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Abstract. This paper deals with a posteriori error estimators for the linear finite element approximation
of the Steklov eigenvalue problem introduced by M. Armentano and C. Padra. We extend their results to
any dimension and we obtain an optimal error estimates under the weaker regularity conditions.
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1 INTRODUCTION

The Steklov eigenvalue problem is:{
−∆u+ u = 0 in Ω

∂u
∂n

= λu on Γ = ∂Ω
(1)

In the bidimensional case, it is well known that eigenfunctions belong toH1+r(Ω), where r = 1
if Ω is convex, and r < π

α
(with α being the largest inner angle of Ω) otherwise. It is inter-

esting to know the maximal regularity of the solution of the problem because it determines the
rate of convergence in standard finite element approximations and the theorical efficience of a
posteriori error estimators.

If d > 2 and Ω ⊂ Rd is a polyhedron, the situation is rather more complicated (Babuška and
Anderson). It is important to know what is the maximal regularity of the solution in general
without assuming any particular knowledge about the regularity of the solution except those
which yield the general theory of the Neumann problem.

An a posteriori error estimator of residual type for the linear finite element approximation
of the Steklov eigenvalue problem was introduced in (Armentano and Padra, 2006) for bounded
polygonal domains Ω ⊂ R2 .

The aim of this paper is to extend the a posteriori error estimator for domains Ω ⊂ Rd, d > 2,
and to show that r = 3/2 is the minimal order of the rate of convergence, mainly because the
solutions always belong to the Besov space B3/2

2,∞(Ω), even if they do not belong to H3/2(Ω).
This regularity result is optimal under weak assumptions on the data and can be extended to

the more general elliptic Steklov eigenvalue problem:
div(A(x)∇u(x)) + c(x)u(x) = 0 in Ω,

u(x) = 0 on Γ0,
∂u(x)
∂νA

= λu(x) on Γn,
(2)

where Γ0 ⊂ ∂Ω,Γ0 6= ∅ and Γ0 6= ∂Ω.
The a posteriori error estimator may also be extended to handle problem (2).

2 MODEL PROBLEM AND FINITE ELEMENT APPROXIMATION

Let Ω ⊂ Rd be a bounded open polyhedron. Although results extend to general dimension
d, we assume for simplicity that d = 3.

We use standard notation for Sobolev spaces, norms, and seminorms. Hence, the eigenvalues
λ and normalized eigenfunctions u of the problem above satisfy u ∈ H1(Ω) and{

a(u, v) = λ b(u, v) ∀ v ∈ H1(Ω)
||u ||L2(Γ) = 1

(3)

where a(u, v) =
∫

Ω
∇u·∇v+

∫
Ω
u v, which is continuous and coercive onH1(Ω), and b(u, v) =∫

Γ
uv. The solution of this problem is given by a sequence of pairs (λj, uj), such that λ1 ≤

λ2 ≤ ... ≤ λj ≤ ...→∞ (Auchmuty, 2004).
We consider the solution u ∈ H1(Ω) of the Neumann problem{

−∆v + v = 0 in Ω
∂v
∂n

= g on Γ = ∂Ω
(4)
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with g ∈ H−1/2(Γ).
The solution v belongs to the interpolation Besov space

B
3/2
2,∞(Ω) = [H1(Ω), H2(Ω)]1/2,∞,

if g ∈ H1/2(Γ) (Savaré, 1997, 1998). Furthermore, there is a constant C = C(Ω) such that

|| v ||2
B

3/2
2,∞(Ω)

≤ C || v ||H1(Ω){|| g ||H1/2(Γ) + || v ||H1(Ω)} (5)

for all g ∈ H1/2(Γ).

Remark 1 We recall that B3/2
2,∞(Ω) ⊂ H3/2−ε(Ω), ∀ ε > 0, but B3/2

2,∞(Ω) is not included in
H3/2(Ω).

Remark 2 For the basic fact of the theory of interpolation spaces see (Babuška and Osborn,
1991; Gergh and Löfström, 1976; Brenner and Scott, 1994).

Let {Th} be a family of conforming partitioning of Ω formed by tetrahedra. Let h stand for
the mesh-size; namely h := maxT∈Th

hT , with hT being the diameter of the tetrahedra T . For
each Th, we denote with Vh ⊂ H1(Ω) the standard finite element space of continuous piecewise
linear elements. We assume that the meshes {Th} satisfy some regularity condition in such a
way that error estimates hold independently of h. For example, we may assume the following
weak regularity assumptions:

Condition 3 For K ≥ 1 and ε > 0, the mesh Th satisfies

m(T ) ≥ ε hdT , for all T ∈ Th,

and
hT ≤ K hS, for all neighboring elements T, S ∈ Th,

where m(S) denotes the Lebesgue measure of a set S.

Then, the constant appearing in error estimates like Céa´s lemma, as well as the constants
appearing in error estimates for the interpolation operator of Clément Ih, are computable and
depend on K, ε.

Notation 4 From now on, C denotes a generic positive constant which depends only on C(Ω)
and on the regularity of the mesh.

Let u ∈ H1(Ω). A key result in finite element convergence is the estimate of

inf
v∈Vh

||u− v ||H1(Ω)

under the precise characterization of the regularity of u.

Proposition 5 There exists a constant C such that

inf
v∈Vh

||u− v ||H1(Ω) ≤ C h1/2 ||u ||
B

3/2
2,∞(Ω)

(6)

for all u ∈ B3/2
2,∞(Ω).
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Proof. Let Ph be the projection w.r.t. the energy scalar product a and Qh : H1(Ω)→ H1(Ω)
defined by Qhu := u− Phu. From standard finite element estimates, we know that

||Qh||L(H1(Ω),H1(Ω)) ≤ C,

and
||Qh||L(H2(Ω),H1(Ω)) ≤ C h .

Then, from real interpolation theory (Brenner and Scott, 1994; Gergh and Löfström, 1976), we
have an interpolation operator

[Ph]1/2,∞ : B
3/2
2,∞(Ω)→ [Vh, Vh]1/2,∞ = Vh,

and
[Qh]1/2,∞ : B

3/2
2,∞(Ω)→ [H1(Ω), H1(Ω)]1/2,∞ = H1(Ω),

such that
[Qh]1/2,∞ = I − [Ph]1/2,∞.

Moreover,

|| [Qh]1/2,∞||L(B
3/2
2,∞(Ω),H1(Ω))

≤ ||Qh||1/2L(H1(Ω),H1(Ω))||Qh||1/2L(H2(Ω),H1(Ω))

≤ C h1/2.

Remark 6 The rate of convergence of the finite element approximation is rather pessimistic.
The mesh-dependent constant C grows as an inverse power of hmin (the global minimum mesh
diameter). Since adaptive process may produce meshes with significant local variation of mesh
size, this bound may be large and useless. In fact, h-weighted estimates are preferable and
allow quite general mesh refinement procedures (Eriksson and Johnson, 1995).

We shall follows now the approach in (Armentano, 2004). The finite element approximate
solutions of the spectral problem are defined by uh ∈ Vh and,{

a(uh, vh) = λh b(uh, vh), ∀ vh ∈ Vh
||uh ||L2(Γ) = 1.

(7)

This problem reduces to a generalized eigenvalue problem involving positive (semi) definite
matrix symmetric matrices. It attains a finite number of eigenpairs (λh,j, uh,j) such that λh,1 ≤
λh,2 ≤ ... ≤ λh,N(h), where N(h) = dim(Vh).

The eigenmodes convergence can be analyzed by the compact resolvent operators. Let T :
H1(Ω)→ H1(Ω) defined by

a(Tf, v) = b(f, v), ∀ v ∈ H1(Ω), (8)

and Th := PhT . That is
a(Thf, v) = b(f, v), ∀ v ∈ Vh. (9)

The non-zero eigenvalues of T are the reciprocals of λj and the non-zero eigenvalues of Th are
the reciprocals of λh,j . Furthermore, the eigenfunctions of T and Th are uj and uh,j respec-
tively.
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A direct proof using (5) gives

||Tf ||
B

3/2
2,∞(Ω)

≤ C || f ||H1(Ω) (10)

On the other hand,
a(Tf − Thf, v) = 0, ∀ v ∈ Vh.

Therefore,
||Tf − Thf ||H1(Ω) ≤ inf

v∈Vh

||Tf − v ||H1(Ω).

Now, using (6) and (10), we get

||Tf − Thf ||H1(Ω) ≤ C h1/2 || f ||H1(Ω),

or
||T − Th ||L(H1(Ω),H1(Ω)) = ε(h) ≤ C h1/2.

Using the spectral approximation theory given in (Babuška and Osborn, 1991), we have

|λj − λh,j | ≤ C h, (11)

and
||uj − uh,j ||H1(Ω) ≤ (C λ

1/2
j )h1/2 = Cj h

1/2. (12)

Even if we shall not use the estimate of e = uj − uh,j in the L2 norm, we can estimate it by
a standard duality argument. Let w be the solution of{

−∆w + w = e in Ω,
∂w
∂n

= 0 on Γ.

Using the theory in (Savaré, 1997, 1998), we have the estimate

||w ||2
B

3/2
2,∞(Ω)

≤ C ||w ||H1(Ω){|| e ||L2(Ω) + ||w ||H1(Ω)}

≤ C || e ||2L2(Ω)

Therefore, since a(e, vh) = 0, ∀ vh ∈ Vh, we have

|| e ||2L2(Ω) = (e, e)L2(Ω)

= a(w, e)

= a(w − [Ph]1/2,∞w, e)

≤ C || e ||H1(Ω)||w − [Ph]1/2,∞w ||H1(Ω)

≤ C h1/2 || e ||H1(Ω)||w ||B3/2
2,∞(Ω)

C h1/2 || e ||H1(Ω) || e ||L2(Ω)

Hence,
|| e ||L2(Ω) ≤ C h1/2 || e ||H1(Ω).

Finally, (12) yields
|| e ||L2(Ω) ≤ Cj h .

We shall use the techniques given in (Armentano, 2004) to prove the following result.
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Proposition 7 There exists a constant Cj = Cj(C, λj), such that

||uj − uh,j ||L2(Γ) ≤ Cj h
3/4. (13)

Proof. Let e = uj − uh,j . Using (12) and the trace operator, we have

|| e ||H1/2(Γ) ≤ Cj h
1/2.

We consider the following auxiliary problem:{
−∆φ+ φ = 0 in Ω,

∂φ
∂n

= e on Γ

or, in variational form:

a(φ, v) =

∫
Γ

e v, ∀ v ∈ H1(Ω).

Then,
||φ ||H1(Ω) ≤ C || e ||L2(Γ).

Now, let φh be the finite element solution of this problem. Subtracting (9) from (4) we have
a(e, φh) = 0. Then,

|| e ||2L2(Γ) =

∫
Γ

e2 =

∫
Γ

∂φ

∂n
e = a(φ, e)

= a(φ− φh, e) ≤ ||φ− φh ||H1(Ω)|| e ||H1(Ω).

By (5) we have

||φ ||
B

3/2
2,∞(Ω)

≤ C
(
||φ ||H−1(Ω){|| e ||H1/2(Γ) + ||φ ||H−1(Ω)}

)1/2

≤ C
(
|| e ||H1/2(Γ){|| e ||H1/2(Γ) + || e ||H1/−2(Γ)}

)1/2

≤ C || e ||H1/2(Γ) ≤ Cj h
1/2.

Using (6) we have
||φ− φh ||H1(Ω) ≤ C h1/2||φ ||

B
3/2
2,∞(Ω)

≤ Cj h.

Therefore
|| e ||2L2(Γ) ≤ Cj h

3/2 (14)

and the result follows.

3 THE A POSTERIORI ERROR ESTIMATOR

Following the approach given in (Durán and Rodriguez, 1999), it was introduced in (Ar-
mentano and Padra, 2006) an a posteriori error estimator for the Steklov eigenvalue problem
restricted to the case d = 2. This approach can be followed almost word for word in the
d-dimensional case taking into account the appropriate changes due to the regularity results
below and. The triangle and edge buble functions necessary in the proof of efficiency of the
estimators are d−dimensional standard bubble functions.

First we introduce some notation:
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For each T ∈ Th we denote by FT the set of faces of T ,

F =
⋃
T∈Th

FT ,

and we decompose F = FΩ ∪ FΓ where FΓ := {F ∈ F :F ⊂ Γ} and FΩ := F \ FΓ.
For each face F ∈ FΩ we choose a unit normal vector nF and denote the two elements

sharing this face Tin and Tout. For each vh ∈ Vh, the jump of the normal derivative of vh across
F is: ]

∂vh
∂n

[
F

= ∇(vh|Tout) · nF −∇(vh|Tin) · nF .

We consider a particular eigenpair (λj, uj) and its corresponding finite element approxima-
tion (λh,j, uh,j). From now on, we drop out the subindexes j in λj, λh,j, uj, uh,j, Cj to simplify
notation. The following results provide some error equations which will be the starting point of
the error analysis.

Lemma 8 The error e = u− uh satisfies∫
Ω

∇e · ∇v +

∫
Ω

e v = −
∑
T

∫
T

uhv

+
∑
T

{ ∑
F∈FT∩FΓ

∫
F

(λhuh −
∂uh
∂n

)v +
1

2

∑
F∈FT∩FΩ

∫
F

]
∂uh
∂n

[
F

v

}

+

∫
Γ

λuv −
∫

Γ

λhuhv,

for all v ∈ H1(Ω).

Proof. For any v ∈ H1(Ω) using (3), integrating by parts and using that ∆uh = 0 we have∫
Ω

∇e · ∇v +

∫
Ω

e v = a(u, v)− a(uh, v)

=

∫
Γ

λuv −
∑
T

{∫
∂T

∂uh
∂n

v +

∫
T

uhv

}
;

and thus∫
Ω

∇e · ∇v +

∫
Ω

e v = −
∑
T

∫
T

uhv

+
∑
T

{ ∑
F∈FT∩FΓ

∫
F

(λhuh −
∂uh
∂n

)v +
1

2

∑
F∈FT∩FΩ

∫
F

]
∂uh
∂n

[
F

v

}

+

∫
Γ

λuv −
∫

Γ

λhuhv .

Lemma 9 There holds∫
Γ

(λu− λhuh) e = (λ+ λh)

(
1−

∫
Γ

uuh

)
=

(λ+ λh)

2

∫
Γ

e2. (15)
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Proof. It follows easily using that
∫

Γ
u2 =

∫
Γ
u2
h = 1.

We shall use the following well known localized error estimates for the interpolation operator
of Clément Ih : H1(Ω)→ Vh

|| v − Ihv ||L2(T ) ≤ cT hT || v ||H1(T̃ ) (16)

|| v − Ihv ||L2(F ) ≤ cT h
1/2
F || v ||H1(F̃ ) (17)

where T̃ is the union of all elements sharing a node with T , F̃ is the union of all elements
sharing a node with F , and hF is the diameter of the facet F .

Remark 10 The constant cT appearing in these interpolation error estimates is of great impor-
tance for a correct calibration of a posteriori error estimator. It is of local character, reflect
local geometric properties of the mesh, and can be effectively calculated (Verfürth, 1999). Us-
ing the regularity of the mesh, the local constants cT could be replaced by a global constant
C. A posteriori error estimators may be defined by taking care of the local constants cT or in
a simpler way by using the global constant C.

For each F ∈ F we define JF by

JF (uh) =

{
1
2

]
∂uh

∂n

[
F

F ∈ FΩ

λhuh − ∂uh

∂n
F ∈ FΓ

.

Now, the local error indicator is defined by

η̂T := cT

(
h2
T ||uh ||2L2(Ω) +

∑
F∈FT

hF || JF (uh) ||2L2(F )

)1/2

, (18)

and the global one by

η̂Ω :=

(∑
T∈Th

η̂2
T

)1/2

.

The following theorem provides the upper bound on the error.

Theorem 11 There exists a constant C such that

|| e ||H1(Ω) ≤
{
η̂Ω + C

(λ+ λh)

2
|| e ||L2(Γ)

}
Proof. From (3) and (7) we know that for any vh ∈ Vh the error satisfies

∫
Ω

∇e · ∇vh +

∫
Ω

e vh =

∫
Γ

λuvh −
∫

Γ

λhuhvh.

Using Lemma 8 we have∫
Ω

|∇e|2 + |e|2 =

∫
Ω

∇e · ∇(e− Ihe) +

∫
Ω

e(e− Ihe) +

∫
Γ

λuIhe−
∫

Γ

λhuhIhe

=
∑
T

{
−
∫
T

uh(e− Ihe) +
∑
F∈FT

∫
F

JF (uh)(e− Ihe)

}
+

∫
Γ

(λu− λhuh)e
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Then,

|| e ||2H1(Ω) ≤
∑
T

||uh ||L2(T )|| e− Ihe ||L2(T ) +
∑
T

∑
F∈FT

|| JF (uh) ||L2(F )|| e− Ihe ||L2(F )

+

∫
Γ

(λu− λhuh)e

≤
∑
T

cT hT ||uh ||L2(T )|| e||H1(T̃ ) +
∑
T

∑
F∈FT

cT h
1/2
F || JF (uh) ||L2(F )|| e ||H1(F̃ )

+

∫
Γ

(λu− λhuh)e.

Therefore, using lemma 9 we have

|| e ||2H1(Ω) ≤

{∑
T

(
c2
T h

2
T ||uh ||2L2(T ) +

∑
F∈FT

c2
T hF || JF (uh) ||2L2(F )

)}1/2

|| e||H1(Ω)

+
(λ+ λh)

2
|| e||2L2(Γ)

≤

{∑
T

c2
T

(
h2
T ||uh ||2L2(T ) +

∑
F∈FT

hF || JF (uh) ||2L2(F )

)}1/2

|| e||H1(Ω)

+C
(λ+ λh)

2
|| e||L2(Γ)|| e||H1(Ω)

by the trace theorem, and the theorem follows.
As a consequence of the previous theorem and estimate (14), the global estimator provides

an upper bound of the error in the energy norm up to a h1/2 order term.

Corollary 12 There exists a constant Cj such that

|| e ||H1(Ω) ≤ η̂Ω + Cj h
1/2.

Nevertheless, it is customary to use the global constant C in (16) and (17). In this case, the
local error indicator is defined by

ηT :=

(
h2
T ||uh ||2L2(T ) +

∑
F∈FT

hF || JF (uh) ||2L2(F )

)1/2

, (19)

and the global one by

ηΩ :=

(∑
T∈Th

η2
T

)1/2

.

Certainly, we have
AηΩ ≤ η̂Ω ≤ B ηΩ (20)

with A,B > 0.

The result above can be stated for ηΩ.
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Corollary 13 There exist constants C,Cj such that

|| e ||H1(Ω) ≤ C ηΩ + Cj h
1/2.

Remark 14 We recall that we use a subindex j in a constant which depends on the eigenpair
(uj, λj).

4 THE FACE RESIDUAL ERROR ESTIMATOR

A new error indicator can be defined without involving the volumetric part of η̂Ω (or ηΩ),
since the face residuals dominate the volumetric ones up to higher order terms (Armentano and
Padra, 2006; Carstensen and Verfürth, 1999; Durán and Rodriguez, 1999). We shall not come
into proofs of these theorems mainly because, as we have already seen, is a matter of following
almost word for word the approach in the cited works.

LetN be the set of interior nodes of the mesh Th. For x ∈ N , let ωx := ∪{T ∈ Th : x ∈ T}.
Let ϕx be the basis function with support equal to ωx, and hx the diameter of ωx. Finally, let
Tx ⊂ Th be the subset of elements containing the node x, let Fx ⊂ F be the subset of faces
containing the node x and cx := maxT∈Tx{cT}.

Lemma 15 For all x ∈ N , there holds

−
∫
ωx

uhϕx =
∑
F∈Fx.

m(F )|
d

JF (uh).

Lemma 16 For all x ∈ N , there holds∑
T∈Tx

c2
T h

2
T ||uh ||2L2(T ) ≤ C

(
c2
x

∑
F∈Fx.

hF || JF (uh)||2L2(F ) + c2
x h

4
x || ∇uh ||2L2(ωx)

)
,

where C is a constant depending only on the regularity of the mesh.

Now, a simpler indicator is defined by

η̃T := c̃T

(
1

2

∑
F∈FT .

hF || JF (uh)||2L2(F )

)1/2

,

where c̃T := maxx∈T{cx}, and the corresponding global error estimator is defined by

η̃Ω :=

(∑
T∈Th.

η̃2
T

)1/2

.

With the same considerations as above, it could also be defined the simpler local indicator

̂̃ηT :=

(
1

2

∑
F∈FT .

hF || JF (uh)||2L2(F )

)1/2

,

and a global error estimator by

̂̃ηΩ :=

(∑
T∈Th.

̂̃η2

T

)1/2

.

The following result shows that this estimator is globally reliable up to higher order terms.
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Theorem 17 There exist constants C,C depending only on the regularity of Th, such that

|| e||H1(Ω) ≤ C

(
η̃2

Ω +
(λ+ λh)

2
|| e||L2(Γ)

)
+ C || ∇uh ||L2(Ω) h

2.

5 EFFICIENCY OF THE ESTIMATORS

It is well known that a local estimator must be efficient in the sense of pointing out which
elements should be effectively refined because they support large local error (Ainsworth and
Oden, 2000). Several results can be proved in this direction. For example, for the ηΩ estimator
we have:

Theorem 18 There exists a constant C such that, for every T ∈ Th which satisfies ∂T ∩Γ = ∅,
we have

ηT ≤ C || e ||H1(T ∗),

where T ∗ is the union of all elements sharing a face with T .

Theorem 19 There exists a constant C such that, for every T ∈ Th which satisfies ∂T ∩Γ 6= ∅,
we have

ηT ≤ C

{
|| e ||H1(T ) +

∑
F∈FT∩FΓ

hF ||λu− λhuh ||L2(F )

}
.

Remark 20 Using the fact that

||λu− λhuh ||L2(Γ) ≤ λ ||u− uh ||L2(Γ) + |λ− λh| ||uh ||L2(Γ),

and previous a priori error estimates (11) and (13), we have

||λu− λhuh ||L2(Γ) ≤ C h3/4.

Therefore, the term ∑
F∈FT∩FΓ

hF ||λu− λhuh ||L2(F )

is an O(h7/4)-term.

Acknowledgement 21 The author wish to thank the reviewers for their valuable suggestions.
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