation of
fatigue loads of highly dynamic events.

In order to cope with the above requirements, the following numerical modelling procedures
might be particularly suitable:

• Nonlinear finite elements method (Géradin and Cardona, 2001; Bathe, 1982; Samtech
SA, 2007) and super-element technique (Samtech SA, 2007; Craig and Bampton, 1968;
Cardona and Géradin, 1991): blades, hub, rotor and gearbox shafts, further structural
components like the bedplate, planet carriers, torque arms etc.

• Multibody systems approach (Haug, 1989; Peeters, 2006; Cardona et al., 1991): pitch
and yaw drives, bearings of the entire power train including the generator, coupling ele-
ments for torque arms, high speed shaft coupling, clutches, the braking system, electro-
magnetic generator torque and finally controllers. Alternatively to the finite elements
method, structural components restricted to small deformations can be represented by
discrete assemblies of springs (generalized stiffness), masses and inertias.

• Aero-elastic computation procedures (Burton et al., 2001; Wilson and Lissaman, 1974;
Anderson, 1984; Veers, 1988; Leishman and Beddoes, 1989; Øye, 1990; J. and A, 1991;
Øye, 1996; Øye et al., 2003; Bossanyi, 2004): computation of consistent aerodynamic
blade loads. The aero-elastic approach should be based on a strong coupling so that blade
vibrations induced by aerodynamic forces implicitly affect the aerodynamics.

• Interface for external controller in terms of Dynamic Link Libraries (DLL) Bossanyi
(2004) or suited user-programmable interface: blade pitch, generator torque, yaw reg-
ulation and further controller actions for reducing specific dynamic loads.

In some specific aero-elastic wind turbine programs (Øye, 1996; Bossanyi, 2004), a modal
approach is used in order to present structural components like the blades, the tower and the
rotor shaft. This approach is generally valid for small deformations, but less suited for the
simulation of nonlinear phenomena like impacts in bearings and gears. In the case of blades
which are subjected to large deformations, the modification of Eigen-frequencies, which can
be either stress-induced, or related to large geometrical deformations, might be taken more
naturally into account by a nonlinear Finite Element Method. However, both approaches have
their inherent advantages.

In particular, in the presence of frictional contact problems like in the case of bearings
and gears, the solver should be adapted to the solution of non-symmetric sets of equations
(Samtech SA, 2007; Heege and Alart, 1996). Note that anisotropic blade properties, gyroscopic
effects and finally radial-axial-bending coupled bearing stiffness functions also produce a non-
symmetric coupling of global equilibrium equations.

By knowing that wind turbine fatigue load analysis requires the simulation of time inter-
vals, which are frequently longer than 5000 s, an implicit, unconditionally stable, time integra-
tion scheme is indicated (Goudreau and Taylor, 1973; Belytschko, 1983; Cardona and Géradin,
1989; Cassano and Cardona, 1991; Thomas and Gladwell, 1988; Gladwell and Thomas, 1988).
In order to preserve numerical stability of an explicit, conditionally stable, time integration pro-
cedure, the maximum time step is limited by a fraction of the time period, which is associated
to the highest frequency of any component of the wind turbine. This limitation on the time step
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size of explicit integration schemes is also valid if higher frequencies are not excited. As a con-
sequence, in comparison to implicit integrators, this limitation on the time step size of explicit
integration procedures results in excessive computation times.

2.2 Nonlinear Finite Elements approach for flexible MultiBody Dynamics

The applied mathematical approach (Géradin and Cardona, 2001; Samtech SA, 2007) is
based on a nonlinear Finite Element formalism, which accounts for flexible multibody systems
functionalities, control devices and aerodynamics in terms of the Blade Element Momentum
Theory simultaneously.

The linearized form of the time equations of motion to solve are:

[
M 0
0 0

] [
∆q̈

∆λ̈

]
+

[
C 0
0 0

] [
∆q̇

∆λ̇

]
+

[
K BT

B 0

] [
∆q
∆λ

]
=

[
r(q, q̇, t)
−Φ(q, t)

]
+ O(∆2) (1)

Note that the stiffness matrix K, the damping matrix C, the mass-inertia matrix M , the
residual vector r(q, q̇, t) = −g(q, q̇, t) − Mq̈ − BT λ and constraint Jacobian matrix B =
∂Φ/∂q show nonlinear dependency on the generalized solution vector:{

q
λ

}i+1

tn+1

=

{
q
λ

}
tn

+

{
∆q
∆λ

}i+1

tn+1

Vector g(q, q̇, t) presents the sum of internal, external and complementary inertia forces
where centrifugal and gyroscopic effects are included. Vector Φ introduces additional equa-
tions of solution λ, which is used to include general multibody systems functionalities, aero-
dynamics and controller constraints. Note that the applied solver SAMCEF-Mecano solves the
equations (1) by means of the Hilber-Hughes and Taylor scheme (Hilber et al., 1977; Cardona
and Géradin, 1989).

Concerning the computational implementation, the main numerical difficulties are the iter-
ative solution of the nonlinear equations (1) and the time integration procedure Cardona and
Géradin (1989, 1994); Lens (2006); Lens and Cardona (2007). Further details on time integra-
tion procedure, error estimators and solution strategies for equation solvers, can be found in the
SAMCEF-Mecano user manual (Samtech SA, 2007).

2.3 Aerodynamic Blade Section Elements for wind loads

Bearing in mind that blades are represented by super-elements or nonlinear beam elements
respectively, the Blade Element Momentum theory can be applied very efficiently in order to
introduce the wind loads by Aerodynamic Blade Section Elements.

The Blade Element Momentum theory can be considered as a two-dimensional approach,
which models the interaction of the incoming wind with an annular segment covered by the
rotating blades. The model is based on the inviscid momentum theory of fluid dynamics and
hence Blade Element Momentum can be looked upon as a simple potential flow model. The
momentum theory refers to the conservation of linear and angular momentum, which directly
follows from Newton’s second law of motion (Burton et al., 2001; Spera, 1994; Heege et al.,
2006a; Wilson and Lissaman, 1974).

As depicted in Figure 1, the discretisation of aerodynamic loads corresponds to the structural
discretisation in terms of retained super-element nodes or, respectively, beam nodes.
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Blades: 
FEM Model 

Condense FEM models
to Super Elements

Blades: 
Super Elements 

Retained nodes:
Super Element

Aerodynamic loads
introduced by:

“Blade Section Elements”

Figure 1: Modelling of blades by super-elements and aerodynamic blade section elements.

Aerodynamic loads are introduced by Finite Blade Section Elements which contribute in
terms of elemental aerodynamic forces to the global equilibrium equation (1). The actual blade
geometry is discretized by surface contributions AI , which correspond to the airfoil span times
the chord length of section I. The three-dimensional shape of wind turbine blades is accounted
for by local blade section twist Ψ I and coning angles θI . Twist and coning angles are introduced
in terms of local blade section coordinate systems which are attached to each blade node. Ac-
cording to twist and coning angles, blade section coordinate axes are aligned with the tangential
and normal directions of the respective blade section and follow any deformation or rotation of
the blades naturally.

Actual wind loads are computed with respect to a wind coordinate system the orientation of
which is a priori an unknown, because it is rotated with respect to the associated local blade
section coordinate systems by the unknown angles of attack αI . The angles of attack αI depend
implicitly on the unknown induced velocities at each blade section, and thus on the solution of
the global constraint field problem (1).

Aerodynamic force components can be stated in the a-priori unknown wind coordinate sys-
tem by the classical expression:

F I
lift =

1

2
CI

lift(α
I)ρV 2

relI
AI F I

drag =
1

2
CI

drag(α
I)ρV 2

relI
AI M I

pitch =
1

2
CI

M(αI)ρV 2
relI

AI

(2)
Whereas the lift force F I

lift acts normally to the relative wind velocity vector, F I
drag the drag

force, acts perpendicularly in the direction of the relative wind velocity. The torque generated
with respect to the blade pitch axis is denoted M I

pitch. Lift, drag and moment coefficients,
denoted CI

lift(α
I), CI

drag(α
I) and CI

M(αI) are functions of the angle of attack. Note that the
relative velocities Vrel account for the induction corrections due to the global flow interaction
with the blades and have to satisfy the constraints which are stated in Equations (3).

In order to couple equations (2) and (3) to the global field problem of equation(1), the induc-
tion factor for speed normal to the rotor plane (denoted: a), and the induction factor for speed
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tangent to the rotor plane (denoted a′) , can be obtained from equations (3). In that context, Ωr

represents the unperturbed tangential rotor plane speed at blade section I of radius r, Φ presents
the angle between relative wind vector and plane of rotation and W represents the unperturbed
wind speed normal to the rotor plane:

a′(1 + a′)x2 = a(1− a) cos2 θ tip speed ratio, with x = Ωr/W

Ct = 4aF (1− a) thrust coefficient for a ≤ ac

Ct = 4F [a2
c + (1− 2a)a] thrust coefficient for a > ac

ac = 0.2 empirical constant

F =
2

π
ar cos

(
exp

(
−B(R − r)

2r sin Φ

))
Prandtl tip loss factor

(3)

According to the Wilson and Walker approximation (Spera, 1994; Burton et al., 2001; Man-
well et al., 2002; Wilson and Lissaman, 1974; Anderson, 1984; Veers, 1988) for the thrust of an
annular rotor segment, one can write the equality of the thrust coefficient CI

t and the projection
of the aerodynamic lift and drag loads on the rotor plane: CI

t = Proj|rotorplane [F I
lift, F

I
drag]

thus coupling equations (1), (2) and (3). Taking into account that the aerodynamic loads
[F I

lift, F
I
drag, M

I
pitch] presented in equation (2) are included in the internal forces of vector

g(q, q̇, t) of equation (1), once the iterative solution of coupled equations (1), (2) and (3) is
found, the induced velocities, angles of attack, Prandtl’s tip loss coefficients and local aerody-
namic forces are consistent.

It is emphasized that the methodology applied permits a strong coupling, i.e. all equations
associated either with aerodynamics, structures, mechanisms, or control loops are solved si-
multaneously. A major advantage of a strong coupling is that blade vibrations induced by
aerodynamic forces implicitly affect the latter.

2.4 Tower shadow and wind shear

Before computing the proper induced velocities at the different blade sections, some adjust-
ments are performed beforehand on the unperturbed wind field. First, the unperturbed speeds of
the three-dimensional turbulent wind field are adjusted in order to take into account the velocity
gradient induced by ground effects and then, secondly, to account for the impact of the tower
shadow.

In order to account for the wind shear close to the ground, the wind speed is written as an
exponential function of the relative height h of a blade section node with respect to the rotor
hub height hhub. The incoming, unperturbed wind speed V∞ is taken as reference at the rotor
hub and is corrected by an exponential law yielding the wind speed without induction, V (h)
as a function of ground distance V (h) = V∞(h : hhub)

Shearcoeff . The impact of the tower
on the unperturbed wind field is modelled by classical non-lifting flow theory over a circular
cylinder (Anderson, 1984). An analytical solution for the radial flow Vr and tangential flow VΘ

is obtained from the stream function Ψ as function of azimuth angle Θ and tower distance r

Vr =
1

r

∂Ψ

∂Θ
VΘ = −∂Ψ

∂r
with Ψ = V∞r sin Θ(1−R2

tower/r
2)

The proper computation of the induced velocities at the blade sections is performed after the
cited corrections on the unperturbed wind field.
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It is anticipated that the presented aerodynamic model is a basic implementation of Blade
Element Momentum theory, which was initially developed for steady state applications. Fu-
ture enhancements might concern the implementation of dynamic stall models such as the
Leishman-Beddoes model (Leishman and Beddoes, 1989), more advanced models for the com-
putation of aerodynamic induction and more realistic wake models (Øye, 1990; Øye et al.,
2003).

3 STRUCTURAL AND MULTIBODY SYSTEMS MODELLING OF A WIND TUR-
BINE

Structural components, which are subject to elastic deformations and which have impact
on the dynamic properties, are included in the complete wind turbine model in terms of finite
elements models. Taking into account that long time intervals (longer than 1000 s) have to be
analyzed, the total number of degrees of freedom of the complete analysis model should stay
below 10000 degrees of freedom. As a consequence, the finite elements structures, which are
subject only to small deformations, are condensed by the super-element technique. The rotor
shaft, all gearbox shafts, the generator rotor and the tower are modelled by nonlinear beam
elements.

Further flexible mechanism type components like gears, bearings, drive train couplings and
generator mechatronics are introduced through a multibody systems approach in terms of addi-
tional degrees of freedom of the global equilibrium equation (1).

3.1 Damping modelling

Stiffness proportional damping (Géradin and Cardona, 2001; Géradin and Rixen, 1993;
Samtech SA, 2007) is applied to all structural components, which are presented either by beam
elements or by super-elements. The amount of damping is set for all components to 2% critical
damping, except for the composite material blades where 4% of critical damping is applied.
Viscous damping, or respectively Coulomb friction, is applied to every bearing and gear con-
tact (Samtech SA, 2007). In the case of torque arm coupling elements, a nonlinear deformation
speed dependant viscous law is applied.

Note that the aerodynamic loads can also be considered as damping forces, because aerody-
namic laws of type of equation (2) are essentially related to speeds.

3.2 Gearbox modelling: coupled multibody systems and finite elements approach

The gearbox is included in the global analysis model combining finite elements and multi-
body systems approaches. All gearbox shafts, including the rotor shaft, are represented by
nonlinear beam elements. The gearbox housing and the planet carriers are modelled by solid
finite elements models, which are condensed to super-elements in order to reduce the number
of degrees of freedom.

Frictional contact problems between flexible gears are reduced to geometrically variable and
point wise flexible contacts. Gear geometry is defined by helix, cone and pressure angles, nor-
mal modulus, respective teeth number and, if needed, further correction factors for the gear
teeth. In context of noise prediction, geometric imperfections (typically due to manufacturing
tolerances) can be included in the analysis model in terms of geometrical transmission error.
Gear teeth flexibility is defined by nonlinear gap-functions, which account for stiffness varia-
tion, when passing along one tooth engagement. It is emphasized that the proper modelling
of gear and bearing clearances is of crucial importance when evaluating gearbox loads during
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backlashes. The so-called parameter-excitation (nonlinear gear teeth contact stiffness functions)
can be defined in terms of Fourier series containing as many harmonics as necessary to describe
the stiffness variation when passing along one tooth engagement (Samtech SA, 2007; Cardona,
1997; Cardona and Granville, 1999). That extension of the gear tooth flexibility is necessary in
order to reproduce the higher frequency content generated by the teeth engaging properly.

Every bearing of the wind turbine, including those of the rotor main shaft, the entire gearbox
and the generator, is modelled by nonlinear stiffness functions, which account for the coupling
of radial and axial bearing properties. All bearing clearances in radial and axial directions are
taken into account.

3.3 Some remarks about the use of super-element techniques

Most commercial multibody systems or finite elements programs support the use of super-
elements. Some super-element formulations are based on the Guyan condensation, whereas
more advanced super-element formulations rely on the Component synthesis Method (CSM)
and take into account nonlinearities of large rotations, centrifugal and gyroscopic forces.

Generally speaking, the use of super-element should be limited to structural components
which are being subjected to only small deformations. The structural behaviour of super-
elements is linear within a rotating reference frame, i.e. super-elements do not take into account
material nonlinearity, nor nonlinearity related to large deformations. As a consequence, super-
elements do not take into consideration stress-induced nonlinearity, such as blade stiffening
under loading.

If the modification of blade eigenfrequencies as a function of loading has to be considered,
a nonlinear finite element approach seems to be the most natural choice.

If structural components are modelled by super-elements, compared to discrete assemblies
of springs, masses and inertias, less discretization in terms of retained nodes is required. In
comparison to sparse stiffness, damping and mass matrices of discrete spring-mass assemblies,
the fully occupied matrices of super-elements contain more information on eigenmodes and on
structural coupling effects. If the super-elements are based on a CSM formulation, the frequency
content can be easily further enhanced by additional internal modes (Samtech SA, 2007; Craig
and Bampton, 1968; Cardona and Géradin, 1991).

3.4 Controllers for blade pitch, generator torque and yaw angle

Generally, an external Dynamic Link Library/DLL is coupled to SAMCEF in order to define
the electro-mechanical generator torque, the demanded yaw angle and the demanded blade pitch
angle as a function of control variables like the rotor speed and torque. Alternatively, a standard
PID controller of SAMCEF is applied, as in the present example. Note that the controller
demand of a given pitch angle is further processed in order to include the mechanical response
of the proper pitch drive and controller. Accordingly, the mechanical pitch drive is limited by
maximum pitch speed and acceleration.

4 APPLICATION EXAMPLE: EMERGENCY STOP

Figures 1, 2 and 3 show schematically the applied wind turbine model including, on the
one hand, structural finite elements components like blades, rotor and gearbox shafts, the tower
structure, gearbox housing, planet-carriers, bedplate etc. and, on the other hand, multibody
systems type components like gears, bearings, elastic couplings or bushings, the overload clutch,
and finally the generator model and control loops. The model presents a configuration for
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Generator Rotor

Planet Carrier Stage 2: Super Element

Hss-Brake

Overload clutch

Generator Coupling

Bedplate Main Bearing 1:RS, Main Bearing 2:GS

Bedplate
Yaw Mechanism

Bedplate Torque Arm Bushing

Bedplate
Generator Support Bushing

Planet Carrier Stage 1: Super Element:

Pitch Drives
Super Elements Blades

Generator Stator

Parallel Gear Stage 3

Figure 2: Modelling of blades by super-elements and aerodynamic blade section elements.

Figure 3: Modelling of blades by super-elements and aerodynamic blade section elements.

approximately 4.5 MW nominal power output at rotor speed of 13.5 rpm. Rotor diameter is
118 m and the tower height is 112 m. As depicted schematically in Figure 3, the gearbox model
is based on two planetary stages and one parallel helical stage, where the numerical model
accounts for every relevant gearbox component. Gear geometries, clearances and mechanical
properties are adapted according to a commonly applied wind turbine gearbox configuration of
a total transmission ratio of ninety-five.

4.1 Emergency stop: aerodynamic results

Our first numerical example is an emergency stop simulation. Emergency stop, or E-stop, is
the process that brings the wind turbine to rest as fast as possible. The control system orders an
E-stop in the case of grid loss, excessive vibrations etc. In the presented example, the E-stop is
triggered by a grid loss event which is characterized by a sudden drop in generator torque due
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to an electrical failure. As a consequence, the pretension of the power train is lost and large
dynamic oscillations occur. These oscillations frequently produce backlashes.
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Figure 4: (a) Lift forces [N] for different blade sections and total aerodynamic rotor torque [Nm]. (b) Drag force
[N] for different blade sections and total aerodynamic rotor thrust [N]

Preventive measures, such as immediate pitching and activation of the disc brake, must be
taken in order to ensure the wind turbine does not run into excessive over speed.

The aerodynamic results of the emergency stop depicted in Figure 4 correspond to a mean
wind speed of 14 m/s with turbulence intensities according to IEC 61400−1 standard (Interna-
tional Electrotechnical Commission, 1997), i.e. a turbulence intensity of 18% in incoming wind
direction. Turbulence intensities in lateral and vertical directions are 15% and 10% respectively.

Figure 5 presents the rotor shaft torque, the torque in the high speed shaft coupling (located
at the gearbox exit), the disc brake and finally the electro-magnetic generator torque. Note that

2994



"Emergency Stop" simulation - torques [Nm]: 
rotor shaft, HSS-brake, HSS cpl.  &  generator
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Figure 5: Torques [Nm] of rotor main shaft (left ordinate), brake at gearbox exit, high speed shaft coupling and
generator

rotor shaft torque refers to the left ordinate and that remaining torque plots refer to the right
ordinate of Figure 5.

As shown in the pink plot of Figure 6, blade pitch is nearly constant up to time t = 110 s. In
the following 10 s, in order to reverse the rotor torque, the blade is pitched about 1.5 [rad] away
from the rotor plane in the wind. Figure 6 shows the pitch angle (left ordinate), the rotor shaft
speed (left ordinate) and finally the high speed shaft speed (right ordinate).

"Emergency Stop" simulation:
Rotor & generator speed [rad:s] and blade pitch [rad]
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Figure 6: Rotor speed [rad/s], blade pitch angle [rad] and generator speed [rad/s] (right ordinate)

It is assumed that generator disconnection takes place at the time instance t = 110 s and
activation of the disc brake is delayed by 0.01 s. After activation of the disc brake, braking
torque is augmented in 0.5 s from zero to full torque of 35000 Nm.
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Lift and drag forces are depicted for different blade sections in Figures 4 with respect to each
individual local, a priori unknown, blade section co-ordinate system. These local co-ordinate
systems are rotated individually as function of the, a priori unknown, angles of attack where
proper blade vibrations are taken into account when computing induced velocities.

In Figures 4, there is also shown the resulting total aerodynamic torque and thrust, presented
by the light blue plots which refer to the right ordinates of respective figures. Plots of total
aerodynamic torque and total aerodynamic thrust are derived a-posterior to the computation by
means of transformations of local lift and drag forces to the rotor plane co-ordinate system.

Emergency stop simulation: wind average: 14 m/s; turbulence intensity: 18.4%
Radial bearing forces: gearbox (left ordinate) & main bearing (right ordinate) 
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Figure 7: Radial bearing forces [N]

4.2 Dynamic load transients in rotor main bearings and in gearbox during emergency
stop

Figures 7 and 8 present the radial and axial bearing forces of each rotor main bearing and of
each planetary gearbox bearing. Figure 9 depicts the gear forces.

It is emphasized that the dynamic radial and axial bearing load oscillations of the individual
power train bearings are not necessarily proportional to the power train torque. Note that the
amplitudes of transient loads during the grid loss depend highly on control actions and details
of the power train design, such as bearing clearances.

4.3 Comparison of numerical results to experiments and other aero-elastic programs

Previously, numerical results of several wind turbine models of the mega-watt class, all
based on identical modelling procedures and solver technology (Heege et al., 2006a; Heege,
2005; Heege et al., 2006b), were compared to experimental measurements. In particular, mea-
surements were compared to numerical results for specific manoeuvres like grid loss events,
emergency stops and operation under turbulent wind conditions. The type of transients that
were compared were rotor and high speed shaft torques, deformations in the gearbox torque
arm bushings, global accelerations at specific locations like the tower top and finally blade
root bending moments. For the investigated cases, wind turbine models could be tuned so that
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Emergency stop simulation: wind average: 14 m/s; turbulence intensity: 18.4%
Axial bearing forces: gearbox (left ordinate) & main bearing (right ordinate) 
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Gear forces [N] during "emergency stop":
Wind: 14 m/s; Turbulence Intensity: 18.4%
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Figure 9: Gear forces [N]

numerical results and available experimental data showed generally less than 30% deviation.
Within the gearbox, axial dynamics of several shafts were recorded experimentally and some of
the results are shown as follows in Figure 11. This figure presents the comparison of numerical
and experimental data for the axial vibrations of the parallel helical shaft of the second gear
stage during different emergency stops where different brake torques at the gearbox brake exit
are applied. Note that these measurements are obtained from a three-stage parallel gearbox of a
750kW class wind turbine.

Figure 10 compares the numerical rotor shaft torque results with corresponding experimental
data during an emergency stop at low wind conditions. The experimental and numerical data
refer to a simulation model of a 1.5 MW class wind turbine. The sudden augmentation of rotor
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Figure 10: Comparison to experiment, Main shaft torque [Nm].

shaft torque at about time 6 s is due to the activation of the disc brake at the gearbox exit. It can
be seen that the numerical model reproduces with very satisfactory precision the system change
which occurs at the transition from brake disc slipping to brake disc arrested state. During the
time interval from t = 6 s to t = 10 s, the first drive train mode is visible at about 1.7 Hz. These
oscillations of 1.7 Hz correspond to the pre-tensioned power train with all gears and bearings
in contact. After t = 10 s, the turbine is nearly at rest, only the rotor keeps oscillating slightly,
but the disc brake is still closed. Now the dominating frequency drops to about 0.8 Hz, because
the pre-tension of the power train is substantially reduced or completely lost. Figure 10 also
includes a zoom on one single rotor shaft torque oscillation with the disc brake arrested. The
comparison to experimental data shows that the numerical model reproduces the zero torque
instances which are produced by radial, axial and gear clearances during load inversion.

Concerning the validation of the proposed numerical procedures, results of global aerody-
namic rotor torques and thrust forces were compared, for different wind turbines, with further
aero-elastic computer programs (Øye, 1996; Bossanyi, 2004). Generally, deviations in total
aerodynamic rotor thrust and torque were less than 15% for investigated aerodynamic load
cases including turbulent three-dimensional wind fields.

5 FATIGUE EVALUATIONS

Power train bearing failures occur more frequently than damage to the other components
(Johnsen, 2004). Taking into account that these failures occur to a certain degree after a couple
years of successful operation, the importance of proper fatigue considerations becomes obvious
(Amzallag et al., 1994; Bishop and Sherratt, 1989b,a, 1990).

In widely used design practices of gearboxes, fatigue evaluations are based essentially on the
time history of the rotor shaft torque. Looking at the transient curves depicted in Figures 4-9, it
can be seen that this design practice is only of very limited precision, because of the nonlinear
dynamic load amplification within the gearbox, which cannot be simulated with traditional aero
elastic computer programs. More precise load spectra for the different gearbox components are
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Figure 11: Comparison to experiment: axial shaft displacement [µ m] versus time s (a) at low brake torque and
(b) at full brake torque.

obtained if the nonlinear dynamic load amplifications are introduced component wise in order
to correct the input quantities in terms of rotor shaft time histories. However, this approach
only corrects the loads amplitudes seen by each power train component, but no correction for
the associated load frequencies is considered.

In order to further improve the fatigue load spectra of power train components, Rain Flow
Counting (RFC) and Load Duration Distributions (LDD) are extracted separately for each gear-
box component. This approach implies that transient loads are extracted for each power train
component from the global mechatronical wind turbine model and that RFC and/or LDD evalu-
ations are performed separately for each bearing and gear of the power train. This procedure has
the advantage that the frequency content and the associated amplitudes of the local transients
take into consideration the nonlinear character of dynamic amplifications within the power train
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and respect the implicit dependence of the excitations on the dynamic properties of the entire
mechatronical system. Accordingly, the fatigue load spectra also consider local dynamic effects
within the gearbox, in particular those occurring during gearbox resonance.

In the case of structural components, finite elements models might be used in order to com-
pute the stress state associated with each load cycle and corresponding load case. Let us point
out that structural components like blades or bedplate are included in the global mechatroni-
cal wind turbine model, but condensed by the super-element technique in order to reduce CPU
time. Accordingly, the stresses within the structural components can be recovered at any in-
stance of the transient analysis, by a back-transformation from the condensed super-element to
the original complete finite elements model (Samtech SA, 2007). In that case, the boundary
conditions for the finite elements components are obtained automatically from the global wind
turbine model. If Wöhler fatigue curves are available, the damage of the respective structural
component can be computed using Miner’s rule. Bearings and gears are modelled by a multi-
body systems approach, thus reducing the analysis results to three-dimensional load transients
at the respective contact points. These load transients might be used as input data for specific
programs for fatigue computations of gears or bearings.

As an example, figure 12-a presents the radial bearing load cycles in terms of RFC’s indi-
vidually for each bearing. The RFC’s are obtained by gathering some relevant load cases and
multiplying the obtained cycle numbers so that RFC fatigue results are extrapolated to 20 years
of operation. Analogously, figure 12-b presents the cumulated radial bearing load duration dis-
tribution so that evaluated LDD fatigue results are extrapolated to 20 years of operation. It
is emphasized that the selected load cases include exclusively non-stationary operation under
turbulent wind conditions for a sub-set of wind speeds according to IEC 61400 − 1 specifi-
cations (International Electrotechnical Commission, 1997). The selected wind speeds are from
6 m/s to 22 m/s with turbulence intensities in wind, lateral and horizontal directions according
to IEC 61400 − 1 specifications. Accordingly, the load spectra presented in Figure 12 do not
include any extreme events, neither any non-operational load cases, neither any machine fault
state (AGMA Foundation the American Gear Manufacturers Association, 2003; Germanischer
Lloyd Windenergie GmbH, 2006).

It is important to realize that all presented results might differ slightly from loads in practice
for diverse reasons. Damping mechanisms of composite blades or of elastic torque arms cou-
plings are complex and experimental data for model characterization is not always available.
Suitable data for mechanical characterization of coupling and damping effects in bearings are
difficult to obtain. Aerodynamic models might to be further improved for strongly turbulent
wind conditions. A further source for deviations in between presented numerical and real field
load spectra might result from eventual defects which are not accounted in the numerical model.
These defects might be power train misalignments, loss of pre-tensions in coupling elements,
augmentation of bearing clearances during operation, or vibrations induced by small individual
blade pitch errors. In the presented fatigue results, possible machine faults, or special events
like grid loss, emergency stops, etc. are not taken into account. As a consequence, loads in
practice might be potentially higher than presented in Figures 12.

6 CONCLUSIONS

The implicit dependence of power train loads on the dynamic characteristics of the assem-
bled wind turbine turns out difficult a decoupling of analysis techniques, in order to reduce the
complexity of the numerical models. If a gearbox is analysed without accounting for the other
properties of the wind turbine, there is some risk that cycle count, as well as load amplitudes
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Cumlated rainflow counts: rotor main & gearbox bearings
Radial  bearing load amplitude [N] versus cumulated load cycles
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Figure 12: Radial bearing load [N] versus (a) cumulated RFC-load cycles and (b) cumulated LDD’s (hours).

are underestimated. For highly dynamic operation modes, possible operation deflection modes
might affect the alignment of the power train and should be taken into account in fatigue evalua-
tions. In particular if backlashes occur, the load amplifications within the gearbox are generally
much larger than the amplifications which would be detected by experimental measurement or
numerical simulation at the rotor shaft and the high speed shaft.

The need for complete, fully coupled, three-dimensional models is further emphasized by the
purely dynamic character of certain gearbox load components, such as the axial loads of planet
bearings, or the axial and radial bearing loads of the first planet carrier. Dynamic operation
modes, which result in important vibrations of the entire power train are frequently producing
combined radial, bending and axial loads in the first planetary stage bearings. These kind of
dynamic loads are difficult to capture by too simplified computational methods.

In the case of fatigue considerations being based only on rotor shaft time history, the in-
troduction of dynamic load amplitude and load cycle correction factors for different gearbox
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components and for different load directions might allow for improved fatigue calculations.
However, due to the nonlinear and three-dimensional character of wind turbine dynamics, it
is recommended that the respective Load Duration Distribution and/or Rain Flow Counts be
extracted from a global dynamic model individually for each power train component. This re-
quirement leads to the use of implicitly coupled analysis techniques like the Finite Element
Method, multibody systems approaches and aerodynamic load calculations. The presented ex-
amples demonstrate the feasibility of such an implicit coupling approach.

Future developments will include improved bearing models which take into account the im-
pact of coupled axial-radial-bending effects. These enhancements will be coupled with the
presented approach in terms of further external computer programs. Concerning further im-
provements to the aero-elastic coupling, future developments will focus on the computation of
aerodynamically induced velocities in the near and far field in terms of enhanced dynamic stall
models and wake representations.

It is expected that the availability of more precise fatigue load spectra will contribute to
improvements in the design of wind turbine power trains.
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