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Abstract. Particle tracing is a visualization technique that gives to the observer the simultaneous percep-
tion of direction and velocity of the flow. An efficient algorithm is presented allowing the computation of
particle trajectories for unsteady flows in moving meshes, including also the computation of skin-friction
particles, i.e. particles bound to the body skin. Visualization with the OpenDX package, as well as the
parallel implementation in SMP architectures is also described. Discussion of visualization parameters,
as particle density, and frame rate in order to avoid coherence effect is discussed.
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1 INTRODUCTION

Many visualization techniques are available for the presentation of results in CFD (Computa-
tional Fluid Dynamics). Colormaps of some scalar quantities, like magnitude of velocity vector,
vorticity, helicity or Q-criterion, are usually shown. However they do not show directly the di-
rection of the flow, at least for low Reynolds number flows. For large Reynolds number flows,
eddies are created at shear layers and transported downstream by the fluid, giving indirectly the
perception of flow direction. Among the techniques that visualize directly the direction of the
flow are the plot of vector as arrows and streamlines or streaklines. However these techniques
hardly visualize simultaneously flow direction and magnitude. One of the few techniques that
both visualize the direction and magnitude of the flow is particle-tracing (Forssell and Cohen,
1995; Kenwright and Lane, 1996; Steinman, 2000). In this technique, massless particles are
introduced in the flow in some points and their movement are tracked by solving ODE’s. One
disadvantage of the method is that it can be visualized statically, i.e. it only makes sense to use
particle-tracing in animations. A related technique is based on textures (van Wijk, 2002; Jobard
et al., 2002), it can be more efficient that the presented particle method, but is restricted to 2D,
or at most a slice of 3D flows.

In this work some advances in the utilization of the particle trace visualization technique are
presented. First, an algorithm for the efficient computation of particle trajectories, specially
in moving meshes used when moving boundaries are present, for instance for fluid-structure-
interaction or free-surface problems, is presented. Friction particles are particle trajectories that
remain attached at the surface and are driven by the viscous traction, much in the same way
that friction streamlines are related to free streamlines. Computation and visualization of them
is also discussed. Particles can be colored either with a certain scalar magnitude or either a
random color may be assigned accordingly to each particle. In the last case, this can help in
keeping visual decoherence of the particles, when very large quantities of particles are traced.

Several animations of complex flows are presented. In this examples the animations are
computed with the free software traceprt developed at CIMEC and available elsewhere. This
code generates particle trajectories for subsequent visualization with OpenDX.

2 PARTICLE TRACING ALGORITHMS

2.1 Particle tracing on fixed meshes

The algorithm is basically to inject particles at some specified instants and then follow the tra-
jectory of each particle throughout the domain until one of the following conditions are reached

• The particle exits the domain.
• It reaches some kind of invalid position, for instance it reaches a point where the velocity

is null and then no further advancing is possible.
• The particle is eliminated because of some visualization strategy, for instance it reaches

a region that is not of interest, or the number of particles exceeds a prefixed maximum
number.

If the particle was injected at time/position (x0, t
0) then we should solve the trajectory by

integrating the following ODE for x(t)

ẋ = v(x, t),

x = x0, at t = t0.
(1)
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Of course, this is somehow discretized, so that only the positions xn at time “frames” tn = n∆t
are computed. This time step is independent to that one used for the computation of the velocity
field itself. It is assumed that some kind of discrete representation for the velocity field is
available, in particular we use in general a velocity field constant per element, and interpolated
linearly in time between two frames, but more precise representations can be easily introduced.
Also the domain Ω is assumed to be tesselated

Ω =
⋃

e∈[0,nelem)

Ωe (2)

Assuming first that the velocity field is constant in time the algorithm is basically as follows.
The element e such that x0 ∈ Ωe is found. The particle is then inside that element at time
t0. Then a starting position inside the element is known and the exiting time and position are
computed. If the exiting time is greater than the target time, then the position at the target time
is interpolated, otherwise the trajectory is continued on the element that shares the face that
contains the exiting point with the current element. The algorithm is summarized as follows

1: Given (x, t)0, computes (x, t)j for j = 1, n, as approximate points on the particle trajectory.
2: Find element e such that x0 ∈ Ωe.
3: for j = 0, to n− 1 do

{ Loop over frames, advance particle from tj to tj+1 }
4: k = 0, (x, t)in = (x, t)j

5: loop
{ Advance particle from tj to tj+1 }

6: { traversing as many elements as needed }
7: From (x, t)in, element velocity ve, and element geometry Ωe compute the exiting time

and position (x, t)out

8: if tout ≤ tin + tol then
Mark particle as dead.

9: break
10: else if tout ≥ tj+1 then

11: xj+1 =
tj+1 − tin

tout − tin
(xout − xin)

12: break
13: else
14: e = element that shares with e the face containing xout

15: (x, t)in = (x, t)out

16: end if
17: end loop
18: end for

Some notes:

• In section §2.4 a method to compute the exiting time tout efficiently will be presented.
• Condition tout ≤ tin + tol may happen if, when exiting some element e (see figure 2) by

face ab, it is found that in the following element e′ the velocity field ve′ is exiting from the
same side ab. In this case, the exiting time from e′ is the same as the inlet time tout = tin,
so that. Note that this kind of velocity field is not admissible if the continuity equation is
imposed in a strong form. So, in a finite element context, where the continuity equation is
imposed in a weak form, it is expected that this kind of situation could happen, but with
a low probability. In this case the particle is said to be “lost”.
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Figure 1: Tracing particle trajectory from tj to tj+1

2.2 Computing area coordinates for an arbitrary point

Given a point x0 ∈ Ωe, where Ωe is a simplicial element, the following algorithm computes
its area (or volume in 3D) coordinates (or FEM linear interpolation functions) Nj . Inside the
element

x =

nel∑
j=1

Nj(x)xj, (3)

where xj are the node coordinates. The following restrictions must be imposed

1 =

nel∑
j=1

Nj(x). (4)

As the Nj are linear
Nj(x) = ajx + bj. (5)

Specializing at the nodal points a set of nel equations of the form

I = AC, (6)

are obtained, where

A =

 a0 1
a1 1
...

...

 , and

C =

[
x0 x1 . . .
1 1 . . .

]
.

(7)

So A can be computed as A = C−1. Once A is obtained the area coordinates for a given point
can be computed as

N(x) = A

[
x
1

]
, (8)
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Figure 2: Tracing particle trajectory from tj to tj+1. Entering element e′ finds a velocity that is exiting from the
entering face.

and their gradients (which are constant) are the first ndim columns of A, where ndim is the
number if spatial dimensions.

A =

 ∇N1 ∗
∇N2 ∗

...
...

 . (9)

2.3 Finding the initial element

When injecting a particle at a certain position x0, the first task is to find the simplicial element
e such that x0 ∈ Ωe. A first, exhaustive approach is to test for all elements, compute the area
coordinates as described in section §2.2 and check the values of them. If all the area coordinates
are in range [0, 1], then x0 ∈ Ωe. However, this algorithm is in the worst and average case
O(nelem).

In order to reduce the cost of this task, a fictitious trajectory can be started from the center
xe of any element e using the algorithm described in section §2.1, with a dummy velocity field
defined by v = x0 − xe. This fictitious trajectory should eventually reach point x0. The last el-
ement traversed while following this trajectory should be the element where x0 belongs. In this
way, the cost would be O(number of traversed elements) ∝ nelem

1/ndim , which is significantly
lower than nelem, specially in higher dimensions. However, this algorithm can fail if the domain
is non-convex, and then the fictitious trajectory is not fully contained in the domain.

Finally, this can be fixed in most cases by constructing an octree (quadtree in 2D) with
the points at the center of the elements and taking a starting point not a random element, but
the element whose center is closer to the starting point x0. In this way, the cost is reduced
to O(log nelem) for computing the closest element center with the octree algorithm and then to
follow a (probably very short, i.e. O(1)) trajectory to the starting point. This also has the benefit
of reducing the probability of not reaching the starting element for non-convex domains.

For the implementation in traceprt the package ANN (Arya et al., 1998; Arya and Mount,
2006), a library written in C++, which supports data structures and algorithms for both exact
and approximate nearest neighbor searching in arbitrarily high dimensions, has been used. In
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the nearest neighbor problem a set of data points in d-dimensional space is given. These points
are preprocessed into a data structure, so that given any query point q, the nearest or generally
k nearest points of P to q can be reported efficiently. The library implements a number of
different data structures, based on kd -trees and box-decomposition trees.

2.4 Computing the trajectory of a particle inside an element

Assuming that a starting point x0 ∈ Ωe at time t0 is available, and the velocity in the ele-
ment is ve the temporal derivatives of the area coordinates Nk along the particle trajectory are
computed as

dNk

dt
= ∇Nk · ve. (10)

As the particle must exit through a plane, some area coordinate will be null at the exit point.
Conversely, if some area coordinate is null at a point on the trajectory the particle is exiting the
element, so that the exit time tj can be computed as

tout − tin = min
k

−Nk

(dNk/dt)
. (11)

Note that, as the Nk are positive, and some derivative must be negative, only the minimum over
those j with negative derivative must be taken into account. The exit position is then computed
simply as

xout = xin + ve(t
out − tin). (12)

2.5 Parallel implementation

The algorithm can be easily implemented in parallel with threads in a SMP architecture.
The most consuming CPU time stage is the advancing of particles. One thread is started in
each processor, and a global index controlled by a semaphore points to the next particle to be
advanced. The algebra is computed with the FastMat2 matrix algebra library that is included in
the PETSC-FEM package (Storti et al., 2007; Sonzogni et al., 2000, 2002). This library has a
caching strategy that allows faster execution while allowing multi-indices and other advanced
features, however it is reentrant, so that execution in a threaded environment is safe. In an Intel
Core Duo T2050 @1.60GHz processor (two cores), the processing time for advancing 25,000
particles 50 frames was, 33.5secs (26.8 secs/Mprtcls/frame) with 1 core and 18.2secs (14.4
secs/Mprtcls/frame) with two cores. This represents and efficiency of 92%. The implementation
uses the Native POSIX Threads Library (NPTL) included in the Fedora Core 6 distribution
(Glibc 2.5.3, Gcc 4.1.1) (Butenhof, 1997; GNU Project, 2007). Implementation for distributed
memory environments with the MPI is under way.

3 SKIN-FRICTION PARTICLES

It is interesting to trace particles on a surface along the “skin-friction lines” (Monson et al.,
1993; Tobak and Peake, 1982). Skin-friction lines are the limit of streamlines as the body skin
is approached. First, a vector field tangent to the body skin must be computed, for instance
by taking the viscous traction on the surface. In this way, the skin-friction lines represent
the streamlines for small particles that lie on the surface and are dragged around the skin by
the friction of the fluid. They can be determined experimentally in wind tunnel models by
distributing a thin layer of oil on the body, and allowing the oil to be redistributed under the
viscous traction of the fluid, also known as oil-streak technique. “Skin-friction particles” are to
normal particles the same as skin-friction lines are to streamlines.

797



3.1 Surface traction field

First a per element traction field that is parallel to the body skin is determined. In general
this can be computed as the tangential component t‖ of the surface traction field t, i.e.

t = τ · n̂,

t‖ = t− (t · n̂) n̂,
(13)

where τ is the deviatoric stress tensor. This in turn, can be computed from the velocity field as

τij = µ(
∂ui

∂xj

+
∂uj

∂xi

). (14)

so that,
ti = τijnj

= µ(
∂ui

∂xj

+
∂uj

∂xi

)nj.
(15)

If the surface is a plane (for instance in the case of a simplicial element), then the last term can
be put as

µ
∂uj

∂xi

nj = µ
∂

∂xi

(ujnj) = 0, (16)

since ujnj ≡ 0 due to the non-slip condition. So that, a traction-like field computed with the
simplified expression

t̃i =
∂ui

∂xj

nj, (17)

can be used, where, in addition µ has been assumed to be constant.
Finally, if slip or wall-law condition are enforced, then they provide directly with a velocity

field on the surface. In the last case, it must be taken into account that the velocity is known at a
certain distance ywall of the surface. Normally one can use the universal law of the wall in order
to compute the traction

u

u∗
= f

(
ywallu

∗

ν

)
. (18)

As u is known, this equation can be solved for u∗ and then the wall friction is obtained from

τw = ρ(u∗)2. (19)

The direction of the traction is assumed to be parallel to velocity, i.e.

t = τw
u

u
. (20)

3.2 Tracking particles on surfaces

The algorithm for computing area coordinates must be somewhat modified. For any point x′

in the surface

x′ =

nel∑
j=1

Nj(x)xj = BN,

1 =

nel∑
j=1

Nj(x),

(21)
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where
B =

[
x1 x2 . . .

]
. (22)

Given a point x that is not on the surface, projection on the surface x∗ must be computed. This
is the point that has minimum distance to the plane, i.e.

x∗ =
∑

j

N∗
j x

j = BN∗,

{N∗, λ∗} = argmin
N,λ

{
1/2‖BN− x‖2 + λ

∑
Nj

}
.

(23)

The last term in the functional is a Lagrange multiplier term in order to enforce the restriction.
Expanding the quadratic term the following set of equations is obtained[

BTB 1
1 0

] [
N∗

λ∗

]
=

[
BTx

1

]
. (24)

It can be shown that in this way x−x∗ = x−BN is orthogonal to the vectors tangential to the
plane spanned by the vectors {xj}. Effectively, any vector in the plane w is a combination of
the form

w =
∑

j

αjxj = αTB, with
∑

j

αj = αT1 = 1. (25)

Let w1 = Bα1, w2 = Bα2 two vectors in that plane. Then from the first equation of (24)

αT
j (BTBN∗ + λ1−BTx) = 0, (26)

so that
wj(BN− x) + λ = 0, (27)

and substracting the equation for w2 from that one for w1 the following expression is obtained

(w2 −w1)(BN− x) = 0. (28)

As w2 − w1 represents any vector tangential to the plane, it means that x∗ − x = BN − x is
orthogonal to the plane.

From (24) [
N
λ

]
= H−1

[
BTx

0

]
, (29)

from where the expressions for computing the gradients of the Nj are obtained, i.e. they are the
first ndim columns of the r.h.s. in (29)

H−1

[
BTx

0

]
=

 ∇N1 ∗
∇N2 ∗

...
...

 . (30)

So, to trace particles on a surface the scheme proceeds in the same way as for the standard
tracing algorithm, but while computing the total derivative of the area coordinates (10) the
gradients of the area coordinates given by (30) should be used instead of (9). Note that as the
gradients of the area coordinates are parallel to the plane, eq. (10) includes already a projection
of ve on the surface.
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3.3 Velocity scale for skin-friction particles

Note that as described in section §3.1 the field generated has in general dimensions of trac-
tion. In order to convert it to velocity an equivalence parameter must be introduced. For instance
consider a thin layer of oil of constant thickness hoil and viscosity µoil. Then the velocity field
voil would be

voil = (h/µ)oilt = βt. (31)

Note that in the context of flow visualization the parameter β can be chosen freely. If friction
particles are visualized alone, i.e. not at the same time with normal (“fluid-volume”) particles,
then β acts simply as a scale for the surface velocity field. However, if also fluid-volume parti-
cles are visualized, then β controls the ration between fluid velocity and skin-friction velocity.
So, β should be low enough to produce a skin flow that is slower than the volume fluid, but not
so low so as to make it to look as almost at rest.

4 IMPLEMENTATION DETAILS

4.1 Coherence and frame rate limit

If too few frames of the particles are shown, then the position of the particle at the next frame
can not be correlated by the observer to the previous ones and the sense of direction and speed
are lost. This is clearly understood if it is assumed that the particles are arranged in a regular
Cartesian grid of spacing h in all spatial directions. If the distance traversed by the particle in the
frame step v∆t is small with respect to h, then the observer can easily keep the identity of each
particle (decoherence). This is more difficult as v∆t approaches h, and in the limit of v∆t = h
complete coherence is produced. If v is parallel to a spatial axis (say x), then the position of
particle (i, j, k) at time frame tn+a is the same as the position of particle (i + 1, j, k) at time tn,
so that the particles seem to be steady to the observer. If the flow direction is not aligned with
an axis, then the particles move, but is difficult to the observer to determine the direction and
speed of the flow, since many vectors v give the same particle positions. For instance a velocity
such that v = (h/∆t + ε, 0, 0), with ε small, is in fact mistaken as a slow velocity v = (ε, 0, 0).
This posses a limit on the frame rate

v∆t/h < Cocr, (32)

where Cocr = O(1) is some constant (probably depending on the ability of the observer). Note
that the right hand side of (32) is similar to a Courant number, hence its name.

Note that, for a fixed velocity and time frame, this imposes a limit on the density of particles.
If a higher density is desired, then lower time frames must be used, with the undesired effect
of giving the impression of a slower flow. A key point in the particle tracing algorithm is to
modify the basic technique in order to extend the above limit.

One first possibility is the use of randomly positioned particles. If the particles are randomly
positioned, then the random spacing of the particles is perceived as larger scale tracer that helps
the observer in tracing the individual particles. Another possibility is the use of colors, if each
particle is given a color, then if m distinct colors are used, then m1/ndim colors can be used in
any spatial direction and coherence is produced when

v∆t/h < Cocrm
1/ndim , (33)

effectively extending the coherence limit by a factor of m1/ndim . Of course, the number of colors
m to effectively use there is not the that one given by the combination of software and hardware
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used, since the combination of colors that are available currently is several magnitudes larger
than the number of colors that an observer can distinguish in the context of particle tracing.
Equation (33) is to be interpreted only as an indication of the effect of adding coloring to the
particles.

4.2 Creation and destruction of particles

Particles are injected randomly in a certain region defined by the user with a certain non
uniform probability. For instance, a common choice in exterior aerodynamics is to create par-
ticles near the skin of the body, or at a a certain region upstream of the body. The particles are
injected with a certain temporal and spatial probability so as to produce a constant (in average)
rate of particles Qinj (measured in particles/sec). In the case of open flows, after a certain time
the particles start exiting the domain. Also, some particles may be lost due to inaccuracies in
the flow representation (see §2.1). In most cases, the particle population reaches a limit, and a
balance (in average) of the form

Qinj = Qlost + Qexit, (34)

is obtained. In general, it is better to start the animation after the steady state population is
reached.

In very long domains, typically used in external aerodynamics in the wake of the body, the
time for particles to exit the domain may be high, and a lot of computational resources may be
wasted in following particles that are in regions of low interest (far behind the body). In this
case a strategy may be employed where the particles are “killed by age”, i.e. after a certain time
τkill from their injection. Another possibility is to kill them wen they enter a certain region. The
balance in this case is

Qinj = Qlost + Qexit + Qkill. (35)

In closed flows, i.e. flows with no inlet/outlet Qexit is null, so that the only possibility to reach a
balance is either by Qlost or Qkill. If no killing by age is in effect, injection can only be balanced
with Qlost, but the rate at which particles are lost may be too low, specially if the velocity field
is very well represented. As the number of lost particles is roughly proportional to the number
of particles present Qlost ∝ npart, this results in that the number of particles must be too high,
and so the time to reach the steady state. This means that in this case also killing by age, should
be necessary. If Qlost is neglected, then the age limit should be given by

Qinjτkill = npart. (36)

In order to obtain a certain desired amount of particles in the steady state npart, an infinite
combination of Qinj and τkill may be used. However a too small τkill would give very short
particle trajectories and, conversely, a very high value would give a large initialization time to
reach the steady state.

4.3 Visualization with OpenDX

The computed trajectories of the particles are visualized with the Open Data Explorer (OpenDX)
program (Thompson, 2006). The particles are visualized using the “Glyph” module. Spheres
give the better quality visualization, but are very expensive in CPU time and memory. Best
visualizations have been obtained by reducing the quality to the minimum (the “spiffy” or “di-
amond” glyphs). In this way, visualization with O(105 − 106) particles have been possible. A
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color is attached to each particle by assigning a data component to the particle positions and then
using a colormap. It has been proven useful to make the particles brighter than the body skin,
for instance by controlling the specular, diffuse, and ambient properties through the “Options”
module.

4.4 Hexahedral and wedge meshes

Figure 3: Right: admissible face splitting of a prism. Left: not admissible face splitting.

It is common in exterior aerodynamics to add thin layers of structured elements to the body
skin (Franck et al., 2004) in order to represent better the boundary layer. Even if the volume
occupied by these layers is small, the computational requirements may be similar or higher than
the rest of the mesh. Also important phenomena occurs in the vicinity of the body, and an accu-
rate representation of the flow in this region is needed. The skin layers of elements are usually
obtained as the cartesian product of the surface mesh and a one dimensional mesh in the normal
direction to the skin. This generates layers of prism elements (also called “wedges” ) if the sur-
face mesh is composed of triangles, or hexahedral elements if it is composed of quadrangles.
Since the algorithm, as presented so far, is valid for tetrahedra only, one possibility is to split
the wedges and/or hexahedrals in tetrahedra. The other possibility is to extend the algorithm to
these new kind of element geometries. However, OpenDX itself is unable to manage efficiently
sets of elements with mixed geometry, so that the first alternative is chosen.

The splitting of a prism element is defined by first splitting the quadrangular faces in two tri-
angles. Figure 3 shows a possible face splitting at right, inducing a splitting in three tetrahedra,
namely AEFB, ADCE, and BCEA. Since each quadrangular face can be split in two ways,
there are at most eight possible splittings. However, two out from these eight face splittings
are not possible, for instance the splitting shown in figure 3 at the left does not give a feasible
splitting in 3 tetrahedra. It can be shown that the two non-admissible splittings are those in
which the “slopes” of the diagonals have all the same sign while traversing the edges of the
triangular faces in a given sense. For instance, while traversing the edges of triangle FAB in
the prism at the left in the sense F → A → B → F , it can be verified that all the diagonals
BE,FD, AC have a “positive” slope, while for the splitting at the left the signs are positive,
negative, positive.

Of course a splitting in more tetrahedra is possible adding a node in the center of the prism
and interpolating the physical values (for instance, velocity) there. However, only splittings that
result in a minimum of tetrahedra and that do not need of interpolation are considered here, and
this option is considered only as a last resource.

Once a splitting has been chosen for the faces of a given prism element e, the adjacent prisms
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e′ are constrained to split the shared faces in the same way as on the e side. For instance, in
figure 4, face ABCD in element e is split along diagonal AC, so that the same split must be
chosen on face A′B′C ′D′ of element e′, as is shown on the left. Splitting of the face along
diagonal B′D′ (as shown at the right) is invalid.

Figure 4: Left: Splitting from side e is compatible with that on the side of element e′. Right: Face splitting on
elements e and e′ is no compatible on the shared face.

Figure 5: Splitting from the side of element e is incompatible with the splitting from side of element e′

Choosing a face splitting for all the quadrilateral faces in the mesh can be put as a very well
known problem in computing science known as “graph coloring”. The problem is to color all
the quadrilaterals of the faces with two colors (i.e. to assign one of the two possible splittings)
in such a way that the three faces of each element are split in a compatible way, as described
above. The algorithm is briefly as follows. Initially all faces have no color assigned. All the
elements that have two colored (quadrilateral) faces are revised. If one of them has the same
slope signs, then the remaining face is colored in the only possible way. If no element is in this
condition the remaining elements are checked and a color is assigned to one of their faces. The
elements are revised in decreasing order of the number of colored faces, i.e. first those with two
colored faces (but not with the same sign, or it will be given a color in the previous step), then
those with one colored face, then those with no colored faces. This process is repeated until all
faces are assigned a color.

The algorithm may fail, for instance when revising element e (see figure 5) splitting along
diagonal BD must be chosen, but this induces an invalid splitting on element e′. In practice this
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condition has been never met. Note that the constraint on coloring is a very loose one, for each
element only two out of eight possible colors are invalid. However, if this condition arises the
solution is to add a center node, and split the prism in 6 tetrahedra.

The same basic technique can be applied mutatis mutandis, to hexahedral elements. How-
ever, it can be shown that from all the possible 26 = 64 possible splittings of the faces, only
two are admissible. So, the coloring problem is much more constrained, and invalid situations
arise (but still are rare). This is again solved adding a center node, and splitting the hexahedral
in twelve tetrahedra.

5 EXAMPLES

It is difficult, of course, to show the benefits of this technique in static figures, since its main
advantages are realized only through animations. However, the following examples will show
some of the problems described above.

The first example is the visualization of the flow around a car (the Volkswagen Bora model)
(see figures 6 to 8). This is a simplified model of a racing car from the Sport Team squad,
currently running in the Argentinian category TC2000. This simplified model takes into account
some modifications of the racing car with respect to the roadgoing version, but has no rotating
wheels, neither the rear aerofoil. The finite element mesh had 2,371,121 tetrahedra and 547,539
prisms (arranged in three layers of 182,513 elements each). After splitting the prisms, the mesh
had 4,013,738 tetrahedra. Injection of particles has been performed uniformly in a layer 5cm
thick around the car skin. The surface of the car is colored with vorticity. After reaching a
steady state an average of approximmately 20,000 particles are present in the domain shown
with the diamond type of glyph. Figure 7 shows visualization with sphere glyphs. In this case
fewer particles can be visualized and the rate of injected particles has been adjusted so as to have
an average number in the limit in the order of 4,000. Finally figure 8 shows friction particles
in the back. Note the large recirculation zones where the particles spiral towards the center,
where finally a large vortical structure detach. Results shown are for a velocity of 200 km/hr
(Reynolds number 1.67×107).

The next example is the subsonic aerodynamics of a 155mm projectile for tube artillery
named “PACU” (for “Proyectil Argentino de Culote Hueco” ) developed by CITEFA (Instituto
de Investigaciones Cientı́ficas y Técnicas de las Fuerzas Armadas, http://www.citefa.gov.ar) and
being used currently in the Argentinian Army. There are two main factors to distinguish projec-
tile aerodynamics from classic aerodynamics. The first of them is the fact that most projectiles
have an axis or plane of symmetry, which implies also symmetric aerodynamic parameters.
The second one is related to large spinning velocities that, for tube artillery, are from 5,000 to
10,000 RPM, generating aerodynamic effects which are only found in the aeroballistic area.
Among these particular parameters are the force and torque produced by the Magnus effect.
Although this force is relatively lower than the lift and can be ignored, the torque is critical
for the projectile stability. Figures 9 and 10 show particle tracings around the projectile at an
angle of attack of 5◦. Particles are injected in small region upwind from the tip of the projectile,
simulating the effect of injection of a jet of smoke. Again, vorticity is shown in colors on the
body skin. Figure 10 shows the detail near the bottom of the projectile. Note the large concen-
tration of particles in the inner part of the bottom, due to the recirculation. Finally, figure 11
shows skin-friction particles. Note the concentration of particles at the separation line, which is
twisted in the sense of rotation of the projectile.
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Figure 6: Flow around a racing car prototype. Diamond glyphs.

Figure 7: Flow around a racing car prototype. Sphere glyphs.
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Figure 8: Flow around a racing car prototype. Skin-friction particles.

Figure 9: Particle tracings simulating a smoke jet.
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Figure 10: Particle tracings in the inner part of the bottom.

Figure 11: Skin-friction particles, note the concentration of particles at the separation line.
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6 CONCLUSIONS

Particle tracing is a powerful visualization technique for CFD problems, giving to the user a
simultaneous perception of direction and speed of the flow. The algorithm presented here allows
the efficient computation of particle trajectories for unsteady flows in moving meshes. The al-
gorithm can be applied also to the computation of skin-friction particle trajectories. Application
to industrial problems has been presented.
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