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Abstract. Simulation of water flow in the unsaturated zone requires knowledge of hydraulic conductiv-
ity and water content functions. In most applied studies these functions are described by the well-known
van Genuchten constitutive model, which has five independent parameters. Model parameters are usually
determined from laboratory experiments, although often these estimates are non-representative of field
conditions. In recent years, the use of inverse methods in conjunction with field experiments has become
a promising alternative for the accurate estimation of unsaturated soil parameters. Essentially, this pro-
cedure involves the minimization of a cost or objective function that measures the discrepancy between
observed and simulated data. In the present work we estimate the van Genuchten model parameters from
hypothetical drainage experiments using a hybrid optimization strategy based on simulated annealing
and a quasi-Newton method. Drainage experiments are modeled by solving Richards equation with ap-
propriate initial and boundary conditions. To obtain approximate solutions of Richards equation we use
a Galerkin finite element method. The algorithm behavior and the consequences on the estimated van
Genuchten model parameters using different objective functions are explored. Objective functions are
constructed from two sets of data which are usually obtained on field experiments: pressure head p ver-
sus time measured at different depths and water content θ versus depth measured at different times. The
proposed estimation procedure is tested using synthetically generated data. Numerical examples show
that the inverse modeling of drainage experiments using a hybrid simulated annealing and gradient-based
algorithm provides an excellent methodology for an efficient and accurate estimation of unsaturated soil
parameters.
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1 INTRODUCTION

Modelling groundwater flow in the unsaturated zone using the continuum approach requires
an accurate knowledge of the hydraulic conductivity K(h) and water content θ(h) functions.
These characteristic functions are usually described by empirical mathematical models with
different number of fitting parameters, such as Brooks-Corey (Brooks and Corey, 1964) or van
Genuchten (van Genutchen, 1980) models. Traditionally, model parameters are determined
from soil samples in the laboratory. Despite the sophistication and precision of laboratory pro-
cedures, estimated parameter are non-representative of field conditions since the soil samples
are small and in most cases the soil structure is disturbed (Kool et al., 1987). A promising al-
ternative to laboratory methods is to determine unsaturated parameters by combining field mea-
surements with inverse methods of parameter optimization (Dane and Hurska, 1983; Zou et al.,
2001; Simunek and van Genutchen, 1996; Olyphant, 2003).

Numerous optimization methods have been used for estimating unsaturated parameters such
quasi-Newton (Zijlstra and Dane, 1996), Levenberg-Marquardt (Olyphant, 2003; Nutzmann et al.,
1998), Simplex (Zou et al., 2001), Ant Colony (Abbaspour et al., 2001), and Adjoint Method
(Santos et al., 2006). These methods minimize objective functions that measure the devia-
tions between numerically predicted and observed data from laboratory or field experiments.
Inverse procedures generally work correctly, although they strongly depend on the objective
function. In this context, the uniqueness of the solution may be in question (Zou et al., 2001;
Carrera and Neuman, 1986).

The use of inverse methods allows more flexibility in the design of field tests. One of the
commonly used experiment to measure in situ water content θ and pressure head p data is the
unsteady drainage experiment (Green et al., 1986). This experiment is based on the saturation of
the soil profile and the subsequent measurement of the unsaturated variables during the drainage
process. Soil profile is fully or near fully saturated by adding water from the soil surface.
Then the soil surface is covered with a plastic sheet to avoid evaporation and pressure head and
water content values are measured with prescribed spatial and temporal sampling intervals. Soil
water content is usually measured with a neutron probe while pressure head is measured using
tensiometers (Zhang et al., 2003).

The objective of this paper is to present a hybrid optimization algorithm based on simulated
annealing (SA) and a quasi-Newton method to determine unsaturated parameters from drainage
experiments. The SA method is a stochastic computational algorithm for finding near opti-
mal solutions to hard optimization problems. The quasi-Newton method is a gradient-based
algorithm with quadratic convergence. Water flow in the soil profile during the drainage exper-
iment is assumed to be described by the highly non-linear Richards equation (Richards, 1931)
in conjunction with the well-known van Genuchten constitutive model. The objective function
is constructed from measurement of pressure head p versus time at different depths and water
content θ versus depth at different times during the drainage experiment. The proposed opti-
mization algorithm is used to estimate parameters of van Genuchten model. The performance of
the algorithm and the uniqueness of the solutions is analyzed using synthetically generated data
from hypothetical drainage experiments conducted in homogeneous and layered soil profiles.

The organization of the paper is as follows: in Section 2 we present Richards equation and
initial and boundary conditions for describing drainage experiments, in Section 3 the estimation
problem and the hybrid SA and gradient-based algorithm are presented. Finally, in Section 4
we show numerical examples and we analyze the performance of the proposed algorithm.
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2 THE DIRECT PROBLEM

We consider the problem of estimating unsaturated parameters from drainage experiments
in a one-dimensional domain Ω with boundary ∂Ω. In the unsaturated zone water flow can be
described by Richards equation (Richards, 1931) stated in the form

∂

∂t
θ (p) −

∂

∂z

[

K(p)
∂

∂z
(p + z)

]

= 0, z ∈ Ω, t ∈ I = (0, T ), (1)

with boundary conditions

−K(p)
∂

∂z
(p + z) = 0, z ∈ Γ∗, t ∈ I, (2)

p = pbot, z ∈ Γ, t ∈ I,

and initial condition
p(t = 0) = p0(z), z ∈ Ω. (3)

In the equations above the z-axis is considered to be positive upward, Γ∗ is the part of ∂Ω
associated with the top surface of the soil and Γ = ∂Ω \ Γ∗. To solve the differential problem
(1)–(3), we use the functions θ(p) and K(p) given by the van Genuchten model (van Genutchen,
1980):

θ(p) =







θs − θr

[1 + (α|p|)n]m
+ θr, for p < 0

θs for p ≥ 0,
(4)

K(p) =







Ks
{1 − (α|p|)n−1[1 + (α|p|)n]−m}2

[1 + (α|p|)n]m/2
for p < 0

Ks for p ≥ 0,
(5)

where θr and θs are the residual and saturated water contents, respectively; Ks is the saturated
hydraulic conductivity; n and α are shape parameters; and m is given by the relation m =
1 − 1/n.

Numerical solutions of the direct problem (1)-(3) are obtained using a Galerkin finite element
procedure for space discretization combined with a backward Euler scheme in time. Non-linear
terms of Richards equation are linearized using the modified Picard iteration method proposed
by Celia et al.(Celia and Bouloutas, 1990). The algorithm obtained with this approximation is
computationally efficient and produces perfectly mass conservative numerical solutions.

3 THE ESTIMATION PROBLEM

In this study we consider an objective function for parameter optimization based on the
knowledge of the pressure head values versus time at some depths and water content values in
the soil profile measured at different times. Let m be the set of unknown model parameters,
which include Ks, α, n and θs (for the purpose of this work, we assume that θr is known)1.
Also, let us define the objective function as:

J (m) = wJp(m) + (1 − w)Jθ(m), (6)

1Actually, note that m is a vector of 4N unknowns, where N is the number of layers used to parameterize the
soil.
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where Jp(m) and Jθ(m) are terms based on pressure head and water content data, respectively,
and w, 0 ≤ w ≤ 1, is a weighting factor. Jp(m) and Jθ(m) are defined as follows:

Jp(m) =







1

NdpMt

Mt
∑

j=1

Ndp
∑

i=1

[

pobs(zi, tj) − pcal(zi, tj)
]2







1/2

(7)

Jθ(m) = 100

{

1

NtpMz

Mz
∑

j=1

Nct
∑

i=1

[

θobs(zj, ti) − θcal(zj, ti)
]2

}1/2

, (8)

where pobs and pcal are the observed and calculated pressure head values, respectively; Ndp is
the number of depth points where pressure head is measured; Mt is the number of data points
obtained at each depth zi; θobs and θcal are the observed and calculated water content values,
respectively; Ntp is the number of time points where water content is measured, and Mz is the
number of data points obtained at each time ti.

So, given a set of observations (pressure head and/or water content), the estimation problem
consists on finding the set of unknown parameters m = (Ks, α, n, θ) that, when input into the
direct problem described in the previous section, yield calculated pressure head and/or water
content values that fit the data observations within a given tolerance. Clearly, this is a highly
nonlinear inverse problem that should be solved iteratively. Further, it represents a constrained
nonlinear inverse problem, since model parameters have physical meaning only for a given
range. In complex situations (e.g. soils represented by more that one layer, each layer made
up of distinct materials), if a good initial guess for m is not available, standard optimization
algorithms (in general based on gradient directions) are prone to converge to local minima or
even diverge, because they make downhill moves only.

On the contrary, in SA optimization uphill moves are not forbidden, thus local minima can
be avoided and the global minimum can be effectively reached. The price to be paid is computa-
tional cost, since usually SA requires a large number of iterations for convergence. In practice,
we minimize J (m) using a hybrid strategy that combines simulated annealing (SA) optimiza-
tion with a gradient-based optimization procedure. This hybrid strategy will be described in
next subsections.

Another issue worth mentioning is the reason of using an objective function that combines
two different terms, one based on pressure head observations, and the other based on water
content observations. As it will be shown later, if data observations are based on pressure head
only, these measurements are generally not enough to determine the soil model parameters
uniquely. That is, there are several model parameters sets that fit the data equally well. This non-
uniqueness problem (which is inherent to many nonlinear inverse problems) can be eliminated
by using an objective function which is based on water content, too. Further, measurements
based on water content only may be enough to uniquely determine the model parameters in
simple soil models (thus pressure head observations are not needed at all). However, in complex
soil models we found it useful to make use of both types of observations. For this purpose we
introduced the weighting factor w in equation (6).

3.1 Simulated annealing

The simulated annealing (SA) method is a stochastic computational algorithm for finding
near optimal solution to hard optimization problems. The basic concept of the SA strategy is de-
rived from the process of annealing in thermodynamics (Metropolis et al., 1953; Kirkpatrick et al.,
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1983). The slow cooling of a molten material allows the reorientation of particles to form large
crystals and this state is visualized as being equivalent to the global minimum of the energy of
the system. On the other hand, the rapid cooling results in formation of glass and this state is
considered as being one of the many possible local minima.

In SA optimization, the unknown parameters play the role of the particles in the molten ma-
terial, and the objective function represents the energy of the system. Here, parameter values
(i.e. new model states) are drawn from a distribution that depends on a control temperature,
which is gradually decreased. At high temperatures, the model space is sampled more or less
uniformly. But at low temperatures, models with lowest energy are preferably sampled. The
model is updated using the Metropolis criterion (Metropolis et al., 1953) to decide whether to
accept or reject the proposed model according to the change in the objective function value.
Finally, convergence is achieved at low temperatures when no further improvement in the ob-
jective function is observed. The key of SA optimization is that when the objective function
decreases, the proposed model is accepted unconditionally. On the other hand, when the ob-
jective function increases, it is accepted with a probability greater than zero (the higher the
temperature, the higher the probability). This strategy allows SA to easily escape local minima.

SA comes in various flavors. Here we use one of the most powerful SA approaches, which
is called very fast simulated annealing (VFSA) (Ingber, 1993). The advantage of VFSA over
traditional SA techniques relies on the choice of the generating distribution and the cooling
schedule. For selecting new parameter values, VFSA uses a long-tailed Cauchy-like distribution
that permits the exploration of the model space more effectively than using Gaussian or uniform
distributions (Ingber, 1993), as in various SA algorithms. Also, a faster cooling rate is allowed
to accelerate convergence without limiting its ability to avoid local minima. At iteration k, the
temperature associated with each parameter is given by

Tk = T0e
−ck1/M

, (9)

where T0 is the initial temperature, M is the number of unknowns, and c is a user-defined
constant that can be used to tune the algorithm. The temperature associated to the objective
function (the one used by the Metropolis rejection/acceptance criterion) is defined similarly to
the parameter temperature. A further feature of VFSA is that parameter temperatures can be
adapted dynamically (“re-annealing”) according to the sensitivity of the objective function to
each dimension in the model space, thus allowing for a different annealing schedule for each
parameter. The reader is referred to the works by Ingber (1989, 1993) for a detailed description
of VFSA.

3.2 Hybrid strategy

Despite the fact that VFSA converges significantly faster than conventional SA methods,
when J (m) is close to the global minimum, reducing it to zero (within a given tolerance) may
take several iterations. At these low temperature stages, we found it convenient to switch to a
gradient-based optimization algorithm to find the optimum model parameters more accurately
and efficiently. Here, the best SA solution obtained so far is used as the initial guess for the
linearizing stage. The switch is done after the maximum number of SA iterations has been
reached. This hybrid strategy allows the proposed estimation procedure to accurately obtain
the global minimum in an efficient manner. Since the gradient-based optimization algorithm is
applied only after SA has converged close enough to the global minimum, problems regarding
instability and divergence associated with these methods are of no concern. Locally, J (m) is a
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well-behaved function, and the convergence to the global minimum is guaranteed.
Any linearizing (or gradient-based) method can be used to minimize equation (6). At the

beginning of the jth iteration, the current model parameter estimates are m
j . Essentially, the

jth iteration then consists of the computation of a search vector ∆m
j from which to obtain the

new estimate m
j+1 according to m

j+1 = m
j + βj∆m

j , where the step-size βj is obtained by
linear search or other strategy. The selection of the search vector is largely what distinguishes
one method from another. In the method of steepest descent, for example, the greatest reduc-
tion in the objective function value is obtained in the direction of the negative gradient. But
steepest descent method is known to have poor convergence ratios when the function to be min-
imized has long and narrow valleys, even when these valleys are perfectly quadratic. Contrarily,
variable-metric methods (also known as quasi-Newton methods), are devised to obtain the ex-
act minimum of a quadratic form in M dimensions after successive line minimizations. Like
in conjugate gradient methods, it is assumed that the function to be minimized can be locally
approximated by a quadratic form. This requires the knowledge of the gradient vector (first
derivatives) and the Hessian matrix (second derivatives). The key of variable-metric methods
relies on the fact that they manage to build iteratively a good approximation of the Hessian ma-
trix after M line minimizations, which is often better than using the true Hessian(Press et al.,
1992). Thus, the Hessian matrix is not required at all, and only first derivatives need to be
calculated.

In practice, we estimate the first derivatives required by the quasi-Newton method using finite
differences. Consequently, only forward computations are performed throughout the iterative
estimation process. In our experiments, usually 10-20 iterations are enough to reduce J (m) to
very small values and to guarantee that data observations are honored very accurately.

4 NUMERICAL EXPERIMENTS

In this section the performance of the optimization algorithm presented above is analyzed
using different combinations of measured data for both homogeneous and layered soil profiles.

4.1 Parameter estimates for a homogeneous soil profile

In order to assess the influence of the different parts of objective function (6) on parame-
ter estimates, we consider a hypothetical drainage experiment in a homogeneous soil profile.
Synthetic data are generated by solving the direct problem with the van Genuchten parameters
obtained by Carsel and Parrish (Carsel and Parrish, 1988) for a loamy sand texture (parameters
are listed in Table 1).

Pressure head values are assumed to be measured at depths of 50, 100 and 150 cm (Ndp = 3)
at time intervals of 3 hours during a 24 hours drainage test (Mt = 8). Water content values are
obtained at t = 0.1, 0.3, 0.6 days (Ntp = 3) with a sampling interval of 25 cm (Mz = 8).

To evaluate the influence of the term Jθ in parameter estimates we set w = 0 in the objective
function (6). This choice implies that only water content data are considered in the estimation
of unsaturated parameters. After 50 iterations of VFSA and 20 iterations of quasi-Newton
method the assumed values for van Genuchten parameters are exactly recovered. The excellent
agreement between predicted and theoretical values of pressure head and water content is shown
in Figure 1.

The influence of term Jp in parameter estimates is analyzed by setting w = 1 in objective
function (6). For this option, the estimation procedure is based only on pressure head values.
The true values of Ks and α parameters are not recovered (see Table 1) even though the agree-
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Figure 1: a) Theoretical (crosses) and predicted (continuous lines) values of p using Jθ; b) Theoretical (crosses)
and predicted (continuous lines) values of θ using Jθ.

ment between predicted and theoretical values of pressure head is very good (Figure 2a). As
shown in Figure 2b, water content values (which are not included in the objective function) do
not fit the theoretical values.
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Figure 2: a) Theoretical (crosses) and predicted (continuous lines) values of p using Jp; b) Theoretical (crosses)
and predicted (continuous lines) values of θ using Jp.

Ks (cm/s) α (1/cm) n θs θr

true values 0.001228 0.075 1.89 0.41 0.065
estimated values 0.001750 0.086 1.89 0.41 0.065

Table 1: True and estimated unsaturated parameters using Jp.

To test the uniqueness of the inverse solution of the parameter optimization procedure, we
analyze the objective function in the parameter space. Figure 3 shows plots of Jp and Jθ in
the Ks-α plane. True values of (Ks, α) and estimated values obtained using Jp are indicated
with crosses in both plots. The objective function Jp shows a long valley which indicates the
non-uniqueness of the inverse solution since there are many combinations of parameters that
can accurately predict pressure head values. On the other hand, the objective function Jθ shows
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a well-defined global minima which allows the recovery of true parameters, as it was shown in
the previous example.
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4.2 Parameter estimates for a layered soil profile

In this numerical example we test the ability of the proposed algorithm to estimate the unsat-
urated parameters in a layered soil profile. The soil profile consists of three layers whose depth,
class texture and van Genuchten parameter values are listed in Table 2. Pressure head values are
assumed to be measured at depths of 45, 125 and 200 cm (Ndp = 3) at time intervals of 3 hours
during a 24 hours drainage test (Mt = 8). Water content values are obtained at t = 0.1, 0.4, 0.8
days (Ntp = 3) with a sampling interval of 30 cm (Mz = 9).

-20

-10

 0

 0  0.2  0.4  0.6  0.8  1

p 
(c

m
)

time (d)

(a)
  z=45 cm
  z=125 cm
  z=200 cm

 0.25

 0.3

 0.35

 0.4

 0  50  100  150  200

θ(
%

)

depth (cm)

(b)
  t=0.1 d
  t=0.4 d
  t=0.8 d’

Figure 4: a) Theoretical (crosses) and predicted (solid lines) values of p; b) Theoretical (crosses) and predicted
(solid lines) values of θ

Motivated by the results of the previous example we give more weight to the term Jθ by
selecting a weighting factor w = 0.2. The optimization procedure achieved the prescribed
tolerance in 500 iterations of VFSA and 100 iterations of quasi-Newton method. The excellent
agreements between predicted and theoretical values of both pressure head and water content
are shown in Figure 4. The estimated values of unsaturated parameters are very close to the real
values (compare values of Tables 2 and 3).
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Figure 5: a) Convergence after 500 iterations of VFSA (continuous line) and 100 iterations of quasi-Newton
(dashed line); b) Ks versus iteration; c) α versus iteration; d) n versus iteration; e) θs versus iteration. Dashed
black lines are real values.

Figure 5a illustrates the objective function versus iteration number. Note that the conver-
gence of the algorithm is accelerated from iteration number 500 when the optimization is
switched from SA to the quasi-Newton method. Finally, the convergences of estimated pa-
rameters are shown in Figures 5b-e. In all cases, estimated parameters are very close to the
true values after 500 VFSA iterations (continuous lines), and true values are achieved after 100
quasi-Newton iterations (dashed lines). It is worth mentioning that convergence was not possi-
ble using the quasi-Newton method alone unless a very good initial guess for all the unknonw
parameters was available. In most cases, the algorithm converged to local minima correspond-
ing to wrong soil parameters.

5 CONCLUSION

Determining unsaturated parameters from field experiments using optimization methods is
often difficult because the inverse problem is highly nonlinear and solutions are not unique.
In this paper, we propose a hybrid optimization strategy based on simulated annealing and a
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Texture depth (cm) Ks (cm/s) α (1/cm) n θs θr

Layer 1 silt loam 0 < z < 90 0.000125 0.020 1.41 0.45 0.067
Layer 2 sandy clay loam 90 < z < 160 0.0003638 0.059 1.48 0.39 0.10
Layer 3 loam 160 < z < 240 0.0002888 0.036 1.56 0.43 0.078

Table 2: Textures, depths and van Genuchten parameters obtained by (Carsel and Parrish, 1988)

Ks (cm/s) α (1/cm) n θs

Layer 1 0.000127 0.0200 1.4104 0.4500
Layer 2 0.000366 0.0589 1.4837 0.3900
Layer 3 0.000288 0.0369 1.5605 0.4299

Table 3: Estimated unsaturated parameters.

quasi-Newton method for determining van Genuchten parameters from drainage experiments.
The objective function is constructed from both pressure head and water content data. Numeri-
cal examples for homogeneous soil profiles show that the addition of water content data in the
objective function greatly improved the definition of a global minima. The performance of the
proposed algorithm was successfully tested also in layered soil profiles. From the numerical
results we can conclude that the proposed metodology is a promising tool for in situ estima-
tion of unsaturated parameters. However, the utility of this procedure to estimate unsaturated
parameters from real data has yet to be proven.
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