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1 MOTIVATION

A player in a game can be optimistic, pessimistic, cautious, daring, suspicious, paranoid, etc.
We want to describe players according to their behaviors. Players displaying different kinds
of behaviours will be called players of differetyipe Since behaviors are determined by the
players’ beliefs (assuming they are rational), these are going to be the focus of our attention. To
get a mathematical definition, we need to be clear on which kind of games we are talking about,
and then we can proceed to see how we can describe the ‘type’ of a player.

Definition 1.1. (following Osborne and Rubinsteif1994)) An extensive game with perfect
informationG = (N, H, P, U,,) consists of:

e AsetN, the set of players.
e A setH of sequences (finite or infinite) that satisfies the following three properties:
— The empty sequendkis in H.

,,,,,

.....

,,,,,

-----

denoted with”.

e AfunctionP : H\ Z — N, that indicates for each history i which one of the players
takes an action after the history.

e Functionsl,, : Z — R forn € N that give for each terminal history and each player, the
payoffof that player after that history.

The setH can be seen as a tree with rdiptwith its nodes labeled by the functidn, and
the leaves labeled by the functiobis. We indicate the elementg on the edges of the tree so
following a particular branch from the root will give the history that names each node.

Example 1.1.

) o%ic\o ,

(1,1,0) (2,0,0) (3,1,1) (0,3,1) (2,0,3) (0,2,3)

In the diagram above we have a game wh&re= {1,2,3}; P()) = 1 meaning that playet

gets to decide the first move in the game, and has three options availablgthe letters stand

for left, center or right, respectively). If playérchooses or ¢, then playee decides what'’s the

next action, and she has optiohandr available. If playerl chooses instead, it is playeB

who decides what'’s the final move. Under each terminal node in the tree, a triple indicates the
values of the utility functioné/;, U, andUs. So, for example if the history of the game(is!),

then playerl gets a payoff oB, while players2 and3 get a payoff ofl.
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Alternatively, extensive games with complete information can be given by indicating (instead
of the utility functions) a family of preorders<,,),.cy that represent thpreferencesf the
players. For our purposes, it will be enough to assume that all players prefer to maximize their
payoffs and are indifferent to what other players’ payoffs are.

Games with incomplete informati@me games in which the incompleteness of the informa-
tion arises in three main ways.

1. The players may not know thghysical outcome functioof the game which specifies the
physical outcome produced by each strategy available to the players.

2. The players may not know their own or some other playetitity functions which spe-
cify the utility payoff that a given playerderives from every physical outcome.

3. The players may not know their own or some other playsirsitegy spacd.e. the set of
all strategies available to various players.

‘All other causes of incomplete information can be reduced to these three basic cases— in-
deed sometimes this can be done in two or more different (but essentially equivalent) ways’
(Harsanyj 1967). The challenge is to be able to take the best possible decisions when these un-
certainties are present. A breakthrough in this field was made in 1967, when a series of papers
by John C. HarsanyiHarsanyj 1967, 19683ab) saw print. The idea was to tame the uncertainty
by transforming the games with incomplete information into games with complet@patfect
information.

Definition 1.2. An extensive game wittmperfect informatiors a game~ = (N, H, P, U,,, Z,,)
whereN, H, P andU,, are as in Definitiorl.1, and for each playet € N,Z, is a partition on
the setd,, = {h € H\ Z : P(h) = n}. The equivalence classes in this partitions are called
information sets

The idea here is that player knows in which information set the game currently is, but
doesn't know exactly the whole history that has lead the game into that set. Note that the
players still have perfect information. They know the payoffs in all the possible outcomes.

Example 1.2.

(1,1,0) (2,0,0)  (3,1,1) (0,3,1) (2,0,3) (0,2,3)

Now the dotted line indicates that the gétc} is an information set for playex. She does not
have information about whether playemoved to the right or to the center, but she does know
what the payoffs will be in each case, and also knows that, since it’s her turn, pldictnot
chooser.

If all the information sets contain exactly one node of the tree, we have a game with perfect
information. The information sets allow us to represent games in which the players make their
moves simultaneously (and thus don’t know when making their decision what are the other
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players’ moves), and also to represent situations in which “nature” or “chance” make a move
we cannot predict. This feature will be exploited later.

Some further assumptions are made about the games under study. In the first place, it is
assumed that the beliefs the players of the game have can be represented through probability
measures (this is called tiBayesian approadh It is also assumed that the players are aware
of the extent of the knowlege or ignorance of the other players, and that they will always act
“rationally”, that is, they will take the action that gives them the highest possible expected
payoff, based on the information available to them. The notion of rationality is quite hard to
formulate and still topic of debate in among game theorists.

In Harsanyi’'s words,Hlarsany;j 1967):

It seems to me that the basic reason why the theory of games with incomplete
information has made so little progress so far lies in the fact that these games give
rise, or at least appear to give rise, to an infinite regress in reciprocal expectations
on the part of the players.

The argument is the following: suppose the game has incomplete information and just two
players. Playet has some beliefs about what are the actual values of the missing information.
This is represented as a probability measure over the space of all possible values the unknown
could take. Playet also knows that playet cannot know the actual value and hence resorts
to using a probability distribution representing her beliefs as well. In order to take a decision,
player1 then must form some mental model of what playsrbeliefs are. Playe?’s beliefs
include those that, in turn, play2ihas about playel’s beliefs. This kind of reasoning promptly
leads to an infinite regression of unfolding beliefs. Harsanyi calls any model of this kind a
sequential-expectatiomaodel for games with incomplete information.

Harsanyi was concerned with finding ways of analising these games with incomplete infor-
mation. The solution he offered involved the construction of a game with complete but imperfect
information based on the given one with incomplete information. In the new game, there are
new chance moves that are assumed to occur before the two players choose their strategies. In
these random moves, the actual payoff of the two players are determined, but being a game with
imperfect information, the players only know they are in some information set, and a probabi-
lity distribution for the random moves (this probability distribution is assumed to be common
knowledge to all the players). Using conditional probabilities, they can then derive the different
expected values they need to assess the strategies to be taken in the game.

There is an alternative interpretation of the random moves added to the game. Instead of as-
suming that they determine important characteristics of the players (in particular, their payoffs),
it could be assumed that the players themselves are being chosen at random from ‘certain hy-
pothetical populations containing individuals of different “types”, each possible “type” of a
playeri being characterized by a different attribute vecior.e., by a different combination of
production costs, financial resources, and states of informatitams@ny;j 1967

It is these populations that we'll calype spacesand their elements will be of coursky-
pes While Harsanyi assumes the type space was given, he already suggested they could be
constructed from the considerations about beliefs explained above:

As we have seen, if we use the Bayesian approach, then the sequential-expectations
model for any given [incomplete information] garaewill have to be analyzed in

terms of infinite sequences of higher and higher-order subjective probability distri-
butions, i.e. subjective probability distributions over subjective probability distri-
butions Harsany;j 1967).
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Harsanyi was discouraged from this approach by the technical difficulties it presented:

Probability distributions over some space of payoff functions or of probability dis-
tributions, and more generally probability distributions over function spaces, in-
volve certain mathematical difficulties [...]. However, as Aumann has shéwn (
mann 1961 and Aumann 1964, these mathematical difficulties can be overcome.
But even if we succeed in defining the relevant higher order probability distribu-
tions in a mathematically admissible way, the fact remains that the resulting model
—like all models based on the sequential-expectations approach—will be extremely
complicated and cumbersome.

The difficulty pointed out by Aumann ilAumann 1967) is that if X andY are measurable
spaces and we denote By the set of all measurable functions from to Y, then there
is no natural way of endowinyy X with a o-algebra that makes the evaluation functian:

YX x X — Y given byev(f,z) = f(x) measurable. Aumann proposes Aufmann 1964

to choose a single real number that represents a probability distribution. In our approach, the
problem is overcome by considering the spateés of all probability measures ove¥ instead

of looking at all the measurable functions|in 1] that have integral over X.

So, to formalize the notion of types that Harsanyi had in mind, we want a mathematical
object, thetype spacesuch that each elementtypewill have associated to it, in a natural way,
beliefs (represented by probability distributions) over the states of nature and the types of the
other players in the game. In a game withplayers, each player will assume one of the types
t € T, as if they were roles in a play.

A first approach would be to find a correspondefice A(S x T'), where the sel” would
be the type space antlthe states of nature The states of nature are the possible values the
unknown variables in the game can take. We want so#imd7” to be measurable spaces so we
can define probability measures on them. ket 7" — A(S x T') be the desired isomorphism.
Then for eacht € T', m(t) represents the beliefs of a player of type

To find this isomorphism, we will introduce first the notion of coalgebras, for which we will
also need some of the language provided by category theory.

2 COALGEBRAS

The theory of coalgebras was introduced to model certain circular phenomena, like the theory
of non wellfounded sets (se¥%czel (1988). It has been found to encompass many different
examples, and it has abstracted interesting properties out of them.

Given a category and an endofunctof’ : C — C, acoalgebrafor the functor ' (or
F-coalgebrg is a pair (X, c¢) consisting of an objeck in the categoryC and a morphism
¢c: X — F(X). Given F-coalgebrag X, c¢) and (Y, d), a F'-coalgebra morphisnis a C-
morphismf : X — Y such that the following diagram commutes:

1
F(X) 5 F(Y)

A final objectin a categoryC is an objectl such that for anyC-object A there exists a
unigue morphism, : A — 1. We will be interested in the final objects of the categories of
F-coalgebrasfi{nal coalgebray mainly because of the following property:
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Theorem 2.1. (Lambek’s Lemmd,ambek(1969) If (Z, e) is a final F-coalgebra, ther is an
isomorphism betweefi and F'( 7).

Final coalgebras need not to exist in general. For example, the powerset functor in the cate-
gory of sets has no final coalgebra (if it had one, Lambek’s Lemma would contradict Cantor’s
theorem).

Since we are representing beliefs as probability measures, we will work within the category
Meas of measurable spaces and measurable functions between them.

We will consider the endofunctak in Meas that assigns to each measurable speGehe
setAM of all the probability measures ovét, endowed with ther-algebra> A generated by
the sets of the forng?( E') whereE is a measurable subset bf and

BP(E) ={pe€AM : u(E) > p} (1)

If f: M — N is measurable, we defingf : AM — AN as follows: foru € A(M) and
E ey,
(Af)()(E) = u(f71(A)).

Definition 2.1. The class oimeasure polynomial functois the smallest class of functors on
Meas containing the identity/d, the constant functod for each measurable spadé, and
closed under binary products, coproducts and

Example 2.1. If we consider a fixed measurable space like the real intédyal with its bo-
rel subsets as the measurable ones, we can build the measure polynomial fixi@fiot$ x
X), (X +[0,1]) x AX, etc.

Theorem 2.2.(Moss and Viglizza@2006 Viglizzag 20050 All polynomial measure functors have
final coalgebras.

3 TYPE SPACES AS COALGEBRAS

We now see that the isomorphism : 7" — A(S x T') would be a byproduct of finding
the final coalgebra for the functor taking a measurable spateA(S x X). There are some
problems with this approach. If the game hagplayers, then each playéwith typet; should
have beliefs about the types of all the other players, so the functor to use could be

F(T)=A(S xT"Y). 2)

Furthermore, we want each type to know his own type. To model this, we need some definitions
and results from measure theory.

Given a probability distributiom, over a product spac& x Y, its marginalsare the distri-
butionspx andyy over the spaceX andY respectively defined byarxu(E) = p(E x Y)
andmary p(F) = (X x Y) for all E measurable subset &f and F' measurable subset f.
Using the functorA and the projections, we may write this@sirxyu = (Arx)u = powy';
mary pu = (Amy)p = p oyl

If X is a measurable space ands a point inX, letd, be the probability distribution given
by é.(E) = 1if x € E and0 otherwise.

So we don't wantl’ to be isomorphic taA(S x T%), but to the subset ofA(S x TV)
of probability distributions in which the marginal of eae(t;) on thei-th copy of T is the
distributiond,, which has support on the poitit Adding this extra condition to the definition
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would steer us away from the definition of coalgebrashMxas, but we can overcome this
difficulty by changing the functor in an appropriate way. The key observation here is that for
any product of measurable spacks B andb, € B such that the singletofb, } is measurable,
there is an isomorphism between the spgges A(A x B) : margp = 6, } andAA.

The following Lemma proves that in the case above, it is enough to know the marginals to
determine the measure.

Lemma 3.1. Letu be a probability measure on a product measurable spageB. If margu =
0y, fOor someby € B, thenu = mar s X 0y, .

Proof. We only need to prove it for rectanglésx F', whereG is a measurable subset.dfand
F'is a measurable subset Bf

We want to prove that(G x F') = (marap)(G) x 0y, (F'). We have two cases: if, ¢ F, this
reduces to proving that(G x F') = 0, and ifby € F', then we want to show that(G x F') =
marap(G) = p(r3'(G)) = p(G x B).

Notice first that foru(G x B) = u(n;'(Q)) = marau(
(A x F) = marpp(F) = 8, (F) = (marap)(A) x &, (F).

Now we can prove that i, ¢ F, thenu(G x F) < pu(A x F) = 0, and ifby € F, then
(G X F) = p(Gx{bo}) +p(Gx (F\{bo}) < pu(G x{bo})+u(Ax (F\{bo})) = p(G x{bo})-
On the other hangy(G x B) is also equal tg.(G x {by}) + 0. O

G) = marap(G) x &, (B). Also

So now we can model the introspection condition by considering coalgebras for the functor
F(T)=A(S x TV ). €))

The problem of finding ainiversal type spacdhat is, a type space containing all the pos-
sible types a player could adopt, could be solved by finding the final coalgebra for the functor
F(X) = A(S x XN=1), This can be done using Theoreh2. Lambek’s Lemma.1 provides
the isomorphism we are looking for.

But when we look at a single coalgebra for this functor, that is, a measurable:mdp—
A(S x TN-1) we get a somewhat unsatisfactory model. Why should all the players come
from the same type space? It would be better to be more general and to assume that there are
type space§, 15, ..., Ty and the type of playeris selected from the correspondifig This
motivates the following definition:

Definition 3.1. Let Meas™ be the N-fold product of the categorivleas. Each objectM in
Meas” is a N-tuple of measurable spacg¥/;, ..., My), and the morphisms a¥-tuples of
measurable functiong : M; — M!. Let Proj¥ : Meas" — Meas be thei-th projection
functor.

Definition 3.2. We define then daype spacdor a game withN players over the measura-
ble spaceS of states of nature, as a coalgebra for the endofunctddedms” given by T =
(T}, T, ..., Ty) where forl <i <N,

= A(S x HPTO]';V). (4)
J#i
The diagram for a coalgeb(&’, m) of this functor is:
(X1, Xo, e Xn)
(A(S x ijﬁl X;), A(S x Hj7£2 X;), T A(S x Hj;éN X))
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The definition above is a particular case of the more general one that follows.

Definition 3.3. A measure polynomial functor on many variablEs: Meas" — Meas is a
functor built from the functorsroj Y, ..., Proj% and constant functors for measurable spaces,
using either products, coproducts aftyd For any natural numbe¥’, we can extend the notion
of a measure polynomial functor to functdfs= (7y,...,Tn) : Meas" — Meas" such that
eachT;,1 < i < N’, is a measure polynomial functor on many variables fidmas" to Meas

as defined above.

Example 3.1.For a fixed measurable spatg consider the polynomial functor on three varia-
blesF : Meas® — Meas® given by:

F = (A(Proji’ + Proj%) , ((AProjg) X ijg) + M)

We are going to center our attention on measure polynomial functors on many variables that
are endofunctors of the categdvieas” , and the coalgebras for those functors.

Theorem 3.1. (Viglizzq 20053 If T : Meas” — Meas” is a measure polynomial functor in
many variables, then it has a final coalgebra.

Going back to the type spaces for a game tiplayers, application of the Theorem above
yields a final type space, also known in the literatur@isersal type spaceélNe also get the
following Lemma:

Lemma 3.2.1f T : Meas™ — Meas" is the functor given byT; = A(S x [T, Proj} ))i<i<n,
and(Z;)1<;<n is a final coalgebra fofl" then for eachi, Z; is isomorphic toA (S x H#i Z;)
and all the spaceg;,1 < i < N are isomorphic.

The fact that all the type spaces in the universal type space for a gamé/withyers are
isomorphic, together with the fact that all final coalgebras for a given functor are isomorphic
justifies naming itheuniversal type space for the game.

4 A BRIEF REVIEW OF THE LITERATURE ON TYPE SPACES

There have been several constructions of type spaces and universal type spaces in the lite-
rature, each one trying to capture the intuitive idea behind the definition in a slightly different
way. Here we review them, as we compare them with the framework we just exposed.

4.1 Armbruster, Boge and Eisele

In Bayesian Game TheofArmbruster and Bge 1979, W. Armbruster and W. Bge pre-
sent their approach to the study of games with unknown utility functions, in which the players
“will have at least a subjective probability distribution on [the] alternatives”. This is called
the Bayesian assumptiorin order to construct “canonical representations for the players’ sub-
jective probability measures”, the following notion is introduced, and attributedbtgeBin a
lecture on game theory given in 1970.

Definition 4.1. Let SY, ..., S% be compact Hausdorff spaces. Aixtuple of compact sets and
continuous mapsS;, ..., Sy, p1, ..., pn) is called anoracle systenfor SY, ..., S% if for all

i, pi + S; — SY X H#i A,(S;). HereA, is the functor that assigns to each topological space
X the space of all the probability distributions ov€rwith the s-algebra of its borel sets.
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This is the same as saying thatS,p) is a coalgebra for the functor
T = (8P x [1, Ar(Ids))1<i<n in the categoryCHaus" whereCHaus is the category of com-
pact Hausdorff spaces and continuous functions. The underlying assumption here is that each
player has a different space of state of nattftén which their unknowns lie.

The final coalgebra is constructed by taking the projective limit of the corresponding final
sequence. This final coalgebra is called damonical oracle systemNote that not all the
components of the functor are the same, so in general the spgawak not be isomorphic to
each other as in Lemnta2 This is a reasonable assumption, and using The@&é&none can
extend the definition and existence of canonical oracle systems to the general case of measurable
spaces.

It is important to note that here appears for the first time a coalgebra (not necessarily the final
one) as a model of the beliefs of a player. This transcends the idea of just looking for the space
of all possible types, to give more restricted models that can be useful to describe situations in
more manageable terms.

W. Boge and Th. Eisele present a slightly different approach in the gapesolutions of
Bayesian GamegBoge and Eiselel979. Here again the topological setting is the category
CHaus. The space over which the behavior of the players is selected is similar to the one we
proposed inZ), but with certain restrictions.

Given a compact space of states of natifea nonempty subspade® C R° x (A, R of
common a-priori information is selected.

Definition 4.2. A system(R, p) with
p: R— R"x (AR)Y
is called asystem of complete reflections over the informationset

(1go X (Ap(mgo 0 p)))op C R C R” x (A, R")Y. (5)

R R
% l
ROx (AR)YN  ROx (AR
\LFRO ilRo X(Ar(mgoop))
RO RO x (A RO)N

The spacei! has to satisfy a couple of conditions, the first one specifying that each player
knows what their beliefs are, and the second one saying that each player will try to maximize
their utility function. These requirements preclude the systems of complete reflections from
being coalgebras. We have seen before how the first condition, of each player knowing their
beliefs, can be dealt with by taking a different functor.

The construction of the final object in the category of systems of complete reflections is done
by taking the projective limit, and restricting the spaces so that the image of the foaghe
final object has image contained fitt.
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4.2 Mertens and Zamir

The paperFormulation of Bayesian Analysis for Games with Incomplete Informdtipn
Jean-Francois Mertens and Shmuel Zanitetens and Zam|r1984), is the most often cited
one in the literature about type spaces.

Starting from a compact spacecalledparameter-spacer set of states of nature, they seek
to define a set” of the “states of the world” in which every point contains all characteristics,
beliefs and mutual beliefs of all players. The equations that summarize their goals are:

Y =8xTV (6)

T = the set of all probability distributions o x 7V1) (7)

These equations are, of course, intended to be solved up to isomorphism. Equégpison (
essentially our3). Some of the definitions in this work are interesting and we will analyse
them here, trying to understand their motivation and how they are accounted for in our model.

Definition 4.3. (Mertens and Zamjrl984 Let S be a compact space. Astrbased abstract
beliefs space (BL-spac&an(N + 3) tuple (C, S, f, (t))X,) whereC is a compact setf is a

continuous mapping : C — S andt’,i = 1,..., N, are continuous mappings: C — A(C)
(with respect to the weak-* topology) satisfying:
¢ € C andé € Supp(t'(c)) = t'(¢) = t'(c). (8)

The condition 8) specifies that “a player assigns positive probability (in the discrete case)
only to those points i’ in which he has the same beliefs. In other words, he is certain of his
own beliefs.” It can be rewritten as:

¢ € Candc € Supp(t'(c)) = é € (t")'[t'(c)].
Or the following equivalent equations:
Supp(t'(c)) € (¢)~'[t'(c)]
()l = 1
(Atl)tl(c) = 515;(0)

Thus, even though the first impression could be that Belief spaces are coalgebras for the functor
FX =S x AX, we see immediately that we need the functfaim have the specific codomain
S, and we need many different functiotisvith codomainAC.

However, we can see that an adaptation from our definitions yields spaces with the same

properties: If(X,m) is a type space for a game ow&rwith N players, as in Definitior3.2,
then let

N
C=5x][xi

=1
Ci=Sx ][

J#i

Let m; andn_; be the projections frond' to X; andC'_;, respectively. Now for alk € C, let
t': C' — AC be defined by ‘
t'(c) = mymi(c) X ry(c)-

Thusti(c) € AC. Letting7s : C — S be the projection, we have that
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Proposition 4.1. (C, S, s, (t))¥,) is a BL-space.

Proof. We only need to check that conditioB) (s satisfied. Notice that the type spaces of Defi-
nition 3.2 are defined for any measurable spa¢and the functions:; need not be continuous,

just measurable. Conditior8) is stated in terms of the support of the probability measure
t'(¢), which does not necessarily exist in the more general case. We will prove the condition
t'(e)[(#) [t (¢)]] = 1 which is equivalent to&) when the support is defined.

I EE] = EEIE) ™ (mim(e) X 8xgo))]
= ()[((m; x 6) o)~ (mmi(c) X br0))]
= £(e)l(m) ! (m; x )M (memi(e) X 0r, (o)

The set(m; x §)~!(m;m;(c) X d.,)) is not empty, since at least(c) is in it. It is also equal

to the setm; 'm;mi(c) N6 (6n(e)) = m; 'mymi(c) N {m(c)} so its inverse image undet is
C_; x {m;(c)}. Therefore

() (' ()]

t'(e)[C-i x {mi(c)}]
= 7171171'1(0)(0_2) X 57ri(c)(77i(c>>

]

Note that in Mertens and Zamir's approach, the universal type spaces are constructed by
constructing first the universal BL-spateand then taking takind” = t*(Y"), while here we
have shown how to construct belief spaces from the type spaces.

Definition 4.4. (Mertens and Zamjrl984 A coherent beliefs hierarchy [oves] of level K
(K =1,2,...)isasequenc&y, C1,...,C k) where:

1. Cy is a compact subset ¢f and fork = 1,..., K, ()} is a compact subset @f,_; x
[A(Cr_1)]" (as topological spaces). We denotedyy; andt’ the projections o€}, onto
Cx—1 and thei-th copy of A(Cj_1) respectively.

PO P1 PK—-1
CO Cl e CK

Pk—l(Ck) =Cr13k=1,... . K
3. Foralle, € Cy, letey—1 = pr_1(ck). Then for alli, andk = 2,. .. K,

H1) the marginal distribution of' (c) on C_5 is t*(cx_1);

H2) the marginal distribution of’(c;) in the i-th copy of A(C}_») is the unit mass at
t'(cr—1) = t'(pr—1(cr))-

The coherent hierarchies are used to build the universal beliefs Bpaldsay can be seen as
the first K’ steps in the iteration that leads to the final sequence. The additional conditions we
see come from different complications introduced in the construction.2Rdrthe definition
states that the projections should be surjective. This condition is necessary here because the
spaces’, are compact subspaces@f_; x (AC,_;)" and not that whole space.

ConditionsH1) andH2) of part3 have the following intuitive meaning:
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H1) says that playei’s k-level beliefs coincide with higk — 1) level beliefs in
whatever concerns hierarchies up to l¢kel 2). ConditionH2) says that player
knows his own previous order beliefd/€rtens and Zamjr1984)

Under a more technical lighH 1) can be written as

(Apr-2)t'(cx) = t'(cx-1) = t'(pr—1(cx)) ©)

for everyc, € C,. This condition is saying that, is an element of the projective limit of the
spaces”;.. The conditionH2) can be written as: for every, € Cy,

(Apr—2)t*(cr) =t (ck—1) = t"pr—1(ck). (10)
There is some abuse of notation here: for each nurhberl, functionst’ : ¢, — AC,_, are
defined, so there is a different functi¢rthat is applied ta;, and another one that's applied to
ck—1, and it should be clear which one is needed in each ocurrentetddving (L0) is needed
in order to obtain(8) in the projective limit.
Morphisms between BL-spaces are defined as follows:

Definition 4.5. (Mertens and Zamjrl984 A beliefs morphisn{BL-morphism) from a BL-
spaceC, S, f, (t)N,) to aBL-spacéC, S, f, (1)N,) is a pair(p, ') wherey' is a continuous
mapping fromC to C' and ¢ is a continuous mapping of to S such that for eachi;i =
1,2,...,n, the following diagram commutes:

S—F—=3
4 1

ti l J/{i
Ay’

AC — AC

Given a fixed spacé of states of nature, theniversal BL-spacés the final object in the
category of BL-spaces ovéf and BL-morphisms. The universal BL-space over a fixed space
S'is built by taking the projective limit” of a sequence of coherent beliefs hierarchies:

LetYy = S;Y) = SxASx...xAS andfork > 2, letY;, = {y, € Vi1 x[A(Y;z_1)]Y : H1)

For alli the marginal distribution of (y;.) onY}_, ist(y,_;) andH2) the marginal distribution
of t'(yx) oN A (Y}_5) is the unit mass at(y;_1)}.

With this definition, for each value of, the sequencéYy,...,Y}) is a coherent beliefs
hierarchy overS of level k, and it also is the biggest one that can be constructed. All the
coherent hierarchies of beliefs can be mapped to the ones constructed above, and all the BL-
spaces can be mapped in a unique way to their limit

It is clear from the proof given that the spaces under consideration are assumed to be com-
pact Hausdorff topological spaces. Mertens and Zamir use Riesz’s Representation theorem to
prove what essentially amounts to Theorérh below, but one needs to also assume that the
probability measures involved are all regular, Asnfjbruster and Bge 1979 and (Heifetz,

1993 point out.

Theorem 4.1. (seeHeifetz(1993, alsoMetivier (1963, Theorem 111.3.2) LefX,, be a sequence
of Hausdorff topological spaces anfgd : X,,,1 — X, a surjective continuous map far> 0.

If 11, is a regular Borel probability measure ok, such thatu, ., f, ! = p, for all n > 0, then
there is a unique regular Borel probability measuren the projective limit of thel,, such that
foralln >0, um, ' = py,.
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4.3 Heifetz and Samet

Aviad Heifetz and Dov Samet, in their pap&opology-Free Typology of Belief@Heifetz
and Samet1998, are the first to solve the problem of finding the universal type space in the
general case of measurable spaces. They present two constructions of the space, much in the
spirit of the two constructions of final coalgebras for measure polynomial functors presented in
Moss and Viglizzq2006 andViglizzo (2005h, respectively.

Their methods have provided us with guiding insight for the constructions of final coalge-
bras we cited before. In the language-based construction, we have presented new languages
L(T) based on each measure polynomial fundforWe have also introduced two important
refinements:

Their operator3?(e) is used to express that a playdrselieves that an event represented by
e has probability bigger thap. In our formulation, this would be expressed[asxt],3”(e),

a formula of sort/d; for the functorT” from definition4 that is, the syntactic operatd? has
been factored in two parts. This allows us to have more expressive power and describe points
of coalgebras that are not of the forly5(.X') for some measure polynomial functsr

4.4 Types and Non-wellfounded sets
4.4.1 Lismont

In the paper I(ismont 1992, Lismont claims to use the set thedAFC~ AFA to prove
the existence of a universal beliefs space in the sense of Mertens and Zamir. He proposes the
functor A for aclassC, as the class of all probability measures on setsC' (which therefore
need to be measurables spaces). Thus, any subéeheéds to be a measurable space. This
does not seem to be a very reasonable assumption. Consider a non-measurable cfudbset
measurable space Sinces C ¢ C C, As C AC, but the inclusion cannot possibly be a
measurable function.

With this definition,A is a monotone functor, an assumption that simplifies some results, but
AJ0, 1], for example, is much bigger thak|0, 1]. It includes all probability measures over all
theo-algebras that are possible over all the subsei& of ( A X was defined over a measurable
space X, X) as (the measurable space of) all probability measures on the algebra

So this operato is not so much of an operator Meas, as one irbet.

Closely following Mertens and Zamir's papeviértens and Zamjrl984, the goal is to
“construct”Y and7 such tha’ = K x T" andT = A(K x T"71).

If K is a non empty set);(C) is the class of alh € A(K x C™) such that a support of is
asubset ofS’ x C"~! x {\} x C"* (i-coherent probabilities).

Then

1<i<n

It's easy to verify that the operatd, is set continuous as defined iAdzel, 1989. There-

fore, there a biggest fixed poift, and letting®; = A;(2), we get

0=K x H O,.

1<i<n

2 is non empty ifK is non empty (this result uses the solution Lemma from the theory of
non-wellfounded sets).
Notice that now the equalities are actual identities in AFA.

555



A beliefs spacés , as in Mertens and Zamjr1984), a measurable subsBtC Y so that for
eachv = (k,ty, ... t,), h(t;)(B) = 1.

Then, a languag® is defined, with propositional variables obtained from the measurable
subsets of3, boolean connectives, and a modality, » for everyp € ® meaning that player
i assigns probability bigger or equal thamo p.The language induces an equivalence relation
uw=viffforall ¢ € ®,u € [¢] & v € [¢]. The main theorem is:

Theorem 4.2. For all belief spaces3 there is an application : B — Q, u — u, S0 that for
all u,v € B,u, = v, & u=w.

Lismont admits that even though can be embedded i, this doesn’t mean that Mertens
and Zamir construction follows as an special case of the fixed point result in AFA.

4.4.2 Heifetz

In (Heifetz, 1996, Heifetz proposes a similar idea. Every beliefs spBcean be mapped
(onto) it's non-wellfounded version, constructed again from setting up the corresponding equa-
tions. In the non-wellfounded version of the space, the homeomorphisms become equalities.

The setting of the paper is compact metric spaces, so it can use the result from Mertens and
Zamir. LetY be the universal beliefs space from Mertens and Zamir's work. Given any beleifs
spaceB, a mapH from B to Y is defined. Then the imagl (B) is proved to be in a 1-to-1
correspondence with, the nwf-version ofB (similar to B, in Lismont’s work). This way,B
can borrow the topology froir, instead of having it generated by the formulas in the language
as in Lismont. Heifetz would come back to that ideatitefetz and Samef998.

The correspondence above is obtained by showing Mat) is also a solution for the
equation that yields for anyw € B. These solutions are unique under the theory of non-
wellfounded sets.

The probability measures are characterized as a family of p&irs) such that? is a mea-
surable set and the measurelofs bigger than or equal to. An example is given where the
inadequacy of dealing with equality instead is shown.

45 Other related work

Among other work related to type spaces, we’d like to mention some in particular.

Spyros Vassilakis, inassilakis 1991), identifies the final sequence method as the right one
to obtain a solution foX' = A(S x X) in the category of Compact Hausdorff spaces. He also
suggests further applications gssilakis 1990.

Brandenburger and Dekel iB(andenburger and Dekdl993 propose a similar construction
to that of (Mertens and Zamjr1984), and explore the relation of the concept of types with the
one of common knowledge.

Probabilistic logic applied to type spaces has been studied by Heifetz and Mongeifietg
and Mongin 2007, and Meier in Meier, 2001). Meier also explored the simpler case of type
spaces when the probabilities are giverfinjtely additivemeasures inNleier, 2002.

This being just a cursory overview of the literature on this topic, it shows the interest in the
problem, and also suggest directions for further development in both the applications and the
general theory of coalgebras presented in se&ion
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