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Abstract. This paper deals with two problems: 
1) The free transverse vibration of a non homogeneous tapered beam subjected to general axial forces, 
with arbitrarily located internal hinge and elastics supports, and ends elastically restrained against 
rotation and translation. 
2) The free transverse vibration of anisotropic plates of different geometrical, generally restrained 
boundaries which is restrained against translation along an intermediate line and has an internal hinge 
elastically restrained against rotation.  

A rigorous and complete development is presented. First, a brief description of several papers 
previously published is included. Second, the Hamilton´s principle is rigorously stated by defining the 
domain D  of the action integral and the space aD  of admissible directions. The differential equations, 
boundary conditions, and particularly the transitions conditions, are obtained. Third, the transition 
conditions are analysed for several sets of restraints conditions. Fourth, the existence and uniqueness of 
the weak solutions of the boundary value problem and the eigenvalue problem which respectively 
govern the statical and dynamical behaviour of the mentioned mechanical systems is treated. Finally, the 
method of separation of variables is used for the determination of the exact frequencies and mode 
shapes and/or a modern application of the Ritz method to obtain approximate eigenvalues. In order to 
obtain an indication of the accuracy of the developed mathematical model, some cases available in the 
literature have been considered. New results are presented for different boundary conditions and 
restraint conditions in the internal hinge. 
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1 INTRODUCTION 

Lagrange invented the “operator” δ  and with its application a δ −calculus which was 
viewed as a kind of “higher” infinitesimal calculus. This discipline has attracted the attention of 
numerous eminent mathematicians, who made important contributions to its development. In 
the last decades the interest in application of the techniques of the calculus of variations has 
increased noticeably. This is partly due to the demands of the technology and the availability of 
powerful computers.  
Variational principles have always played an important role in theoretical mechanics. In 1717 
Johann Bernoulli presented the principle of virtual work and in 1835 emerged Hamilton´s 
principle. Particularly, this last principle provides a straightforward method for determining 
equations of motion and boundary conditions of mechanical systems. Substantial literature has 
been devoted to the theory and applications of the calculus of variations. For instance, the 
excellent books, Guelfand and Fomin (1963) and Troutman (1996) present clear and rigorous 
treatments of the theoretical aspects of the mentioned discipline. Several classical textbooks, 
Dym and Shames (1973); Kantorovich and Krylov (1964) and Weinstock (1974) present 
formulations, by means of variational techniques, of boundary value and eigenvalue problems 
in the statics and dynamics of mechanical systems.   

On the other hand, the study of vibration problems of beams and plates with several 
complicating effects has received considerable treatment. It is not possible to give a detailed 
account because of the great amount of information, nevertheless some references will be cited. 
Several investigators have studied the influence of rotational and/or translational restraints at 
the boundaries, Blevins (1979); Mabie and Rogers (1968); Goel (1976); Hibbeler (1975); Rao 
and Mirza (1989); Nallim and Grossi (1999); Grossi and Laura (1979); Grossi and Bhat (1995); 
Mukhopadhyay (1987); Warburton and Edney (1984). Also, the study on vibration of beams 
with intermediate elastic restraints has been performed by several researchers, Rutemberg 
(1978); Rao (1989); Grossi and Albarracín (2003). 

A review of the literature further reveals that there is only a limited amount of information 
for the vibration of plates with intermediate restraints and beams with internal hinges. Ewing 
and Mirsafian (1996) analysed the forced vibrations of two beams joined with a non-linear 
rotational joint. Wang and Wang (2001) studied the fundamental frequency of a beam with an 
internal hinge and subjected to an axial force. Chang et al. (2006) investigated the dynamic 
response of a beam with an internal hinge, subjected to a random moving oscillator. The 
problem has not been treated in plates. 

Modern developments in engineering are making increasing use of several mathematical 
theories that in the past have been considered as tools of pure mathematicians. A typical 
method of solving boundary and eigenvalue problems for elliptic partial differential equations 
with variable coefficients is the variational method.  

In most cases of interest in engineering, there exists a variational problem, equivalent to the 
boundary or eigenvalue problem considered. But the differential equation involves 
unnecessarily derivatives of higher order than the order of the derivatives included in the 
corresponding functional which describes certain type of energy. So, it is more natural, from a 
physical point of view, to look for the weak solution of the given problem than to look for its 
classical solution, Zeidler(1995a,b); Necas (1967); Rektorys(1980). Since the restrictions on 
smoothness for weak solutions are milder than those for classical solutions, the variational 
approach extends the set of problems which can be investigated. Moreover, the classical 
solution, does not exist for many important engineering and mathematical physics problems.     

One of the reasons of the present paper is to present a rigorous procedure, by formulating 
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the stationary condition for the functional ( ) ,
b

a

t

b
t
T U dt−∫  involved in Hamilton´s principle, in 

the space of admissible functions D  and the space aD  of admissible directions. Another 
motivation is to determine sufficient conditions for the existence and uniqueness of the weak 
solution of the boundary value problem and of the eigenvalue problem which respectively 
govern the statical and dynamical behaviour of the mechanical systems under study.  

It is also the purpose of the present paper to determine the natural frequencies and the 
effects of the elastic restraints of the described systems. The method of separation of variables 
is used for the determination of the exact frequencies and mode shapes. In addition, several 
cases are solved by the Ritz method with systems of simple polynomials as bases. In order to 
obtain an indication of the accuracy of the developed mathematical model, some cases 
available in the literature, have been considered, and comparisons of numerical results are 
included. The algorithms developed can be applied to a wide range of elastic restraint 
conditions, different material characteristics, step changes in cross-section and in axial force 
and distributed axial forces. The effects of the variations of the elastic restraints at the 
boundaries, at the intermediate points or lines and at the internal hinges on the dynamics 
characteristics are investigated. The transitions conditions are particularly analysed, since these 
conditions are essential to study the action of an internal hinge with a rotational restraint and 
the action of intermediate rotational and translational restraints. 

Tables and figures are given for frequencies, and in some selected cases, two-dimensional 
plots for mode shapes are included. A great number of problems were solved and, since this 
number of cases is prohibitively large, results are presented for only a few cases.  

2. BEAMS WITH COMPLICATING EFFECTS 

2.1 Variational derivation of the boundary and eigenvalue problems. 

Let us consider the tapered beam of length l , which has elastically restrained ends, is 
constrained at an intermediate point and has an internal hinge elastically restrained against 
rotation, as shown in Figure 1.  

 
 

 

 

Figure 1: The elastically restrained beam with an internal hinge and intermediate supports. 

The beam system is made up of two different spans, which correspond to the intervals [ ]0,c  
and [ ],c l  respectively, with variable mass per unit length and variable flexural rigidity of the 
i th span as ( ) ( ) ( )i i im x x A xρ=  and ( ) ( ) ( ).i i iD x E x I x=   It is assumed that the ends, the 
intermediate point c  and the hinge are elastically restrained against translation and/or rotation. 
The rotational restraints are characterised by the spring constants 1 2 12, ,r r r  and ,cr  and the 
translational restraints by the spring constants 1 2,t t  and ct . Adopting the adequate values of the 
parameters ir  and , 1,2,it i =  all the possible combinations of classical end conditions, (i.e.: 

clamped, pinned, sliding and free) can be generated. On the other hand, adopting the adequate 
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values of the parameters 12,cr r  and ct  different constraints on the point x c=  and on the 
hinge can be generated.  It is also assumed that the beam is subjected to axial forces. 

In order to analyse the transverse planar displacements of the system under study, we 
suppose that the vertical position of the beam at any time t  is described by the 
function [ ]( , ), 0,u u x t x l= ∈ .  It is well known that at time t , the kinetic energy of the beam 

can be expressed as ( ) ( )2 2

1 2
0

, ,1 1( ) ( ) .
2 2

c l

b
c

u x t u x t
T m x dx m x dx

t t
⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂∫ ∫  

Since the beam is subjected to the axial tensile force ( ),T x  the total potential energy due to the 
elastic deformation of the beam, the springs at the ends restraints and the springs at the 
intermediate restraints is given by:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 22 2

1 2 12 20 0

2 22
2

2 1 1

12

, , ,1 ( ) ( ) ( )
2

0 , ,,
( ) 0 ,

,

c l c

c

l

c
c

u x t u x t u x t
U D x dx D x dx T x dx

x x x

u t u c tu x t
T x dx r t u t r

x x x

u c t
r

x

+ −
+

+

⎧⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎟ ⎟ ⎟⎜ ⎜ ⎜= + +⎟ ⎟ ⎟⎨ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎜⎜ ⎜⎟ ⎟⎪ ⎝ ⎠∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪⎩
⎛ ⎞ ⎛ ⎞⎛ ⎞ ∂ ∂∂ ⎟⎜ ⎟⎟ ⎜⎜ ⎟+ + + +⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜⎟⎜ ⎜ ⎟⎟⎜⎝ ⎠∂ ∂ ∂⎝ ⎠⎝ ⎠

∂
+

∂
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∫

( ) ( ) ( ) ( )
2 2

2 2
2 2

, ,
, , ,c

u c t u l t
t u c t r t u l t

x x

− −
−

⎫⎪⎛ ⎞ ⎛ ⎞∂ ∂ ⎪⎟⎜ ⎪⎟⎜⎟− + + +⎜ ⎟ ⎬⎜⎟ ⎟⎜ ⎜ ⎟⎟ ⎪⎜ ∂ ∂⎝ ⎠⎝ ⎠ ⎪⎪⎭

 

where the notations 0 , ,c c+ − +  and l−  imply the use of lateral limits and lateral derivatives. It 
can be observed that the strain energy due to the rotational restraint of coefficient ,cr  is 

computed by means of the expression ( ) 2
,

,
2
c u c tr

x

−⎛ ⎞∂ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠
 which implies that the spring is 

connected at right end of the span which corresponds to the interval [ ]0, ,c  and is connected to 
a fixed wall. On the other hand, the strain energy which corresponds to the rotational restraint 

of the internal hinge, is computed by 
( ) ( )

2

12 , ,
,

2
u c t u c tr
x x

+ −⎛ ⎞∂ ∂ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠
 which implies that the 

spring is connected at right end of the first span and at the left end of the second span.  
Calculus of variations is a discipline in which the “operator” δ  has been assigned special 

properties not subsumed in the rigorous formalism of mathematics. A mechanical “δ -method” 
has been developed and extensively used. In the current engineering literature, it can be 
observed its use with heuristics developments. This lack of rigor can arise as a disadvantage, 
but fortunately, it can be easily overcome, since the variation Iδ  of a functional is a 
straightforward generalization of the definition of the directional derivative of a real valued 
function defined on a subset of .n\  In the present paper a rigorous formulation of the 
Hamilton´s principle is presented. The procedure adopted is particularly important in the 
determination of the analytical expression of the corresponding boundary conditions and 
transition conditions.  

Hamilton´s principle requires that between times  and ,a bt t  at which the positions are 

known, the motion will make stationary the action integral ( ) b

a

t

t
F u Ldt= ∫  on the space of 

admissible functions, where the Lagrangian L  is given by bL T U= − ,  Troutman (1973). In 
consequence, the energy functional to be considered is given by  
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( ) ( ) ( )

( ) ( ) ( )

22 222

2
1

2 23
2 2

12
1

, , ,1( ) ( ) ( ) ( )
2

, , ,1 1
2 2

b

a i

b b

a a

t
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− ∑∫
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where:  

[ )

( ]

1 1 1

2 2 2

( ) ( ) ( ), 0, ,
( )

( ) ( ) ( ), , ,

m x x A x x c
m x

m x x A x x c l

ρ

ρ

⎧ = ∀ ∈⎪⎪= ⎨⎪ = ∀ ∈⎪⎩
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1 1 1

2 2 2

( ) ( ) ( ), 0, ,
( )

( ) ( ) ( ), , ,

D x E x I x x c
D x

D x E x I x x c l

⎧ = ∀ ∈⎪⎪= ⎨⎪ = ∀ ∈⎪⎩
             

[ )

( ]

1

2

( ), 0, ,
( )

( ), , ,

T x x c
T x

T x x c l

⎧ ∀ ∈⎪⎪= ⎨⎪ ∀ ∈⎪⎩
 

( ) ( )1 20, , , ,c c lΩ = Ω =  and the coefficients , ,i i ia b c  and id  are defined in the Table 1.   
 

i  ia  ib  ic  id  

1  1r  0+  1t  0+  
2  cr  c−  ct  c+  
3  2r  l−  2t  l−  

Table 1. Definition of coefficients , ,i i ia b c  and  id  in Eq. (1). 

The stationary condition for the functional (1) requires that  
( )δ = ∀ ∈, 0, .aF u v v D                                                       (2) 

The space D  is given by 

( ) [ ] ( ) ( ){ ( ) ( )
( ) ( ) }prescribed

2 4; , , , , , , , 1,2,

, , , .

ia b i

a b

D u u x C t t u t C u t C i

u x t u x t

Ω= ∈ ∈ Ω ∈ Ω =i i i
           (3) 

The only admissible directions v  at u D∈  are those for which u v Dε+ ∈  for sufficiently 
small ε  and ( );F u vδ  exists.  In consequence, and in view of  (3), v  is an admissible direction 
at u  for D  if,  and only if, av D∈  where 

     
( ) [ ] ( ) ( ){ ( ) ( )

( ) ( ) [ ]}=

2 4; , , , , , , , 1,2,

, , 0, 0, .
ia a b i

a b

D v v x C t t v t C v t C i

v x t v x t x l
Ω= ∈ ∈ Ω ∈ Ω =

= ∀ ∈

i i i
            (4) 

Now it is possible to introduce the definition of the variation of F  at u  in the direction ,v  
as a generalization of the definition of the directional derivative of a real valued function 
defined on a subset of ,n\  Troutman (1973). Consequently, the definition of the first variation 
of F  at u  in the direction ,v  is given by 

                      ( )
0

( ); dF u vF u v
d ε

εδ
ε =

+=                                                   (5) 

The application of (5) leads to  
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⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− − −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∑∫ ∫

∑∫

( ) ( )
3

1

, , .
b b

a a

t t
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A procedure of integration by parts, transforms (6) in  
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1 2 1 20 , , , .A A l B c B c+ − − += = = =  

Now it is convenient to consider the directions ( ),v x t  which satisfy  

( ) ( ) ( ) ( ) ( ), ,
, , 0, 1,2, , .i i

i a b

v A t v B t
v c t v A t i t t t

x x
∂ ∂

= = = = = ∀ ∈
∂ ∂

                    (8) 

Using (8) in (7) and applying the stationary condition required by Hamilton´s principle (2), 
leads to  
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,
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b

a i
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F u v m x D x
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T x v x t dxdt v D
x x

δ
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⎡ ⎛ ⎞∂ ∂∂ ⎟⎜⎢= + −⎟⎜ ⎟⎢ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎣
⎤⎛ ⎞∂∂ ⎟⎜ ⎥− = ∀ ∈⎟⎜ ⎟⎜ ⎥⎝ ⎠∂ ∂ ⎦

∑∫ ∫
                       (9) 

Let us assume 0,at =   then as ( ),v x t  is an arbitrary smooth function, the fundamental lemma 
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 of the calculus of variations can be applied to Eq. (9) to conclude that the function ( ),u x t  
must satisfy the following differential equations: 

( ) ( ) ( )2 22

2 2 2

, , ,
( ) ( ) ( ) 0, , 1,2, 0.i

u x t u x t u x t
D x T x m x x i t

x x x x t
⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎟ ⎟⎜ ⎜− + = ∀ ∈ Ω = ≥⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎟ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

 

Now it is possible to remove the restrictions (8), and since the function ( ),u x t  must satisfy 
the differential equations stated above, the expression (7) is reduced to 

( ) ( ) ( ) ( )
2

0 1

, ,
( ; ) , , .

bt i i
i i i i i
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x x
δ

=

⎛ ⎞∂ ∂ ⎟⎜ ⎟= − + + +⎜ ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠∑∫           (10) 
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∂ ∂
 and ( ),v c t  are smooth and arbitrary, the 

stationary condition (2) applied to (10) leads to the boundary and transitions conditions. For 
instance, if we adopt 
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∂

 

we obtain                              
( ) ( )2

1 2

0 , 0 ,
(0 ) .

u t u t
r D

x x

+ +
+∂ ∂

=
∂ ∂

 

In an analogue form all the rest of the boundary conditions and transitions conditions are 
obtained. It has been demonstrated that the function ( ),u x t  must satisfy the boundary and 
eigenvalue problem shown in Table 2. 
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( ) ( ) ( )2

1 2

0 , 0 ,
0 , (0 ) (0 ) ,

u t u t
t u t D T

x x x

+ +
+ + +

⎛ ⎞∂ ∂∂ ⎟⎜ ⎟⎜= − +⎟⎜ ⎟⎟⎜∂ ∂ ∂⎝ ⎠
 (14) 

( ) ( ) ( )2

12 2

, ,,
( ) ,

u c t u c tu c t
r D c

x x x

+ +−
+

⎛ ⎞∂ ∂∂ ⎟⎜ ⎟⎜ − =⎟⎜ ⎟⎟⎜ ∂ ∂ ∂⎝ ⎠
 (15) 

( ) ( ) ( ) ( )2

12 2

, , , ,
( ) ,c

u c t u c t u c t u c t
r r D c

x x x x

+ − − −
−

⎛ ⎞∂ ∂ ∂ ∂⎟⎜ ⎟⎜ − − =⎟⎜ ⎟⎟⎜ ∂ ∂ ∂ ∂⎝ ⎠
 (16) 

( ) ( ) ( ) ( ) ( )22

2 2

, ,, ,
, ( ) ( ) ( ) ( ) ,c

u c t u c tu c t u c t
t u c t D c D c T c T c

x x x x x x

+ +− −
− + − +

⎛ ⎞⎛ ⎞ ∂ ∂∂ ∂∂ ∂ ⎟⎜⎟⎜ ⎟⎟ ⎜= − − +⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (17) 

( ) ( )2

2 2

, ,
( ) ,

u l t u l t
r D l

x x

− −
−∂ ∂

= −
∂ ∂

 (18) 

( ) ( ) ( )2

2 2

, ,
, ( ) ( ) ,

u l t u l t
t u l t D l T l

x x x

− −
− − −

⎛ ⎞∂ ∂∂ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜∂ ∂ ∂⎝ ⎠
     where 0.t ≥  (19) 

Table 2. Boundary and eigenvalue problem. 
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2.2  The transition conditions. 

 Since the domain of definitions of the problem is ( )0,lΩ =  and this is an open interval in 
,\  the boundary is given by two points, i.e. { }0, .l∂Ω =  Consequently, only the Eqs. (13), 

(14), (18) and (19) correspond to the boundary conditions. The point x c=  is an interior point 
of ,Ω  and the equations formulated at x c−=  and x c+=  can be called transition conditions. 
Consequently, the Eqs. (15), (16) and (17) correspond to the transition conditions of the 
problem. Since ( ) ( ), ,u t C∈ Ωi  there exists continuity of deflection at the point x c=  and 
this generate the transition condition ( ) ( ) ( ), , , .u c t u c t u c t− += =   

2.3  The weak solution. 

Variational methods were extensively used by engineers and scientists as a very effective 
tool for the solution of boundary and/or eigenvalue problems. At the same time several 
problems emerged of both theoretical and practical character. The finite element method is the 
most widely used technique for engineering design and analysis. This method provides a 
formalism for generating finite algorithms for approximating the solutions of boundary and/or 
eigenvalue problems. It works as a black box in which one puts the boundary and/or eigenvalue 
problem data and out of which is generated an algorithm for approximating the corresponding 
solutions. A part of this task can be done automatically by a computer, but it is necessary an 
amount of mathematical skill. It proved that to find an answer to a number of questions which 
are theoretically interesting and practically urgent is not a simple task. The functional analysis 
plays an essential role in the solutions of these problems and particularly the theory of Sobolev 
spaces and the concept of weak solution. 

• The statical case.  

 The classical solution of the boundary and eigenvalue problem presented  in Table 2, when 
there is no restrictions or hinge at the intermediate point ,c  is a function ( , )u x t  such that 

[ ]2( , ) , ,a bu x C t t∈i  ( )4( , ) 0,u t C l∈i  and [ ]2( , ) 0, .u t C l∈i  In other words, ( , )u ti  must 

have fourth-order partial derivatives continuous in the open interval ( )0, ,lΩ =  (since it must 
satisfy the differential equation) and two-order derivatives and function values continuous in  
the close interval [ ]0, ,lΩ =  since it must satisfy the boundary conditions which involve the 
extremes of this interval.  But when there exist an internal hinge and elastic restraints in ,c  as it 

has been shown in Section 2, the function ( , )u x t  does not have derivatives ( ),
,

n

n

u x t
x

∂
∂

with 

2n ≥  in the interval .Ω  In consequence, the boundary and eigenvalue problem presented in 
Table 2, does not have a classical solution. So, it is necessary to analyse the existence of a 
weak solution. Let us consider the statical behaviour of the mechanical system described, when 
a load ( ),q q x=  which causes a transverse deflection ( ),w x  is applied. 

It is governed by the corresponding boundary value problem presented in Table 3, which 
was obtained with an analogue procedure to that used in section 2.1  
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22

1 12 2

( ) ( )
( ) ( ) ( ), ,
d w x dw xd dD x T x q x x

dx dx dx dx

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟− = ∀ ∈ Ω⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠⎝ ⎠
 (20) 

22

2 22 2

( ) ( )
( ) ( ) ( ), ,
d w x dw xd dD x T x q x x

dx dx dx dx
⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟− = ∀ ∈ Ω⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠⎝ ⎠

 (21) 

( ) ( )2

1 2

0 0
(0 ) ,

dw d w
r D
dx dx

+ +
+=  (22) 

( ) ( ) ( )2

1 2

0 0
0 (0 ) (0 ) ,

d w dwdt w D T
dx dx dx

+ +
+ + +

⎛ ⎞⎟⎜ ⎟⎜= − +⎟⎜ ⎟⎟⎜⎝ ⎠
 (23) 

( ) ( ) ( )2

12 2( ) ,
dw c d w cdw c

r D c
dx dx dx

+ +−
+

⎛ ⎞⎟⎜ ⎟⎜ − =⎟⎜ ⎟⎟⎜⎝ ⎠
 (24) 

( ) ( ) ( ) ( )2

12 2( ) ,c

dw c dw c dw c d w c
r r D c

dx dx dx dx

+ − − −
−

⎛ ⎞⎟⎜ ⎟⎜ − − =⎟⎜ ⎟⎟⎜⎝ ⎠
 (25) 

( )
( ) ( ) ( ) ( )22

2 2( ) ( ) ( ) ( ) .c

d w c dw cd w c dw cd dt w c D c D c T c T c
dx dx dx dx dx dx

+ +− −
− + − +

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟⎟ ⎜= − − +⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠
 (26) 

( ) ( )2

2 2( ) ,
dw l d w l
r D l
dx dx

− −
−= −  (27) 

( ) ( ) ( )2

2 2( ) ( ) .
d w l dw ld

t w l D l T l
dx dx dx

− −
− − −

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (28) 

Table 3. Boundary value problem ( ) ( )1 20, , , .c c lΩ = Ω =  

Let 2( )H Ω  be the Sobolev space { }2 2 2( ) ( ); ( ), 1,2 ,H u L D u Lα αΩ = ∈ Ω ∈ Ω =  where 

( )0, .lΩ =  This space can be equipped with the norm ( )

1
2

2

2
2

( ) 0
,

H
u D u dxα

αΩ Ω=

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ ∫  

where ( )D u uα α=  is the weak derivative of order α  of the function .u    
The stable and unstable boundary and transition conditions are of different nature so in 

order to clearly distinguish them, it is useful to introduce the space ,V  of elements of the 
Sobolev space 2( )H Ω , which satisfy the corresponding stable homogeneous boundary and 
transition conditions. For instante, if we let  1 12 1, , , , ,c cr r r t t → ∞  in Eqs. (22)-(26), these 

conditions are reduced to ( ) ( ) ( )0
0 ( ) 0.

dw dw cw w c
dx dx

+ −
+ = = = =   Consequently, since a 

weak solution of the boundary value problem (20) and (22)-(28) is a function from the Sobolev 
space 2

1( )H Ω , the space 1V  is given by  

( ) ( ) ( )1 12
1 1 1 1 1 1

0
; ( ), 0 ( ) 0 .

dv dv cV v v H v v c
dx dx

+ −
+⎧ ⎫⎪ ⎪⎪ ⎪= ∈ Ω = = = =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

           (29) 

Similarly, adopting 2 12 2, , , , ,c cr r r t t → ∞  we conclude that a weak solution of boundary 
value problem (21) and (24)-(28) is a function from the Sobolev space 2

2( )H Ω ,  and the space 
2V  is given by   

( )
( )

( ) ( )2 22
2 2 2 2 2 2; , ( ) 0 .

dv c dv lV v v H v c v l
dx dx

+ −
−⎧ ⎫⎪ ⎪⎪ ⎪= ∈ Ω = = = =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

            (30) 
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If 12, ,c cr r t  take finite values, the transition conditions at the point x c=  are unstable, so 
they do not belong to the spaces .iV  Moreover, when also the coefficients 1 2 1 2, , ,r r t t   take 
finite values, there are no stable boundary conditions and the spaces iV  can be taken as  

{ }2; ( ) , 1, 2.i i i iV v v H i= ∈ Ω =    

Let ( ) ( ) ( )2 1( ) , ( ) , ( )i i i i i iq x C D x C T x C∈ Ω ∈ Ω ∈ Ω  and ( ) ( )4, ,
i

i iw w t C
Ω

= ∈ Ωi  be the 

classical solutions for the problem (20)-(28). Now this boundary value problem is transformed 
into one that leads to the concept of weak solution. If we take arbitrary functions ,i iv V∈  and 
multiply the Eqs. (20) and (21) respectively by these functions and integrate each result over 
the corresponding domain we get 

2 2

2 2

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) , 1,2.
i i i

i i
i i i i

d d w x d dw xD x v x dx T x v x dx q x v x dx i
dx dx dx dxΩ Ω Ω

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜− = =⎟ ⎟⎜ ⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠∫ ∫ ∫  

Integrating by parts the two first integrals we obtain 
2 2

2 2

2 2

2 2

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) , , 1,2.

i i

i i

ii

i i i i

i i i
i

i
i i i i i

d w x d v x dw x dv xD x dx T x dx
dx dxdx dx

d d w x d w x dv xD x v x D x
dx dxdx dx

dw xT x v x q x v x dx v V i
dx

Ω Ω

Ω Ω

ΩΩ

+ +

⎛ ⎞⎟⎜+ − −⎟⎜ ⎟⎜⎝ ⎠

− = ∀ ∈ =

∫ ∫

∫

                     (31-a,b) 

Summing Eqs. (31-a) and (31-b) and taking into account the boundary and transition conditions 
(22)-(28) we obtain 

( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2

2 2 2 2

2 2 2 2

3

1

2 2 2 2
12

( ) ( ) ( ) ( )( , ) ( ) ( )

( ) ( )( )

( ) ( ) , ,

i i
i i i i

i

d w x d v x d w x d v xB w v D x dx D x dx
dx dx dx dx

dw x dv x dw b dv bT x dx a c w d v d
dx dx dx dx

dw d dw b dv d dv br q x v x dx v V
dx dx dx dx

Ω Ω

Ω =

Ω

= + +

+ + + +

+ − − = ∀ ∈

∫ ∫

∑∫

∫

               (32) 

where  

( )
[ )

( ]
1

2

( ), 0, ,
, ( ), 1,2, ( )

( ), , .i
i

q x x c
w t w x i q x

q x x c lΩ

⎧ ∀ ∈⎪⎪⎪= = = ⎨⎪ ∀ ∈⎪⎪⎩
i  

The coefficients , , ,i i i ia b c d  are the same defined in Table 1. Finally, the space V  is given by  

{ }1 2; ( ), ( ), 1,2 .
i

iV v v H v H i
Ω

= ∈ Ω ∈ Ω =  

It must be noted that if a function 2( ) ( )u x H∈ Ω  it implies that ( )u x  and ( )u x′  are continuous 

in .Ω ⊂ \  But as stated above, the presence of the internal hinge implies 
( ) ( )

.
dw c dw c
dx dx

+ −

≠  

In consequence 1( )w H∈ Ω . More precisely 1( ),w H∈ Ω  and  2( ), 1,2.
i

iw H i
Ω

∈ Ω =  This 

is the reason for adopting the space V  defined above. 
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The first two terms on the left hand side of (32) constitute the bilinear form ( ),A w v  associated 
with the differential Eqs. (20) and (21). The other terms which are related to the boundary and 
transition conditions, correspond to the bilinear form ( ), .a w v  The equality (32) now assumes 
the form     

2( )( , ) ( , ) ( , ) ( , ) , .LB w v A w v a w v qvdx q v v VΩΩ
= + = = ∀ ∈∫  

Now we are going to weaken the assumptions. Let ( ) ( )2( ) , ( ) ,q x L D x L∞∈ Ω ∈ Ω   
( )( ) .T x L∞∈ Ω  A function w  is called a weak solution of the boundary value problem (20)-

(28) if  
( )i   .w V∈               ( ) 2( )( , ) ( , ) , .Lii B w v q v v VΩ= ∀ ∈                   (33)- (34) 

It must be noted that in Eq. (32) ( )dw x
dx

 denotes the first order weak derivative of the function 

w  in ( )0,lΩ =  but  
2

2
( )d w x
dx

 is not necessarily  a weak derivative, since a step function is not 

in the space 1(0, ).H l  For this reason the expressions 
2 2

2 2
( ) ( )( ) , 1,2

i

d w x d v xD x dx i
dx dxΩ

=∫  are 

used, instead of  the  integral over .Ω  
If the bilinear form ( , )B w v  is continuous in V  and V −elliptic, the problem under 
consideration has exactly one weak solution ,w  Necas (1967); Rektorys(1980). If we 
replacew v= , in Eq. (32) we obtain 

( )( ) ( )

( ) ( )

2
1 2

2 22 2

( ) 2 2

32 2
2

1
2

12

( ) ( )( , ) 2( , ) ( ) ( )

( )( )

2 ( ) ( ) .

L

i
i i i

i

d w x d w xB w w q w D x dx D x dx
dx dx

dw x dw bT x dx a c w d
dx dx

dw c dw cr q x w x dx
dx dx

Ω Ω Ω

Ω =
+ −

Ω

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− = + +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜+ + + +⎟⎜⎟⎜ ⎟ ⎟⎜ ⎟⎜⎝ ⎠ ⎝ ⎠

⎛ ⎞⎟⎜ − −⎟⎜ ⎟⎜⎝ ⎠

∫ ∫

∑∫

∫

           (35) 

We can recognize that (35) is proportional to the potential energy of the system under study. 
Since the bilinear form ( , )B w v  is also symmetric, the function ( )w x  is the weak solution of the 
problem (20)-(28), if and only if it minimizes, in the space ,V  the functional, Necas (1967); 
Rektorys(1980)  

( ) ( )2
1( ) ( , ) , , .
2 LI w B w w w q v VΩ= − ∀ ∈                                      (36) 

The Ritz method can be applied adopting the approximating function 

1
( ) ( ),

N

N Ni i
i

w x c xϕ
=

=∑  

where ( )i xϕ  are elements of a base in .V   The coefficients Nic  are determined  by the 
condition ( ) min.NI w =  This procedure leads to the following system of linear equations, 
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( )2

1

( , ) ( , ) , 1,2, , .
N

Nj i j i L
j

c B q i Nϕ ϕ ϕ Ω
=

= =∑ …                                (37) 

• The eigenvalue problem. 

In the case of normal modes of vibrations we take ( , ) ( ) cos ,u x t w x tω=  where ω  is the 
natural  radian frequency. Consequently Eqs.  (11)-(19), are reduced to 

2 2
2

12 2

( ) ( )( ) ( ) ( ) ( ) 0, ,d d w x d dw xD x T x m x w x x
dx dx dx dx

ω
⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜− − = ∀ ∈ Ω⎟ ⎟⎜ ⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠

                    (38)      

2 2
2

22 2

( ) ( )( ) ( ) ( ) ( ) 0, ,d d w x d dw xD x T x m x w x x
dx dx dx dx

ω
⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜− − = ∀ ∈ Ω⎟ ⎟⎜ ⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠

                    (39) 

and the conditions (22)-(28). 
In this case the problem of finding a number λ   and a function w  such that 

 ,  0,

( , ) ( , ) 0,   ,

w V w

B w v w v v Vλ

⎧ ∈ ≠⎪⎪⎪⎨⎪ − = ∀ ∈⎪⎪⎩
                                              (40) 

where 2(0) (0) , ( , ) ( ) ( ) ( ) ,A w v h x w x v x dxλ ρ ω
Ω

= = ∫   is the eigenvalue problem of the 

bilinear form ( , ).B w v   
If it is symmetric, continuous and V −elliptic, then it has a countable set of eigenvalues and 
are given by, Necas (1967); Rektorys(1980):   

{ }( , )
1 ( , )min , , 0 ,B v v

v v v V vλ = ∈ ≠  

{ }( , )
1( , )min  , 0,  ( , ) ..... ( , ) 0 .B v v

N Nv v v V v v v v vλ = ∈ ≠ = = =  

Let us introduce a new inner product in space V  given by   ( )( , ) ( , ), .w v B w v v V= ∀ ∈   If 

the sequence { } 1( )i ixϕ ∞
=  is a base in the space V  with the inner product ( )( , ) ,w v the Ritz 

method leads to the equation 

1 1 1 1 1 1

1 1

(( , )) ( , )            (( , )) ( , ) 
 0.   

(( , )) ( , )     (( , )) ( , )

N N

N N N N N N

ϕ ϕ λ ϕ ϕ ϕ ϕ λ ϕ ϕ

ϕ ϕ λ ϕ ϕ ϕ ϕ λ ϕ ϕ

− −
=

− −

…

…

              (41) 

The approximate eigenvalues can be obtained from (41), when dealing with the dynamical 
behaviour of the beam considered above.  

3. ANISOTROPIC PLATES. 

Let us consider an anisotropic plate that in the equilibrium position covers the two-
dimensional domain Ω,  with smooth boundary ∂Ω  elastically restrained against rotation and 
translation. The plate is also restrained against translation along an intermediate line and has an 
internal hinge elastically restrained against rotation, as it is shown in Figure 2.   
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Figure 2.  Mechanical system under study. 

This study is restricted to thin flat plates of mid-plane symmetry. In order to analyze the 
transverse  displacements of the system under study we suppose that the vertical position of the 
plate  at any time ,t  is described by the function 1 2( , , ),w w x x t=   where ( )1 2,x x ∈ Ω  and  
Ω = Ω ∪ ∂Ω.   It is also assumed that the plate is divided in two domains 1Ω  and  2Ω  with 
boundaries 1∂Ω  and 2∂Ω  to which respectively correspond different rigidities 1 2( , )klD x x  and 
mass density 1 2 1 2 1 2( , ) ( , ) ( , ),i i im x x x x h x xρ=  of the anisotropic material. The rotational 

restraints are characterized by the spring constants ( )R s  and ( )12
R s  and the translational 

restraints by the spring constants ( )T s  and ( )cT s  where s  is the arc length along the 

boundary ∂Ω  and the line .cΓ   
At time t , the kinetic energy of the plate is given by 

( ) ( )
1 2

2 2

1 1 1 2 2 2 1 2
1 1( ) .
2 2

w wT w h dx dx h dx dx
t t

ρ ρ
Ω Ω

∂ ∂= +
∂ ∂∫∫ ∫∫  

 
On the other hand, at time t , the total potential energy due to the elastic deformation of the  

plate deformed by a load of density ( )1 2, ,q q x x t=  acting on ,Ω  to the elastic restraints on 
the boundary ∂Ω , to the elastic restraints at the intermediate line and at the internal hinge is 
given by:  

2 2 22 2 2 2 2 2
( ) ( ) ( ) ( )
11 22 12 662 2 2 2

1 21 2 1 21

2 2 2
( ) ( )

1 216 262 2 (
1 2 1 2

1( ) 2 4
2

4 2 ( )

i

i i i i

i

i i

w w w w wU w D D D D
x xx x x x

w w w wD D qw dx dx R s
x x x x n

Ω=

⎧ ⎡⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎟ ⎟ ⎟⎢ ⎜ ⎜ ⎜= + + + +⎟ ⎟ ⎟⎨ ⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎜ ⎜ ⎜⎪ ∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢⎪⎩ ⎣
⎛ ⎞ ⎤∂ ∂ ∂ ∂⎟⎜ ⎥+ + − +⎟⎜ ⎟⎜ ⎥∂ ∂ ∂ ∂⎝ ⎠ ∂⎦

∑ ∫∫

( )
} ( ) ( )

12

2

)

2
2 22 2

1 1

, ,1 1 , ,( ) ( ) ( ) ,
2 2

i

i c c

i

c

ds

w c x t w c x tT s w ds T s w ds R s ds
x x

Γ

+ −

Γ Γ Γ

+

⎛ ⎞∂ ∂ ⎟⎜+ + + − ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠

∫

∫ ∫ ∫

 

2Ω

( )R s

( )T s

12 ( )R s

( )cT s

1Ω

1xc

2x

1∂Ω
2∂ Ω

cΓ

1 2( , )h x x

1 2 cΩ = Ω ∪ Ω ∪ Γ

1 2 c∂Ω = ∂Ω ∪ ∂Ω − Γ
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where .ci iΓ = ∂Ω − Γ  The  line ( ){ }2,c xcΓ = ∈ Ω   is the common part of the boundaries 

1,∂Ω  2,∂Ω  and ( )i
w
n
∂
∂

 is the derivative of w  with respect to the corresponding outward normal 

 where  ( ) ( )
1 2,i in n  are the components of the exterior unit normal on i∂Ω . 

The notations c−  and c+  imply the use of lateral partial derivatives. It can be observed that the 
strain energy due to the rotational restraint of the internal hinge, is computed by 

( ) ( )
12

22
2 2

2
1 2

, ,1 , ,( )
2 c

w c x t w c x tR s ds
x x

+ −

Γ

⎛ ⎞∂ ∂ ⎟⎜ − ⎟⎜ ⎟⎜ ∂ ∂⎝ ⎠∫   which implies that the distributed spring is 

connected at points in 1Ω   and at points in 2.Ω   
Hamilton´s principle requires that between times 0t  and 1,t  at which the positions of the 

mechanical system are known, it should execute a motion which makes stationary the 
functional ( )1

0

( ) ,
t

t
F w T U dt= −∫  on the space of admissible functions. In consequence the 

energy functional to be considered is given by  
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 (42) 

where ( )1 2, , ( , ),x x x w w x t= =    

1 1 1 1 1 1

2 2 2 2 2 2

( , ), ( ) ( ) ( ), ,
( , ) , ( )

( , ), ( ) ( ) ( ), ,

q x t x m x x h x x
q x t m x

q x t x m x x h x x

ρ

ρ

⎧ ∀ ∈ Ω ⎧ = ∀ ∈ Ω⎪ ⎪⎪ ⎪= =⎨ ⎨⎪ ⎪∀ ∈ Ω = ∀ ∈ Ω⎪ ⎪⎩ ⎩
 

The stationary condition for the functional (42) requires that  
( ), 0, aF w v v Dδ = ∀ ∈                              (43) 

where ( ),F u vδ  is the first variation of F  at  u   in the direction  v   and aD  is the space of 
admissible directions at w  for the domain D  of this functional. The application of the 
techniques of the calculus of variations leads to:  
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4.  NATURAL FREQUENCIES AND MODE SHAPES. 

In order to check the accuracy of the algorithms developed, the frequency parameters were 
computed for a number of beams problems for which comparison values were available in the 
pertinent literature. Additionally, a great number of problems were solved and since the 
number of cases was extremely large, results were selected for the most significant cases. The 
analytical expressions obtained allow the adoption of different values for the following 
parameters: 
• mass per unit length and  flexural rigidity, of the i th span, 
•  rotational and translational restraint coefficients, 
• axial forces 1, cT T  and 2,T  
• distributed  force ( ),f x   
• position of  point .c  

Using the well-known method of separation of variables, when the mass per unit length, the 
flexural rigidity and the axial force at the i th span are constant, we assume as solutions of Eqs. 
(11) and (12) respectively the expressions  

( )1 1,
1

, ( )cos ,n
n

u x t u x tω
∞

=
=∑        ( )2 2,

1
, ( )cos ,n

n
u x t u x tω

∞

=
=∑                (49) – (50) 

where 1, ( )nu x  and 2, ( )nu x  are the corresponding nth modes of natural vibration.  

Introducing the change of variable / ,x x l=   in Eqs. (11)-(19) the functions 1, ( )nu x  and 

2, ( )nu x  are given by 

( )1, 1 1 2 1 3 1 4 1cosh sinh cos sin ,nu x A a x A a x A b x A b x= + + +                       (51) 

( )2, 5 2 6 2 7 2 8 2cosh sinh cos sinnu x A a x A a x A b x A b x= + + +                          (52) 

and the following dimensionless parameters can be defined: 
2

4, , ,
2 2 4
i i i

i i i i i i
S S Sa b λ= +∆ = − +∆ ∆ = +

2

,i
i

i

TlS
D

=
2

4 4, 1,2,i
i

i

m l i
D
ωλ = =  

Substituting Eqs. (51) and (52) in Eqs. (49) and (50) and then in the boundary conditions 
(13),(14),(18),(19) and transition conditions (15)-(17) we obtain a set of eight homogeneous 
equations in the constants .iA  Since the system is homogeneous for existence of a non trivial 
solution the determinant of coefficients must be equal to zero. This procedure yields the 
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frequency equation: 

12 1( , , , , , , , ) 0ri ti rc r tc iG K K K K K S cλ =                                           (59) 

where 
3 3

12
12

1 1 1
, , 1,2, , , .i i c c

ri ti rc r tc
i i

r l t l r l r l t lK K i K K K
D D D D D

= = = = = =            (60) 

The values of the frequency parameter ( )2
1

1

1/4

1 ,m
D lωλ =   were obtained with the classical 

bisection method and rounded to six decimal digits.  
Table 4 depicts the first three exact values of the frequency parameter 1λ  of a uniform beam 

with and free internal hinge. Two different boundary conditions and values of 1S  and 2S   are 
considered. A comparison of values of the fundamental frequency with those of Wang and 
Wang (2001) given in plots, shows an excellent agreement from an engineering viewpoint. 

 
  C C−  C SS−  

1 2S S=  
c
l

 1,1λ  1,2λ  1,3λ   1,1λ  1,2λ  1,3λ  

20 0.5 4.803415 8.289007 10.080855 4.332703 7.492574 9.573966 
 0.4 4.884738 7.836494 11.003137 4.455115 7.012395 10.567871 
 0.3 5.099945 7.439040 11.009806 4.605980 6.853667 10.111099 
 0.2 5.218508 7.856133 10.321988 4.621299 7.367559 9.649816 
 0.1 5.001689 8.225792 11.338858 4.425578 7.514569 10.625665 
 0 4.642849 7.609618 10.625710 4.143643 6.961131 9.915604 

50 0.5 5.562708 8.831742 10.881771 5.172028 8.197910 10.392662 
 0.4 5.598529 8.549851 11.566439 5.217433 7.904708 11.116684 
 0.3 5.692301 8.288043 11.570925 5.283389 7.786504 10.800847 
 0.2 5.759859 8.542097 11.034230 5.310188 8.074734 10.447595 
 0.1 5.636741 8.795938 11.810324 5.196631 8.197825 11.167929 
 0 5.312890 8.249932 11.169513 4.930336 7.709381 10.537889 

Table 4. First three exact values of the frequency parameter 1λ , of a uniform beam with a free internal hinge, 

two boundary conditions and two different values of 1S  and 2.S ( :C clamped, :SS simply supported)   
 

Table 5 depicts the first three exact values of the frequency parameter 1λ  of a uniform beam 
with an free internal hinge and different boundary conditions. The mode shapes which 
correspond to a hinge located at / 0.5c l =  are also presented. 

Table 6 depicts exact values of the fundamental frequency parameter 1,1λ , of a uniform 
beam clamped  at 0,x =  with an intermediate point elastically restrained against rotation and 
translation, with an elastically restrained internal hinge and free at 1.x =   When 12rK → ∞  
the values obtained agree with those of reference Grossi and Albarracín (2003). 

In Figure 3 the exact fundamental frequency parameter 1,1λ  is plotted against the restraint 
parameters 2rK  and 2.tK   The beam is clamped  at 0x =  and elastically restrained  at 

1.x =   The free internal hinge 12( 0)r rc tcK K K= = =  is located at two different points 
/ .c l   It can be observed that major increase of frequency occur when the elastic restrain values 

are in the interval [10,1000].  
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B.C. c
l  1,1λ  Mode Shape 1,2λ Mode Shape 1,3λ Mode Shape 

F F−  0.5 7.853205  9.460081  14.137165  
 0.4 7.149421  10.610666  12.733213  
 0.3 6.301510  10.528024  13.933756  
 0.2 5.639917  9.421523  13.235406  
 0.1 5.129561  8.532251  11.964969  
 0 4.730041  7.853205  10.995608  

SS SS−  0.5 6.283185  7.853205  12.566371  
 0.4 5.782606  8.767856  11.312915  
 0.3 5.131786  9.276929  11.780378  
 0.2 4.618322  8.391546  12.161731  
 0.1 4.226369  7.631299  11.050510  
 0 3.141593  6.283185  9.424778  

C C−  0.5 3.750208  7.853205  9.388182  
 0.4 3.953408  7.180653  10.560987  
 0.3 4.483116  6.584228  10.573598  
 0.2 4.706597  7.225821  9.737986  
 0.1 4.348263  7.757249  10.987577  
 0 3.926602  7.068583  10.210176  

 1 3.926602  7.068583  10.210176  
 0.9 4.256359  7.676480  11.106217  
 0.8 4.673940  8.469451  12.283192  
 0.7 5.214137  9.478488  13.342975  
 0.6 5.922674  10.167962  11.798847  
SS F−  0.5 6.786463  8.926649  13.090828  
 0.4 6.920416  9.052879  12.468217  
 0.3 6.205473  10.198446  12.124760  
 0.2 5.577540  9.336974  13.089156  
 0.1 5.094911  8.484132  11.907033  

 0 3.926602  7.068583  10.210176  

Table 5: First  three exact values of  the frequency parameter 1λ  of  a uniform beam with an free internal  hinge and different boundary conditions. The mode shapes 
which correspond to a hinge located at 0.5c

l =  are also presented.

588



Table 6. Values of the fundamental frequency parameter 1,1λ , of a uniform cantilever beam with an 

intermediate point elastically restrained against rotation and traslation ( )tc rcK K=  and with an elastically 
restrained internal hinge located at two different points, / 0.4, 0.6.c l =  

 
 

 

 

 

 

 

 

 

Figure 3: Variation of fundamental frequency parameter 1,1λ  with rotational and translational restraint 

parameters 2rK  and 2tK  of a clamped-elastically restrained beam with an free internal hinge 
( )12 0rc tcK K K= = =  located at 0.5.c

l =  

Table 7 depicts values of the first three frequency parameters ( )2

1

1/4
,i m

Di aωΩ =  of a 

uniform square plate having all sides simply support with an intermediate line elastically 
restrained against translation. The values were obtained using the Ritz method with a 
polynomial base. 

 

 12rKc
l
 

tc rcK K=  
  ∞ 1000 100 10   1   0

  Present Grossi and  
Albarracín (2003)

       

0  1.87510 1.87510 1.87500 1.87411 1.86527  1.78378  2.74615
1  2.09119 2.09119 2.09102 2.08951 2.07456  1.94204  2.98916

10  2.74618 2.74618 2.74558 2.74017 2.68723  2.29297  3.58787
100  3.67938 3.67938 3.67670 3.65271 3.43269  2.49446  4.62004

1000  4.53275 4.53275 4.52282 4.43794 3.86571  2.54981  6.84224

0.6 

10000  4.67264 4.67264 4.66114 4.56340 3.92741  2.55730  7.79768

0  1.87510 - 1.87471 1.87114 1.83709  1.60366  3.68304
1  2.01557 - 2.01499 2.00986 1.96170  1.66141  3.90061

10  2.50929 - 2.50755 2.49212 2.35917  1.79295  4.54802
100  2.95500 - 2.95100 2.91623 2.65068  1.85214  5.26730

1000  3.09608 - 3.09110 3.04789 2.73066  1.86491  6.27871

0.4 

10000  3.12195 - 3.11679 3.07205 2.74529  1.86719  6.51932

0

1

2

3

4

0.01 0.1 1 10 100 1000 10000 100000

1,1λ

0.5c =

2 20,t rK K K= =

K

2 2, 0t rK K K= =

2 2,t rK K K K= =
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cT  1Ω  2Ω  3Ω  

 5000 49.3480 62.2918 78.9568 
 500 35.6646 49.3480 57.9093 
 50 22.1002 49.3480 50.3427 
 5 19.9906 49.3480 49.4491 
 0.5 19.7645 49.3480 49.3581 
 0.05 19.7417 49.3480 49.3490 

Table 7: First three frequency parameters ( )2

1

1/4
,i m

Di aωΩ =  of a uniform square plate having all sides 

simply support with an intermediate line elastically restrained against translation.  

5.  CONCLUSIONS 

A simple, computationally efficient and accurate approach has been developed for the 
determination of natural frequencies and modal shapes of free vibration of a non 
homogeneous tapered beam subjected to general axial forces, with arbitrarily located internal 
hinge and elastics supports, and ends elastically restrained against rotation and translation. 
Also the free transverse vibration of anisotropic plates of different geometrical, generally restrained 
boundaries which is restrained against translation along an intermediate line and has an internal hinge 
elastically restrained against rotation.  

 . Hamilton´s principle has been rigorously applied to obtain the differential equations, 
boundary conditions, and particularly the transitions conditions. The algorithms are very 
general and are attractive regarding its versatility in handling any boundary conditions and 
any transition conditions, including ends and an intermediate point elastically restrained 
against rotation and translation. Besides, these algorithms allow to take into account a great 
variety complicating effects such us: thickness variation, different types of axial forces and an 
arbitrarily located internal hinge with a rotational restraint. Close agreement with results 
presented by previous investigators is demonstrated for several examples. New results are 
presented for several beams with internal hinge and elastic restraints and a plate with an 
intermediate line elastically restrained. These results may provide useful information for 
structural designers and engineers.  

It has been demonstrated that the boundary and the eigenvalue problem which respectively 
describe the statical and dynamical behaviour of the mechanical systems analysed, do not 
have classical solutions. The problem of existence and uniqueness of the weak solutions of 
the corresponding boundary value problems and eigenvalue problems has been treated.  
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