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Abstract. In the last years, applying wavelets analysis has called the attention in a wide variety of prac-
tical problems, in particular for the numerical solutions of partial differential equations using different
methods, as finite differences, semi-discrete techniques or finite element method.

Due to function wavelets have the properties of generating a direct sum ofL2(R) and that their
correspondent scaling function generates a multiresolution analysis, the wavelet bases in multiple scales
combined with the finite element method provide a suitable strategy for mesh refinement.

In particular, in some mathematical models in mechanics of continuous media, the solutions may
have discontinuities, singularities or high gradients, and it is necessary to approximate with interpolatory
functions having good properties or capacities to efficiently localize those non-regular zones.

In some cases it is useful and convenient to use the Daubechies wavelets, due to their excellent
properties of orthogonality and minimum compact support and for having vanishing moments, providing
guaranty of convergence and accuracy of the approximation in a wide variety of situations.

The present work shows the feasibility of a hybrid scheme using Daubechies wavelet functions and
finite element method to obtain competitive numerical solutions of some classical tests in structural
mechanics.
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1 INTRODUCTION

Let us first recall that Finite Element Method (FEM) is the classical and standard numerical
technique to solve many engineering and physical problems in mechanics of continuous me-
dia, computing structures in civil or mechanic engineering, etc. Commonly, the method uses
polynomial interpolation or any approximation functions in some steps of the calculations.

In many numerical simulation of mathematical models in physics the appearance of small
scale structures that exist in only small parts of the domain is common. Wavelets provide a
natural mechanism for decomposing the solution into a set of coefficients which depend on
scale and location.

In this work, wavelet-based FEM in structural mechanics is proposed by using Daubechies
wavelets, following the ideas presented in (Ma et al., 2003), (Chen et al., 2004). The wavelet-
finite element scheme is constructed in a similar way to the conventional displacement-based
FEM: the wavelet functions are used as the displacement interpolation functions and the shape
functions are expressed by wavelets. Then, for the Euler Bernoulli beam model, wavelet-finite
element formulations are derived.

The accuracy of this approach is investigated in some numerical test cases. The proposed
wavelet finite element method shows high accuracy and good convergence properties to solve
problems in structural mechanics.

2 WAVELET ANALYSIS: BASIC CONCEPTS

Wavelets are functions generated from one single function called the mother wavelet by the
simple operations of dilation and translation. A mother wavelet gives rise to a decomposition
of the Hilbert spaceL2(R), into a direct sum of closed subspacesWj, j ∈ Z.

Letψj,k(x) = 2j/2ψ(2jx− k) and

Wj = closL2(R)[ψj,k : k ∈ Z] (1)

Then everyf ∈ L2(R) has a unique decomposition

f(x) = · · ·+ g−1(x) + g0(x) + g1(x) + · · · (2)

wheregj ∈ Wj for all j ∈ Z, it is

L2(R) =
•∑

j∈Z

Wj = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · (3)

Using this decomposition ofL2(R), a nested sequence of closed subspacesVj, j ∈ Z, of L2(R)
can be obtained, defined by

Vj = · · · ⊕Wj−2 ⊕Wj−1 . (4)

These closed subspaces{Vj, j ∈ Z} of L2(R), form a “multiresolution analysis” (Chui, 1992)
with the following properties:

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · ·

2. closL2(
⋃
Vj ) = L2(R)

3.
⋂
Vj = {0}
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4. Vj+1 = Vj ⊕Wj

5. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 , j ∈ Z

Let φ ∈ V0 the so-called “scaling function” that generates the multiresolution analysis
{Vj}j∈Z of L2(R). Then

{φ(· − k) : k ∈ Z} (5)

is a basis ofV0, and by setting

φj,k(x) := 2j/2φ(2jx− k) (6)

it follows that, for eachj ∈ Z, the family

{φj,k : k ∈ Z} (7)

is also a basis ofVj.
Then, sinceφ ∈ V0 is in V1 and since{φ1,k : k ∈ Z} is a basis ofV1, there exists a unique

sequence{pk} that describes the following “two-scale relation”:

φ(x) =

∞∑

k=−∞

pk φ(2x− k) (8)

of the scaling functionφ.

2.1 Daubechies’s wavelets

Different choices forφ may yield different multiresolution analyses, and the most useful
scaling functions are those that have compact support. As an example of multiresolution analy-
sis, a family of orthogonal Daubechies wavelets with compact support has been constructed by
Daubechies (Daubechies, 1992).

A wavelet basis is orthonormal if any two translated or dilated wavelets satisfy the condition
∫ ∞

−∞
ψn,k(x)ψm,l(x)dx = δn,mδk,l (9)

whereδ is the Kronecker Delta function.
Each wavelet family is governed by a set ofN (an even integer) coefficientspk : k =

0, 1, . . . , N − 1 through the two-scale relation

φN(x) =
N−1∑

k=0

pkφN(2x− k) (10)

Based on the scaling functionφN(x), the mother wavelet can be written as,

ψN(x) =

1∑

k=2−N

qkφN(2x− k) (11)

Since the wavelets are orthonormal to the scaling basis the coefficients of the scaling function
and the mother wavelet for the two-scale equation are related by:

qk = (−1)kp1−k (12)

656



In her work, Daubechies (Daubechies, 1988) found and exploited the link between vanishing
moments of the waveletψ and regularity of wavelet and scaling functions,ψ andφ. The wavelet
functionψ hasK vanishing moments if

∫
xkψ(x)dx = 0 for 0 ≤ k ≤ K (13)

and a necessary and sufficient condition for this to hold is that integer translates of the scaling
functionφ exactly interpolate polynomials of degree up toK. That is, for eachk, 0 ≤ k ≤ K
there exists constantscl such that

xk =
∑

l

ckl φl(x) (14)

Daubechies introduced scaling functions satisfying this property and distinguished by having
the shortest possible support. The scaling functionφN (whereN is an even integer) has support
[0, N − 1], while the corresponding waveletψN has support in the interval[1 −N/2, N/2] and
has (N/2 − 1) vanishing wavelet moments (Daubechies, 1988). Thus, according to equation
(14) Daubechies scaling functions of orderN can exactly represent any polynomial of order up
to, but not greater thanN/2 − 1.

The coefficientspk in equation (10) are called scaling function filter coefficients and satisfy
the following conditions based on the orthonormality and moment conditions.

N−1∑

k=0

pk = 2

N−1∑

k=0

pk pk+2m = 2δ0m for m = 0, 1, . . . , N/2 − 1

N−1∑

k=0

(−1)kkmpk = 0 for m = 0, 1, . . . , N/2 − 1

(15)

2.2 Computation of derivatives

In constructing aC1 element, the derivatives of Daubechies scaling function have to be cal-
culated. Because there is no explicit expression for the Daubechies scaling function, the deriva-
tives can be obtained only on some special points. To evaluate the function or its derivatives,
φ

(m)
N (x) = dmφN(x)/dxm, the two-scale relation is differentiatedm times:

φ
(m)
N (x) = 2m

N−1∑

k=0

pkφ
(m)
N (2x− k) (16)

Since supp.φN(x) ⊆ [0, N − 1], it is certain that

supp. φ
(m)
N (x) ⊆ [0, N − 1] (17)

At all integer values of the interval[0, N − 1], Eq. (16) gives the followingN linear equations:

φ
(m)
N (0) = 2mp0φ

(m)
N (0)

φ
(m)
N (1) = 2m[p0φ

(m)(2) + p1φ
(m)
N (1) + p2φ

(m)
N (0)]

. . . . . .

φ
(m)
N (N − 2) = 2m[pN−3φ

(m)
N (N − 1) + pN−2φ

(m)
N (N − 2) + pN−1φ

(m)
N (N − 3)]

φ
(m)
N (N − 1) = 2mpN−1φ

(m)
N (N − 1)

(18)
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The coefficients-matrix of the homogeneous system (18) is singular. Thus, a normalizing con-
dition is required in order to determine a unique solution. The following important additional
property of Daubechies scaling functionφN can be used, (Beylkin, 1992):

∑

k

kmφN(x− k) = xm +
m∑

k=1

(−1)k m!

(m− k)!k!
xm−k

∫ ∞

−∞
φN(z)zkdz (19)

wherem is a positive integer number. Differentiatingm times the above equation yields:

∑

k

kmφ
(m)
N (x− k) = m! (20)

Adding this normalizing condition to (18), this system of inhomogeneous equations can be
solved and derivatives can be evaluated at integer values ofx and used to get the values at the
dyadic points. Using the two scaling relation once again the values ofφ

(m)
N (x) at x = i

2n for
i = 1, 3, 5, . . . , 2n(N − 1) − 1 can be determined. Therefore, the functions are first evaluated
at the integer points{0, 1, . . . , N − 1} and then subsequently at half integers and so on by
increasing the value ofn from 0 to the desired resolution.

Figure 1:Daubechies scaling functions (N=12). Left:φ(x). Right: φ′(x).

2.3 Computation of Connection Coefficients

When the wavelet-finite element method is applied to solve one dimensional differential
equations, different types of connection coefficients are required (Latto et al., 1995), such as the
following:

Γd1d2
i,j =

∫ 1

0

φ(d1)(ξ − i) φ(d2)(ξ − j) dξ (21)

wherei, j ∈ Z, φ(x) denotes the basis function and the superscriptsd1 andd2 refer to differ-
entiation. These typical coefficients give rise to the local stiffness matrices of the method. The
details are discussed in the following sections.

The typical problem that arises when using Daubechies wavelets is how to calculate these
connection coefficients whenφ(x) is a Daubechies-wavelet scaling function. The highly oscilla-
tory nature of the Daubechies basis functions makes standard numerical quadrature impractical
for computing connection coefficients (see Fig.1). The numerical calculations are in general
unstable and it is necessary to provide an alternative method.Latto et al. developed an exact

658



method for evaluating connection coefficients on a un-bounded domain of integration, like the
following:

Γ̂d1d2
i,j =

∫ ∞

−∞
φ(d1)(ξ − i) φ(d2)(ξ − j) dξ (22)

However, on a bounded domain for the evaluation of connection coefficients,Γd1d2
i,j , some ad-

dittional considerations are required (Beylkin, 1992).
To calculate the integral in the equation (21), Beylkin proposed to do the following: to

substitute the two-scaling relation, given by equation (10), into equation (21), which yields

Γd1d2
i,j = 2d1+d2

∑

k,l

pkpl

∫ 1

0

φ(d1)(2ξ − 2i− k) φ(d2)(2ξ − 2j − l) dξ (23)

Recourse to adequate transformations (see (Latto et al., 1995),(Beylkin, 1992)), lead to the
following expression

Γd1d2
i,j =2d−1

∑

k,l

pkpl(

∫ 1

0

φ(d1)(ξ − 2i− k) φ(d2)(ξ − 2j − l) dξ

+

∫ 1

0

φ(d1)(ξ − 2i− k) φ(d2)(ξ − 2j − l) dξ)

(24)

whered = d1 + d2. According to equation (21), equation (24) can be expressed in terms of the
original connection coefficients (see (Beylkin, 1992)) as

Γd1d2
i,j = 2d−1

∑

k,l

pkpl[Γ
d1d2
2i+k,2j+l + Γd1d2

2i+k−1,2j+l−1]

= 2d−1
∑

r,s

[pr−2ips−2j + pr−2i+1ps−2j+1]Γ
d1d2
r,s

(25)

or in matrix form
Γ = 2d−1P Γ (26)

whereΓ is now a column vector andP is a matrix composed of wavelet coefficients combina-
tions.

Equation (26) can also be written as,

(2d−1P − I)Γ = 0 (27)

whereI is the identity matrix.
In order to uniquely determine the connection coefficientsΓd1d2

i,j , properties of scaling func-
tions should be employed to generate sufficient number of inhomogeneous equations.

Just as shown in equation (14), Daubechies scaling functions of orderN can exactly repre-
sent any polynomials of orderm, with 0 ≤ m ≤ N/2 − 1.

xm =
∑

k

cmk φ(x− k) (28)

Thus, differentiating the expansion (28) d1 times, the following expression is obtained

m(m− 1) . . . (m− (d1 − 1)) xm−d1 =
∑

k

cmk φ
(d1)(x− k) (29)
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In addition, equation (29) is used withn, 0 ≤ n ≤ N/2 − 1), andd2 instead ofm andd1,
respectively. Then, multiplying both equations and integrating the product, results

∫ 1

0

m . . . (m− d1 + 1)n . . . (n− d2 + 1)ξm+n−ddξ =
∑

k,l

cmk c
n
l

∫ 1

0

φ
(d1)
k φ

(d2)
l dξ (30)

whered = d1 + d2. Or equivalently,

mn . . . (m− (d1 − 1))(n− (d2 − 1))

m+ n− d+ 1
=

∑

k,l

cmk c
n
l Γd1d2

k,l (31)

Sufficient number of inhomogeneous equations can be obtained by using different values ofm
andn. Adding them to equation (27) connection coefficients can finally be determined uniquely.

3 EULER-BERNOULLI BEAM EQUATIONS

The static governing equations of the Euler Bernoulli beam model can be written as follows
(Bathe, 1982):

Q′(x) = −q(x) (32)

M ′(x) = Q(x) (33)

X(x) =
M(x)

E(x)I(x)
(34)

X(x) = θ′(x) (35)

θ(x) = −u′(x) (36)

whereq(x) is the external load,Q(x) andM(x) are the shear force and the bending moment
respectively,u(x), θ(x) andX(x) are the deflection, slope and curvature functions, respectively,
and the prime denotes differentiation with respect to the spatial coordinatex.

The set of differential equations (32), (33), (35) and (36) represent the equilibrium and com-
patibility equations, respectively, while the algebraic equation (34) is the constitutive equation
relating curvature and bending moment through the spatial variable flexural stiffnessE(x)I(x)
defined by means of the Young modulusE(x) and the inertia momentI(x).

Combining the compatibility and constitutive equations, given by equations (34) and (36)
yields to the following second order differential equation relating the bending moment with the
second derivative of deflection.

E(x)I(x)u′′(x) = −M(x) (37)

Having into account also the equilibrium equations (32), (35) and (33), it is obtained the Euler-
Bernoulli differential governing equation, in terms of deflection only, as follows

[E(x)I(x)u′′(x)]
′′

= q(x) (38)

This is a linear fourth order differential equation of with variable coefficients, defined on a
domain as the interval0 < x < L, whereL is the length of the beam.
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When this equation is integrated, there appear four arbitrary constants, so that four additional
conditions must be imposed to determine the solution uniquely. These additional conditions
come from the boundary conditions of the problem.

Integration of equation (37) is usually performed for statically determinate beams in view of
the knowledge of the bending momentM(x) through the equilibrium equations, otherwise the
more general fourth order differential equation (38) has to be used.

Research fields such as fracture mechanics might require the study of beams presenting vary-
ing loads and singularities along the beam span. Moreover, cases showing abrupt changes of the
cross section might result in the appearance of discontinuity in the kinematics solution function
such as curvature and slope functions.

In this paper, the problem of integration of Eq.(38) is analyzed in two different cases: the
first example is a beam with linearly varying load and the second one a beam with singular
flexural stiffness.

3.1 Non-uniform loaded beam

A beam of length2L with equal cross section and constant bending rigidityE0I0 is non-
uniform loaded. Only on the right half segment a linear load is applied, which has the ex-
pression,q(x) = Kq0(

x
L
− 1) L < x < 2L.

An exact solution can be obtained by integrating the differential equation and closed form
solutions in terms of deflection, can be written as

w =
q0
E0I0

[c2 + c1x +
1

2
(c4 +

KL2

6
)x2 +

1

6
(c3 −

KL

2
)x3] 0 ≤ x ≤ L (39)

w =
q0
E0I0

[
Kx5

120L
− Kx4

24
+ c3

x3

6
+ c4

x2

2
+
KL3

24
x− KL4

120
] L ≤ x ≤ 2L (40)

where, the integration constantsci are obtained by means of enforcement of boundary condi-
tions.

3.2 Flexural stiffness discontinuity

In the second case flexural stiffness singularity is modeled by the unit step function, as it was
analyzed in (Biondi and Caddemi, 2005). So it can be expressed as,

E(x)I(x) = E0I0[1 − γU(x− x0)] (41)

where0 ≤ x0 ≤ 2L, U(x − x0) is the well known unit step or Heaviside function andγ is a
parameter that represents the discontinuity intensity. In order to satisfy the physical constraint
of non-negativity for the flexural stiffness the condition0 ≤ γ ≤ 1 is required.

The governing equation (38) assumes the following form

[E0I0[1 − γU(x− x0)]u
′′(x)]

′′
= q(x) (42)

Equation (42) models a beam model with abrupt variation of the cross section or of the Young
modulus, resulting in a discontinuous flexural stiffness at the abscissax0 (a jump) and constant
elsewhere.

As it was mentioned before, closed form solutions can be obtained integrating the differential
equation and are presented in (Biondi and Caddemi, 2005).
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4 WAVELET FINITE ELEMENT EQUATION FOR A BEAM

The generalized function of potential energy for Bernoulli beam is (Bathe, 1982)

π =
1

2

∫ L

0

{[E(x)I(x)w′′(x)]2 − 2w(x)q(x)}dx (43)

and it is assumed that the displacementw can be approximated by Daubechies scaling functions
of orderN as,

w =
0∑

k=−(N−2)

αkφ(ξ − k) (44)

whereαk are the coefficients of approximation to be determined.
The minimization of equation (43), (which in this case is equivalent to askδπ = 0), as in

standard finite element methods, provides a linear systemKα = R which has to be solved. To
obtain the stiffness matrixK and load vectorR connection coefficients the equation (21) has to
be used, and in case thatE(x)I(x) is constant, take the form,

k̃
(e)
ij =

∫ L

0

φ′′(ξ − i)φ′′(ξ − j)dξ (45)

R
(e)
i =

∫ L

0

φ′′(ξ − i)q(ξ)dξ (46)

It is important to point out that when a large number of wavelet based elements are used in
structure analysis, for ensure calculation efficiency, connection coefficients can be calculated
and stored first. Then these connection coefficients can be used directly in the calculation of
each element stiffness matrix.

This stiffness matrix is in wavelet space, and the corresponding degrees of freedom are
wavelet coefficientsαk. In order to satisfy boundary conditions and compatibility at the inter-
faces between neighboring elements, the stiffness matrix should be transformed from wavelet
space into physical space, and the elemental degrees of freedom should be transformed from
wavelet space into physical space. This transformation can be expressed as,

ŵ = Tα

whereŵ is the vector of elemental displacement and rotations, andT is the transformation ma-
trix, calculated evaluating scaling function and its derivatives. The algorithm has been described
in section (2.2).

The elemental stiffness matrix in physical space can be calculated from the one in wavelet

space,̃ k
(e)

with

k
(e)

= (T−1)tk̃(e)T−1 (47)

As customary in the finite element method, all the “element-stiffness” matrices are assembled
to obtain a linear system of equations and, after imposing boundary conditions, displacements
in all nodes are obtained. Sometimes stresses are also required, and then the procedure is the
same as in an standard FEM.
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4.1 Daubechies wavelet plane beam element D12

In the finite wavelet element for Euler beam equation (38) proposed in this paper, the dis-
placementw in equation (44), is approximated by Daubechies scaling functions of orderN =
12. Accounting that D12 has11 degrees of freedom,9 nodal displacements and only two nodal
rotations at the ends are considered. The degrees of freedom for each element are

wT = [w1, θ1, w2, w3, w4, . . . , w8, w9, θ9] (48)

Figure 2:Clamped-clamped beam with linear varying load

Figure 3:Left: deflection Right: slope

Figure 4:Left: curvature Right: shear
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5 APPLICATIONS

5.1 Non-uniform loaded beam

Application of the closed form solution presented in section3.1is considered for a clamped-
clamped beam andK = 480 (see Fig.2). Integration constants are then uniquely determined
from boundary conditions. Deflection, slope, curvature and shear functions are plotted in Fig.3
and Fig.4. These functions are compared in each case with the ones obtained considering a uni-
form beam with constant loadq = K

4L
. A very different behaviour, produced as a consequence

of the linear varying load, in particular in shear function (see Fig.4), can be observed.

Figure 5:Numerical results: Non-uniform loaded beam

5.1.1 Numerical solutions

Using Daubechies (N = 12) the left and right segments are divided into one wavelet-based
beam element, respectively, to analyze the problem. The deflection curve obtained in each case
is compared with the exact one in Fig.5. It can be seen that a good approximation is obtained,
with a maximum relative error of1.11.

5.2 Flexural stiffness discontinuity

A beam with a jump discontinuity as it was described in section3.2 is considered. In this
example, the beam is simply supported and shows an abrupt flexural stiffness change atx = L,
from the valueE0I0 to the value4E0I0, which corresponds to the valueγ = 3/4 described in
section3.2. As it is shown in the Fig.6, the beam is loaded withq(x) = 1. This flexural stiffness
jump results in a general decrement of the deflection function with respect to the uniform beam
(see Fig.7).

Figure 6:Simply supported beam with flexural stiffness discontinuity
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Figure 7:Left: Deflection Right: Slope

Figure 8:Curvature

The closed form solutions in terms of deflection, slope and curvature functions are plotted
in Fig. 7 and8, and compared with the solution of the uniform beam with constant flexural
stiffnessE0I0.

Notice that the solution functions, in view of the singularity of the flexural stiffness, show
continuous deflection and slope functions, but a curvature function showing a discontinuity at
x = L.

5.2.1 Numerical solutions

As in the previous example, the left and right segments are divided into one wavelet beam
element to analyze the problem.

Numerical results are plotted with the exact solution in Fig.9 and good accuracy can be
observed. Calculating the error displacement at nodal points, the maximum relative error was
0.38.

6 CONCLUSIONS

The numerical tests reported in this work demonstrated the feasibility and capability of using
wavelet bases in the FEM. In particular, numerical examples illustrate that the wavelet-based
beam element formulated in terms of Daubechies wavelet basis functions has good accuracy.

An efficient integral method to calculate stiffness and load matrices was necessary to en-
sure numerical stability. In particular, the use of the Daubechies wavelets, having the good
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Figure 9:Numerical results: Flexural stiffness discontinuity

properties of orthogonality, compact support and nesting, guaranty the higher-order polynomial
approximation.

A Matlab program was generated for the numerical experiments presented in this paper.
It can be forecasted that wavelet-based elements would play an important role to analyze

more complex problems in two or three dimensions and should be studied in the future.
The authors strongly believe that combining wavelet function and finite element techniques

to solve a wider class of partial differential equations is a field where still there is much to
research.

ACKNOWLEDGMENTS
This work was partially supported by SECYT-CITMA (Proyecto de Cooperación Bilateral

06-07. Código CU/PA05-EIII/001).

REFERENCES

Bathe K.Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey, 1982.
Beylkin G. On the representation of operators in bases of compactly supported wavelets.SIAM

J. Numer. Anal., 6:1716–1740, 1992.
Biondi B. and Caddemi S. Closed form solutions of euler-bernoulli beams with singularities.

Int.J. Solid and Structures, 42:3027–3044, 2005.
Chen X., Yang S., Ma J., and He Z. The construction of wavelet ¯finite element and its applica-

tion. Finite Elements in Analysis and Design., 40:541–554, 2004.
Chui C.K. An introduction to wavelets. Academic Press, New York, 1992.
Daubechies I. Orthonormal bases of compactly supported wavelets.Commun. Pure Appl.

Math., 41:909–996, 1988.
Daubechies I.Ten Lectures on Wavelets. MA SIAM: Philadelphia, 1992.
Latto A., Resnikoff H., and Tenenbaum E. The evaluation of connection coefficients of com-

pactly supported wavelets.Proceedings of the USA-French Workshop on Wavelets and Tur-
bulence. Princeton University, 1995.

Ma J., Xue J., Yang S., and He Z. A study of the construction and application of a daubechies
wavelet-based beam element.Finite Elements in Analysis and Design., 39:965–975, 2003.

666


