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Abstract. When mechanical systems are modeled, uncertainties should be taken into account for im-
proving the predictability of the model. In this work a two d.o.f. (degrees of freedom) dynamical system
is used to compare two strategies to model uncertainties in structural dynamics. Uncertainties are con-
sidered present only on the spring stiffnesses. In the first approach, uncertainties are inserted into each
spring stiffness. A probabilistic model is constructed for each random variable associated to each spring
stiffness. In the second approach, uncertainties are considered in a global way, that is, a probability
model is constructed for the stiffness matrix. In both approaches, the probability density functions are
deduced from the Maximum Entropy Principle, using only the available information. The simple exam-
ple used is helpful to assure a better understanding of the two approaches. The event space generated by
each strategy will be shown and it will be discussed how good they are to predict data uncertainties and
model uncertainties.
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1 INTRODUCTION

In order to improve the predictability of a complex dynamical system uncertainties should
be taken into account. Probability Theory and Statistics give helpful tools to model random data.
Randomness was introduced in the analysis of mechanical systems at the beginning of the XXth

century and, at that time, only external forces were considered as random. A good review of the
random vibration history can be found in Lin (2002); Paez (2006); a more modern approach is
presented in Sampaio and Soize (2007) Cataldo et al. (2007).

However, to take into account uncertainties in the modeling of dynamical systems, a strategy
for constructing the probability density functions for the random variables associated to these
uncertainties must be chosen and this choice is a difficult task. An idea, unfortunately still
common, is to use the normal distribution for all the random variables. But, this approach can
be dangerous because the errors cannot be controlled, and it may even be against the physics
of the problem. For example, a positive random variable cannot, of course, assume negative
values; when one says that its distribution is normal it is against the physics since negative
values are given a non-zero probability.

In this paper an approach based on the Maximum Entropy Principle is used to construct
the probability density functions of the random variables modeling the uncertainties. With
this strategy, only the available information is used and among all of the possible probability
density functions, that one with the maximum entropy (or uncertainty) is chosen. The concept
of entropy is the one used by Shannon (1948) and some applications of this method can be
found in Kapur and K.Kesavan (1992).

In this work, a two d.o.f. system is used for discussing these two types of uncertainties.
Two approaches are used: (1) Scalar Random Variable (SRV), when scalar parameters are mod-
eled as random variables, and (2) Matrix Random Variable (MRV), when system matrices are
modeled as random variables. We will see why the first approach (SRV) is good to model data
uncertainties while the second one (MRV) is capable of taking into account model uncertainties.

The simple lumped parameter system studied is used in order that the attention is directed to
the modeling and not to the complexity of the system. We will be able to construct the event
space to each of the two approaches performed.

The organization of this article is as following: in Sec. 2, the deterministic dynamical system
that will be studied is presented, and this system will be taken as the mean model for the cor-
responding stochastic problem. The procedure to build the corresponding stochastic problem
is presented in Sec. 3, for both approaches (SRV and MRV). In section 4 it is presented the
numerical simulations, and the two approaches are compared. Finally, in Sec. 6 concluding
remarks are outlined.

1.1 Definitions and notations used

Some definitions and notations that will be used in the text are described in the following:
(1) The deterministic spring stiffnesses are represented by lowercase letters (k1 and k2).
(2) Deterministic vectors are represented by boldface lowercase letters (e.g. f = (f1, f2)).
(3) The random variables K1 and K2 represented by uppercase letters are related to the spring

stiffnesses (k1 and k2).
(4) Random vectors are represented by boldface upper case letters (e.g. Q = (q1, q2)).
(5) Deterministic matrices are represented by upper case letters between brackets (e.g. [K]).
(6) Random matrices are represented by boldface upper case letters between brackets (e.g.

[K]).
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(7) Mean values are represented underlying the corresponding random variables (e.g. k, [K],
Q ).

The following matrix sets will be used: Mn,m(R) is the set of all n×m real matrices; Mn(R) =
Mn,n(R) is the set of all square (n × n) real matrices; MS

n(R) is the set of all real symmetric
matrices; M+0

n (R) is the set of all real symmetric semipositive–definite matrices; M+
n (R) is the

set of all real symmetric positive–definite matrices; and MD
n (R) is the set of all positive diagonal

matrices.
Then,

MD
n (R) ⊂ M+

n (R) ⊂ M+0
n (R) ⊂ MS

n(R) ⊂ Mn(R) . (1)

Let [Kn] be a real square n × n matrix. The Frobenius norm of [Kn] is defined by ||[Kn]||F =
(tr{[Kn]T [Kn]})1/2 and the matrix norm of [Kn] is defined by
||[Kn]|| = max

b∈Rn,||b||=1
||[Kn]b||, where ||b|| is the Euclidian norm of the vector b. These norms

satisfy ||[Kn]|| ≤ ||[Kn]||F ≤
√

n ||[Kn]|| .

2 MEAN MODEL

In this section the mean model is presented. The two d.o.f. system represented in Fig. 1
is used to compare the two probabilistic approaches (SRV and MRV).

 

m1

k1
u1(t)

c1

m2

c2

k2

u2(t)

f1(t) f2(t)

Figure 1: Two d.o.f. system used.

The system dynamics is given by:

[M ]ü + [C]u̇ + [K]u = f(t) (2)

in which

[M ] =

[
m1 0
0 m2

]
; [C] =

[
c1 + c2 −c2

−c2 c2

]
; [K] =

[
k1 + k2 −k2

−k2 k2

]
(3)

and

f(t) =

[
f1(t)
f2(t)

]
; u(t) =

[
u1(t)
u2(t)

]
. (4)

The mass, damping and stiffness matrices are real symmetric and positive-definite and they
are denoted by [M ], [C] and [K], respectively. The external force is represented by vector
f = (f1, f2)

T , in which the functions f1 and f2 represent the forces applied on masses m1 and
m2, respectively. The displacements of the masses are denoted by the functions u1 and u2,
which are the components of the vector u.
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2.1 Frequency Response Function (FRF) calculated from the mean model

In this work, the response to be observed and analyzed will be in the frequency domain.
For this simple linear system, the frequency domain gathers all the information of interest.

Let f(t) = (f1(t), 0)T be the input force applied on the system, and let u(t) = (u1(t), u2(t))
T

be the correspondent output. Let f̂1 be the Fourier transform of f1, û1 be the Fourier transform
of u1 and û2 be the Fourier transform of u2. In this paper, it is considered the FRF (H) defined
by

H(ω) =
û2(ω)

f̂1(ω)
. (5)

The values of the parameters used for the simulations are m1 = 1.5 kg, m2 = 0.75, kg,
k1 = 1000 N/m, k2 = 150 N/m, c1 = 0.5 N.s/m, c2 = 0.05 N.s/m (data were taken from Aguiar
and Weber (2007)). Figure 2 shows the FRF calculated from the mean model. The two peaks
correspond to the two natural frequencies of the system: 2.055 and 4.502 Hz.

Figure 2: FRF of the mean model.

In the deterministic system the response is simply the one showed above, i.e., if another
numerical simulation is performed, the results will be exactly the same. There is no uncertainty.

3 STOCHASTIC MODEL

In order to study the system behavior when uncertainties are present, some parameters,
or matrices, must be considered as uncertain. As the final objective is to compare two different
approaches, the uncertainties will be considered concentrated only in the stiffnesses. Modeling
as SRV, the parameters k1 and k2 will be considered uncertain; meaning that, in the stochastic
model these parameters will be substituted for random variables, K1 and K2, and for each one
of these random variables a probability density function will be constructed. Modeling as MRV,
matrix [K] is globally considered as uncertain, and a probability density function will be directly
associated to the corresponding random matrix, denoted by [K].

Clearly, for either approaches used, the stiffness matrix will be uncertain and it will be rep-
resented by a random matrix. Consequently, the functions u1 and u2, which represent the dis-
placements, will not be deterministic anymore. Instead they will be random processes which
will be denoted by U1 and U2, respectively.
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3.1 Probabilistic model for Scalar Random Variables (SRV)

In this case, the parameters k1 and k2 are modeled by random variables K1 and K2,
respectively. Then, an appropriate probabilistic model for each random variable must be con-
structed taking into account only the available information. The Maximum Entropy Principle
(Shannon, 1948; Jaynes, 1957a,b) is used and it consists in maximizing the entropy subjected
to constraints defined by the available information. The measure of entropy used is (Shannon):

S(PK) = −
∫

R
PK(k)ln(PK(k))dk (6)

The available information used for both random variables K1 and K2 will be described in
the following:

(1) The random variables K1 and K2 are positive random variables, so their supports are
equal to ]0, +∞[.

(2) The expected values of K1 and K2 are known and given by E{K1} = K1 and E{K2} =
K2.

(3) K1 and K2 are second order random variables, that is, E{K2
1} < +∞ and E{K2

2} <
+∞.

(4) As the random variables K1 and K2 represent stiffnesses they must satisfy E{1/K2
1} =

c′1, with c′1 < +∞ and E{1/K2
2} = c′2, with c′2 < +∞. This constraint is taken into account by

requiring that E{ln(K1)} = c1 with |c1| < +∞ and E{ln(K2)} = c2 with |c2| < +∞.
The probability density functions obtained for K1 and K2 are given by:

PK1(k1) = 1]0,+∞[(k1)
1

K1

(
1

δ2
K1

) 1

δ2
K1

1

Γ
(
1/δ2

K1

) (
k1

K1

) 1

δ2
K1

−1

exp

(
− k1

δ2
K1

K1

)
, (7)

and

PK2(k2) = 1]0,+∞[(k2)
1

K2

(
1

δ2
K2

) 1

δ2
K2

1

Γ
(
1/δ2

K2

) (
k2

K2

) 1

δ2
K2

−1

exp

(
− k2

δ2
K2

K2

)
, (8)

where δK1 and δK2 are the dispersion parameters and Γ(z) is the Gamma function defined
for z > 0 as Γ(z) =

∫ +∞
0

tz−1e−1dt. There are limits for the dispersion parameters: they must
be greater than zero and they should be less than 1/

√
3.

Considering the random variables K1 and K2, the corresponding random matrix [K] be-
comes:

[K] =

K1 + K2 −K2

−K2 K2 .

 (9)

The realizations for each simulation can be performed with the aid of Matlab statistics tool-
box.

3.2 Probabilistic model for Matrix Random Variables (MRV)

In this approach matrix [K] is globally considered as uncertain. So, a probability density
function will be constructed directly for the corresponding random matrix [K]. This will be
done following the ideas given in Soize (2001), but here the steps will be explained in detail.
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3.2.1 Probability density function of a random matrix

Let [K] be a random matrix, [K] ⊂ M2(R) . Let P[K]([K]) be the probability density function
of [K]. The normalization condition must be verified:∫

M2(R)

P[K]([K])dK = 1 (10)

Where dK =
∏2

i,j=1 dKij with [K] = [Kij].
The integral presented in eq. 10 is calculated considering the following. Let K̃ = (K11, K12, K21, K22)

be the random vector associated to the random matrix [K]. The probability density function of
K̃ is given by P[eK](k̃). One has:

P[eK](k̃) = P[K]([K]) (11)

Then, ∫
M2(R)

P[K]([K])dK =

∫
R4

P[eK](k̃)dk̃ = 1 (12)

3.2.2 Using the Maximum Entropy Principle to built the probability density function of
a random matrix

The Maximum Entropy Principle states that within all the probability density functions (P[K])
that satisfy the available information, one searches the one with maximum entropy (S(P[K])).
The entropy is a measure of uncertainty and is given by the expression below (Shannon):

S(P[K]) = −
∫

M2(R)

P[K]([K])ln(P[K]([K]))dK (13)

In this work a probability density function (P[K]) of a random matrix ([K]) will be built,
using the Maximum Entropy Principle, with the following available information (represent the
information that one is sure about):

(1) The matrix is positive-definite, i.e., [K] is in the space of the symmetric positive-definite
matrices, so [K] ∈ M+

2 (R). The probability density function may be written as:∫
M2(R)

P[K]([K])dK = 1 (14)

where dK =
√

2
∏

1≤i≤j≤2 dKij =
√

2dK11dK12dK22. Note that the factor
√

2 appears due
to the symmetry of [K].

(2) The expected value of [K] is known, so:

E{[K]} =

∫
M2(R)

[K]P[K]([K])dK = [K] (15)

(3) Writing Eq. 2 in the frequency domain, it can be proved that the corresponding ran-
dom equation has a unique second-order random solution if and only if E{||[K−1]2||F} < +∞
(Soize, 2001).
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To construct the probability density function of [K], one must take into account all the avail-
able information listed above. Using the Maximum Entropy Principle, one gets, (Soize, 1999):

P[K]([K]) = 1M+
2 (R)([K])× CK × det([K])λ−1 × exp

{
−(2λ + 1)

2
� [K]−1, [K] �

}
(16)

where

CK =
(2π)−1/2

(
1+2λ

λ

)1+2λ

Γ
(

1+2λ
2

)
Γ(λ)(det[K])(1+2λ)/2

and � [A], [B] � = tr{[A][B]T} (17)

λ is a positive real number, it appears in the optimization problem due to the information (3):
E{||[K−1]2||F} is not known, but it is finite. The parameter λ has to do with the dispersion of
the distribution function. In the MRV strategy the generation of the realizations for the Monte
Carlo simulation is not straightforward. Some manipulations are required.

The Cholesky decomposition can be performed since [K] is positive-definite:

[K] = [LK ]T [LK ] (18)

where [LK ] is an upper triangular matrix. A random matrix [K] will be written as:

[K] = [LK ]T [G][LK ] (19)

with [G] being a random matrix with characteristics described in the following:
(1) The matrix is positive-definite ([G] ∈ M+

2 (R));
(2) its mean value is the identity matrix (E{[G]} = [I]); and
(3) the mean square value of its inverse is finite. It can be shown (Soize, 1999) that:

P[G]([G]) = 1M+
2 (R)([G])× CG × det([G])λ−1 × exp

{
−(2λ + 1)

2
tr[G]

}
(20)

where

CG =
(2π)−1/2

(
1+2λ

2

)1+2λ

Γ
(

1+2λ
2

)
Γ(λ)

. (21)

It is still necessary one more step so the realizations of the entries of the matrix can be
performed independently. The Cholesky decomposition can be performed since [G] is positive-
definite:

[G] = [L]T [L] (22)

where [L] ⊂ M+
2 (R) is an upper triangular matrix:

[L] =

L11 L12

0 L22

 (23)

The probability density functions of the entrances of [L], (P[L11], P[L12], P[L22] can be cal-
culated using eq. (20) and the definitions of the probability density functions of the marginal
distributions. It can be concluded then:
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PL11L12L22(l11l12l22) = PL11(l11)PL12(l12)PL22(l22), i.e., the random variables L11, L12 and
L22 are statistically independents.

λ parameter will be replaced by δ. It is written as:

δ =

{
E{||K− [K]||2F}

||[K]||2F

} 1
2

=

{
1

2
E{||K− [I]||2F}

} 1
2

(24)

Where 0 < δ <
√

n+1
n+5

and δ is related to λ: δ =
{

1
1+2λ

(
1 + (tr[K])2

tr([K]2)

)}1/2

To build the matrix [G] for each realization of matrix [K], one needs to follow the steps de-
scribed below.

(1) Decomposing (Cholesky decomposition) [G]: [G] = [L]T [L];
(2) [L] is an upper triangular random matrix with values in M+(R) such that:

• The random variables {[L]jj′ , j ≤ j′} are independents.
• For j < j′ the real-valued random variable [L]jj′ = σVjj′ , in which σ = δ(n + 1)−1/2

and Vjj′ is a real-valued gaussian random variable with zero mean and unit variance.
• For j = j′ the real-valued random variable [L]jj′ = σ

√
2Vj . In which Vj is a real-

valued Gamma random variable with probability density function:

PVj
(v) = 1R+(v)

1

Γ
(

n+1
2δ2 + 1−j

2

)v
n+1

2δ2
− 1+j

2 exp(−v) (25)

The random matrix [K] becomes:

[K] = [LK ]T

 2σ2V1 σ2
√

2V1V12

σ2
√

2V1V12 σ2V 2
12 + 2σ2V2

 [LK ] (26)

Now the realizations for each simulation can be performed with the aid of Matlab statistics
toolbox.

3.3 Approximation of the stochastic system

To construct an approximation of the corresponding stochastic system, the matrix [K] in
Eq. 2 is substituted by the random matrix [K]. Then, the function u is not deterministic anymore;
it is a random process, denoted by U. Eq. 2 should be rewritten as

[M ]Ü + [C]U̇ + [K]U = f(t) . (27)

It should be noted that the matrix [K] is constructed in a different way, depending on the
probabilistic approach used, if SRV or MRV.

Let Û = (Û1(ω), Û2(ω))T and f̂(ω) = (f̂1(ω), f̂2(ω))T be the Fourier transforms of U and f,
respectively. Then, Eq. 27 can be written, in the frequency domain, as:

(−ω2[M ] + iω[C] + [K])Û(ω) = f̂(ω) . (28)

So, the response for the stochastic system, in the frequency domain (Û(ω)) is given by

Û(ω) = (−ω2[M ] + iω[C] + [K])−1̂f(ω) . (29)
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Defining B as the frequency band, that in this work will be taken as [0, 7] Hz, in this work,
f̂(ω) = (1B(ω), 0), where 1B(ω) = 1, if ω ∈ B and 1B(ω) = 0, if ω /∈ B.

Let [U(θ, ω)] be the response of the stochastic system calculated for a realization θ. The
mean-square convergence analysis with respect to independent realizations of random variable
Û, denoted by Ûj(θ, ω), is carried out studying the function ns 7→ conv(ns) defined by

conv(ns) =
1

ns

ns∑
j=1

∫
B

||Ûj(θ, ω)− Û(ω)||2dω (30)

where Û(ω) is the response calculated for the corresponding mean model.
For a realization θ, the FRF H(θ, ω), according to Eq. 5, is given by

H(θ, ω) =
û2(θ, ω)

f̂1(ω)
= û2(θ, ω) . (31)

3.4 Convergence of the stochastic approximation

As the objective is to compare the two approaches, it is important to know the number of
simulations ns (Eq. 30) that assures the convergence of the approximations. This convergence
analysis is performed for different values of the dispersion parameter (that will be discussed
later) and it is verified that for ns = 600 the approximation always converges.

Figure 3 shows an example for the function conv, considering the SRV approach, for δK1 =
δK2 = 0.3. The figure shows that for ns = 600 one gets a good enough convergence.

Figure 3: Convergence of the mean square error.

Confidence regions will be constructed, for a probability level Pc = 0.95, using the quantiles
(Serfling, 1980).

4 NUMERICAL SIMULATIONS

The objective is to compare the two different approaches, but using the same values of the
coefficient of dispersion.

Then, δK1 = δK2 = δ[K] = δ and δ assumes different values.
Figure 4 shows the confidence region for the FRFs calculated as discussed, for δ = 0.05, 0.1,

0.2, and 0.3.
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(a) (b)

(c) (d)

Figure 4: Results for the FRF of the mean model with 95% confidence limits for both approaches (SRV MRV). (a)
δK1 = δK2 = δ[K] = 0.05, (b) δK1 = δK2 = δ[K] = 0.1, (c) δK1 = δK2 = δ[K] = 0.2, (d) δK1 = δK2 = δ[K] =
0.3.

For a low dispersion parameter, δ = 0.05, Figure 4(a), the results are very similar for the
two approaches (SRV and MRV). As the dispersion parameter increases: , δ = 0.1, 0.2, and
0.3, Figure 4(b),(c), and (d), the difference between the results of the two models increases as
well. The response using MRV has a wider range of possible outcomes comparing with the
SRV approach.

For δ = 0.1 the difference is still small. For δ = 0.2 the difference can be noticed, specially
for the low values. For δ = 0.3 the difference is evident.

The values of the coefficients of dispersion are the greatest possible. That is, δK1 = δK2 =
1√
3

= 0.58 and δ[K] =
√

n+1
n+5

=
√

3
7

= 0.65, because n = 2 is the dimension of the random
matriz [K].
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Figure 5: Results for the FRF of the mean model with 95% confidence limits for both approaches (SRV and MRV).
δK1 = δK2 = 0.58, δ[K] = 0.65.

5 UNDERSTANDING THE DIFFERENCE BETWEEN THE TWO APPROACHES

To understand why the MRV approach leads to a wider spectrum, let us decouple the system
by means of the modal coordinates, q = [Φ]u, where matrix [Φ] is composed by the normalized
normal modes.

[Φ]T [M ][Φ]q̈ + [Φ]T [C][Φ]q̇ + [Φ]T [K][Φ]q = [Φ]T f(t) (32)

[Φ]T [M ][Φ] =

[
1 0
0 1

]
; [Φ]T [C][Φ] =

[
2ξ1ω1 0

0 2ξ2ω2

]
; [Φ]T [K][Φ] =

[
ω2

1 0
0 ω2

2

]
(33)

Where ω1 and ω2 are the natural frequencies, and ξ1 and ξ2 (ξ = c/(2mω) are the damping
rates. This will help to understand how good the two strategies are to model uncertainties on a
dynamical system.

We can divide the study of uncertainties in two parts: (1) data uncertainties, in which the
values of the parameters used in the model are uncertain; and (2) model uncertainties, in which
the uncertainties of the mathematical-mechanical model used for representing the real system
are analyzed.

Making [Mr] = [Φ]T [M ][Φ], [Cr] = [Φ]T [C][Φ] and [Kr] = [Φ]T [K][Φ], equation (32) might
be rewritten:

[Mr]q̈ + [Cr]q̇ + [Kr]q = [Φ]T f(t) (34)

This is the same system analyzed in the previous section, but now in modal coordinates that
decouples it. Any uncertainty in k1 or k2 will affect [Kr]. Matrix [Cr] will not be changed
because 2ξω = c/m. When the probabilistic approaches are taken into account, the matrix [Kr]
should be substituted by [Kr].

For the mean model, one can write

[Kr] =

[
ω2

1 0
0 ω2

2

]
(35)

where ω1 and ω2 are the natural frequencies of the system.
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For the probabilistic approaches, the random variables Ω1 and Ω2 represent the natural fre-
quencies of the system. Then, the two cases in the following should be considered.

(1) In the SRV approach, the random matrix [Kr] can be written as:

[Kr] =

[
Ω2

1 0
0 Ω2

2

]
(36)

The system remains decoupled, so the uncertainties stay within the parameters. This type of
modeling is helpful for data uncertainties because the things that vary are only the parameters
of the system.

(2) In the MRV strategy, the random matrix becomes:

[Kr] =

[
Ω2

1 Φ12

Φ12 Ω2
2

]
(37)

The random variable Φ12 appears due to how [Kr] is built. Although the mean model is
decoupled, the realizations may be coupled, because a new random variable appear in the sec-
ondary diagonal. So, by using MRV approach, it is possible to analyze uncertainties within the
model, and not only data (parameters) uncertainties.

5.1 Event space

Visualizing the event space might be helpful to see the difference between the two ap-
proaches. Let Kr be a positive-definite matrix:

[Kr] =

[
a b
b c

]
(38)

Is is known that a > 0 and ac − b2 > 0, and, consequently c > 0 and b = ±
√

ac. For SRV
approach b = 0, then the event space is bi-dimensional:

Figure 6: Event space for SRV approach

In MRV approach the event space is three-dimensional because b can assume values from
−
√

ac to +
√

ac. Figure 7 shows the projection in the a× c plane of the resulting geometry:
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Figure 7: Event space for MRV approach. Projection on a× c plane for different b’s

Note that, for b = 0, the event space of both approaches are the same, SSRV,n|b=0 =
SMRV,n|b=0, but, in general, SSRV,n ⊂ SMRV,n since it has one extra dimension.

Taking a look in another perspective, one notes that the randomness of Kr in the SRV ap-
proach stays inside the matrix set MD

n (R) (positive diagonal matrices), while the randomness
of Kr in the MRV approach stays inside the matrix set M+

n (R) (symmetric positive-definite
matrices), see Figure 8.

SSRVr,n

SMRV,n
+

M (R)n=

D
M (R)n=

Figure 8: Space of matrices. SMRV contains SSRV

Another interesting point is that, for the same δ it is not guaranteed that the MRV approach
will cover all the possible outcomes of the SRV approach. If δK1 = δK2 = δ[K], the outcome
considering 95% confidence limits, SMRV,n|95% does not contain SSRV,n|95%, see Figure 9.
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SSRV,n

SMRV,n
+

M (R)n

 d =d =d1 2K K [K]For 95% confidence limits , 

Figure 9: Space of matrices. If δK1 = δK2 = δ[K], SMRV|95% will not contain SSRV|95%

For example, using δ = 0.2 and 95% confidence limits, matrix [K] presents the following
variation, depending on the method used:

[KSRV] =

[
(964 to 1362) (−180 to − 122)

(−180 to − 122) (122 to 180)

]

[KMRV] =

[
(974 to 1342) (−204 to − 101)

(−204 to − 101) (126 to 173)

]
The limits of the entrance of matrix [K] are different for each approach. Note that the limits

for the diagonal entrances are greater for SRV approach, while, the limits for the entrances
outside the diagonal are greater for the MRV approach. It is clear, in this case, that SMRV|95%

does not englobe SSRV|95%. This means that the parameter δ can not be directly compared
between the approaches.

To see more clearly this fact, lets take a look in the probability density functions of the first
entrance of matrix [K].

[KSRV] =

[
K1 + K2 ..

.. ..

]
, where, K1 ∼ Gamma(δ−2

K1
, k1δ

2
K1

) and K2 ∼ Gamma(δ−2
K2

, k2δ
2
K2

)

[KMRV] =

[
(2k1 + 2k2)σ

2V1 ..
.. ..

]
, where, V1 ∼ Gamma(3/(2δ2

[K]), 1)

For MRV approach it is possible to calculate an analytical expression for the distribution,
since [K11]MRV = CV1, where C is a constant, C = (2k1 + 2k2)σ

2. For SRV approach there is
no close form because [K11]SRV = K1 + K2. Note: if K1 and K2, which are Gamma random
variables, had the same scale parameter, then K1+K2 would also be a Gamma random variable,
but this is not the case.

Figure 10 shows the density functions of [K11]. 4000 monte carlo simulation were performed.
The green curve is very similar to the red curve as it should be, because the green curve is
the analytical expression and the red curve is the result of monte carlo simulation for MRV
approach. The blue curve is the result of monte carlo simulation for SRV approach. The dotted
lines in the graphic shows the 95% confidence limits. Therefore, for the first entrance of [K],
when a confidence region is established and the δ is the same, one sees a greater possibility of
outcomes for SRV approach.
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Figure 10: Density functions of the first entrance of matriz [K]

5.2 Mean square error

The aim here is to compare the mean-square error between the random matrix [K], calculated
using both approaches, SRV and MRV, and the matrix [K] used in the mean model.

Let [K] be the stiffness matrix used in Eq. 2. Let [KSRV] be the random stiffness matrix used
in Eq. 27, calculated using the SRV approach and let [KMRV] be the random stiffness matrix
used in Eq. 27, calculated using the MRV approach.

The mean-square error between the random matrices [KSRV] and [K] is given by:

eSRV = E{‖ [KSRV]− [K] ‖2
F} =

∫
M+

2 (R)

‖ [KSRV]− [K] ‖2
F P[KSRV](d̃[K]) < +∞ . (39)

and the mean-square error between the random matrices [KMRV] and [K] is given by:

eMRV = E{‖ [KMRV]− [K] ‖2
F} =

∫
M+

2 (R)

‖ [KMRV]− [K] ‖2
F P[KMRV](d̃[K]) < +∞ . (40)

One wonders if:

E{‖ [KMRV]− [K] ‖2
F} < E{‖ [KSRV]− [K] ‖2

F} (41)

The values of eSRV and eMRV for different values of the dispersion coefficients for 1000 sim-
ulations are presented in the following table.

δ eSRV eMRV

0.1 1.0695e4 1.0024e4
0.2 4.3410e4 4.0113e4
0.3 1.0525e5 8.6692e4
0.4 1.8416e5 1.6487e5
Max 3.3605e5 4.4289e5

Table 1: Mean square error
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The error increases with δ as expected. But it is not guaranteed that eMRV < eSRV. For sure
there is a distribution for [K] that minimizes the error, but the one calculated by means of the
Principle of Maximum Entropy may not be the one.

6 CONCLUDING REMARKS

This article presented and compared two approaches to model uncertainties in structural
dynamics: the Scalar Random Variable-SRV approach, in which the uncertainties are inserted
into the parameters and the Matrix Random Variable-MRV approach, in which the uncertainties
are inserted into the matrices of the dynamical system. Both strategies use the Maximum En-
tropy Principle to construct the probability density functions of the random variables associated
to the uncertainties. Some points need to be remarked:

1. SRV and MRV approaches are different strategies to model uncertainties in a dynamical
system;

2. SRV approach is good to model data uncertainties, while MRV approach is capable of
taking into account model uncertainties;

3. MRV approach is able to take into account model uncertainties because some realizations
of the random matrix couple the system modes (in SRV approach it does not happen);

4. The event space resulting from SRV approach is smaller than the event space resulting
from MRV approach, what means that in MRV approach more cases might be considered;

5. It can be noted that the choice of the levels of dispersion for comparing the two approaches
is not immediate. When the same values for the coefficients of dispersion are considered
for both approaches, one can note that it is not clear that the MRV approach englobes the
SRV approach.
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