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Abstract. In this work, numerical simulations of free surface flows of incompressible and viscous
fluids are performed by a finite element computation. As presented in previous works, the free surface
movement is followed by a mesh-movement technique (see Battaglia et al, Mecánica Computacional, Vol
XXIV, pp. 105-116, Buenos Aires, Argentina, Nov. 2005), but because of the fully explicit character of
the free surface update equation a smoothing process was used to avoid numerical instabilities. Regarding
that the kinematic boundary condition at the interface can be described as a transport-like equation,
different authors suggested consistent stabilized finite-element formulations for the free surface, such
as streamline upwind/Pétrov-Galerkin (SUPG) (Soulaı̈mani et al, Comp. Meth. Appl. Mech. Engrg.,
Vol. 86(3), 1991; Güler et al, Computational Mechanics, vol. 23, pp. 117-123, 1999) or Galerkin/Least-
Squares (GLS) (Behr et al, Comp. Meth. Appl. Mech. Engrg., Vol. 191(47-48), pp. 5467-5483, Nov.
2002). In this work, a numerical stabilization with this aim is performed as a part of the multi-physics
finite element code PETSc-FEM (http://www.cimec.org.ar/petscfem/). Numerical examples are shown.
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1 INTRODUCTION

As most physical problems, free surface flows are present in many practical situations, as
in the sloshing produced in a fluid truck container, the fuel inside a rocket or the flow in a
channel. The prediction of the fluid-gas interface position become in such cases an operational
data, as maximum wave height, or important design information, regarding the geometry of the
container or the profile of the channel.

The main difficulty at the resolution instance is that the free surface position is unknown,
because it is part of the solution itself.

Of course, there are many different methods proposed to solve the interface problem, which
could be grouped in three categories (Shyy et al., 1996): Lagrangian methods, where the mesh
moves with the particles of fluid, Eulerian methods, which count on a fixed mesh and the fluid
fills completely the submerged cells or partially the interface ones, and Arbitrary Lagrangian-
Eulerian (ALE) methods, that count on meshes whose movement, different from the fluid one,
is taken into account at the time of solving the flow field, see Donea and Huerta (2003).

In particular, this work is focused in the resolution of transient free surface problems by a
finite element method together with an ALE formulation, where the fluid state is determined by
a Navier-Stokes (NS) solver followed by a mesh moving (MMV) one to reach the updated nodal
positions, all of them under the scope of the finite element library PETSc-FEM, see Sonzogni
et al. (2002) (http://www.cimec.org.ar/petscfem).

Besides the modules mentioned, there is a coordinating program which updates the free sur-
face nodal positions by controlling the communication between the NS and the MMV instances
each time step. This “free surface updater” (FSU) includes also the resolution of the kinematic
condition over the interface, that takes the form of an advection equation and consequently
could show an unstable behavior when is numerically solved. This fact was already noticed
by several authors who appealed to different stabilization methods in order to get satisfactory
solutions. Some of these methods are the streamline upwind/Pétrov-Galerkin (SUPG) (Brooks
and Hughes, 1982), applied to free surface by Soulaı̈mani et al. (1991) and Güler et al. (1999),
and the Galerkin/Least-Squares (GLS) one, see Behr and Abraham (2002). In this case, the
finite element method chosen for updating the free surface is stabilized with SUPG terms for
different temporal integration alternatives.

Some examples were solved using the methodology presented, and two of them are presented
in this work.

2 GOVERNING EQUATIONS

The procedure adopted for solving free surface consists of the interaction between two main
solvers that are part of the PETSc-FEM structure: the first one solves the fluid state, i.e. the
Navier-Stokes (NS) solver, and the second one, the mesh movement (MMV) module, deter-
mines the updated nodal positions in the domain Ωt by taking into account the results of the NS
one and the free-surface updated position, given by the FSU instance whose objective is to ob-
tain a “stabilized” interface position, which will be described in Sec. 3. The governing equations
for the flow and the mesh movement instances are summarized in the following sections.

It is important to notice that PETSc-FEM is a parallel finite element library oriented to mul-
tiphysics, based on the Message Passing Interface (Message Passing Interface (MPI), 2006) and
the Portable Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 2005).
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2.1 Flow Field

The flow field is represented by the NS equations, which are solved by the corresponding
Finite Element (FE) solver under the PETSc-FEM scope and are given by

ρ (∂tv + v · ∇v − f)−∇ · σ = 0 ;

∇ · v = 0 ;
(1)

over the flow domain Ωt = Ω(t) at time t ∈ [0, T ], being v the fluid velocity, f the body force,
ρ the fluid density, T a final time and ∂t indicates the temporal partial derivative. The tensor σ
is the fluid stress one, and can be decomposed into an isotropic −pI and a deviatoric part T,

σ = −pI + T ; (2)

where p is the pressure, I the identity tensor and T is related linearly with the strain rate tensor
ε because only Newtonian fluids are considered, that is,

T = 2µε ; ε =
1

2

[
∇v + (∇v)T

]
; (3)

with µ and ν = µ/ρ the dynamic and kinematic viscosities of the fluid, respectively. Here,
(...)T indicates transposition. The boundary conditions at the domain boundaries Γ are such as

v = vwall at Γwall;
σ · n = t at Γt;

(4)

where Γwall represents the solid boundaries, whose velocity can be null or not, according to the
kinematic of the domain, and Γt is a traction surface or interface between two fluids, where
traction forces t act. In the case of free surfaces, the gas-phase viscosity is negligible, as well
as its density, then on the gas side the parameters are

p = Patm at ΓFS;
τ · n = 0 at ΓFS;

(5)

being ΓFS the free surface, Patm the pressure exerted by the gas-phase, usually the atmospheric
one, and τ the tangential stresses exerted by the gas over the liquid surface. Notice that from last
expression of Eq. (5) that the free surface is allowed to move only along its normal direction,
and that the traction forces result t = −Patm n, or

σ · n = −Patm n at ΓFS . (6)

In this way, the complete set of data is given if a weak formulation of the Divergence Form
of the NS equations (Limache and Idelsohn, 2006) is chosen for solving the problem, as made
here. It is worth to mention that in the case of Patm = 0, as is usually made, the boundary term
over ΓFS disappears, being unnecessary any pressure imposition over this boundary.

This system of partial differential equations is discretized by a finite element method in
space, giving an ordinary differential equations system in time. The last one is discretized by a
finite difference method in an implicit way, expressed as

F

(
vn+1 − vn

∆t
,pn+1

)
= 0 ; (7)

giving the flow field at time tn+1 from the state at t = tn.
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2.2 Mesh Update

Once the fluid state is solved, the positions of the internal nodes are updated through one of
two available strategies for mesh movement. Both of them require as incoming data the free
surface displacement, which is determined by the process described in Sec. 3, and keeping the
topology of the mesh unchanged.

The mesh updating strategies, which are also detailed in previous works as Battaglia et al.
(2006b), are summarized as follows.

2.2.1 Pseudo-elastic mesh update

The mesh update process consists of the resolution of a pseudo-elastic problem over the
initial domain Ω0 with Dirichlet boundary conditions.

The formulation applied is a standard one,

σij,j = 0 ;

σij = 2µ̃εij + λ̃δijεkk ;

εij =
1

2
(ui,j + uj,i) ;

(8)

with δij as the Kronecker tensor and the Lamé elastic constants, µ̃ and λ̃, for the fictitious
material, although in practice the pseudo parameters Poisson ratio ν̃ and elasticity modulus Ẽ
are used. The first one set to µ̃ = 0.3, and as there are only Dirichlet boundary conditions,
the displacements are independent of a multiplicative constant in the elasticity modulus, so it
is usually Ẽ = 1, but in some special cases a variable Ẽ is used over the domain in order to
reduce mesh distortions, like in sectors with closed corners.

The boundary conditions over the free surface are computed as uj = xn+1
j − x0

j , where u
represents the nodal displacements and xn

j the position of node xj at the time step n, whereas
for solid walls or the fluid domain limits the slip or non-slip conditions, u · n̂ = 0 and u = 0
respectively, are adopted.

The pseudo-elastic problem can be considered linear or non-linear, proposing an elemental
stiffness matrix Ke according to Xu and Accorsi (2004),

Ke =

∫
Ωe

t

BTDB |J|eκe dΩe
t ; (9)

where the matrix B contains the shape functions derivatives, D is the constitutive matrix, |J|e
is the elemental Jacobian and κe controls the stiffening and is calculated as

κe =

(
|J|0

|J|e

)s

; (10)

with the arbitrary chosen stiffness exponent s and |J|0 as a coefficient needed for consistency.
If s = 0, the problem solved is a linear elastic one, whereas for a non-linear alternative s > 0
is used, making the smaller elements more stiffened than the larger ones, and being s < 0
inconvenient for the purpose of the method, see Tezduyar et al. (1993) and Stein et al. (2004).
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2.2.2 Mesh motion by a mesh-quality optimization

Although this mesh motion method is used here for following the nodal displacements in-
duced by the free surface movement, this method was proposed for moving boundary problems
in general, see López et al. (2007). It consists of the resolution of an optimization problem
where the objective is minimizing a functional written over the set of mesh coordinates {xα

j } as

F = F ({xα
j }); (11)

being xα
j is α-coordinate of j-node. As there are some specific requirements over F demanded

by the minimization process, it is proposed as a sum of elemental contributions,

F =
∑

e

Fe ; Fe = Cv

(
Ve

Vref

− 1

)m

+ CQ Qn ; (12)

where Ve is the volume of the element e, Vref is the reference volume, Cv and CQ are user-
chosen weight coefficients, m and n norms for size and shape terms and Q is a quality parameter
calculated as

Q =
C Ve∑

i l
p
i

; (13)

with li the length of each edge length of the element, weighted to the power p which corresponds
to the space dimension. Finally, the constant C is determined in order to get 0 < Q ≤ 1, where
Q = 1 corresponds to equilateral elements, being C = 4

√
3 for triangles and C = 36

√
2 for

tetrahedrons.

3 FREE SURFACE TREATMENT

The free surface nodal displacements are chosen to be constrained along a given direction
ŝj , which is fixed during the whole study, giving the new free surface position of j-node in time
t as

xj(t) = x0,j + ηj(t) ŝj ; (14)

where the fixed direction or “spine” is ŝj , x0,j is the initial position of node j and ηj is the
scalar coordinate, all of them indicated in Fig. 1. Usually, ŝj is normal to the free surface at rest
of the problem to be solved.

An important remark is that the spines are used only for the displacement of the free surface,
and inside the domain the nodal positions are determined by one of the methods presented in
Sec. 2.2. In this way, mesh distortion is reduced in comparison with cases where all the nodes
move over fixed spines.

3.1 Equation of Movement

The free surface movement is ruled by the so-called kinematic condition. This condition
takes the physical meaning of a material interface, where there is no material exchange, see
Behr and Abraham (2002) or Garcı́a Espinosa (1999), and can be expressed as

v · n =
∂η

∂t
· n over ΓFS; (15)
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Figure 1: Free surface nodal displacements.

where n is the free-surface normal direction and η is the displacement of the interface over the
spine direction ŝ, η = η ŝ, with η the scalar displacement, see Fig. 1. Replacing in Eq. (15),

∂η

∂t
=

v · n
ŝ · n

. (16)

Notice that relevant displacements are those normal to the free surface, while the tangential
ones can be neglected.

Regarding Eq. (14) and the scalar field η = η(x1, x2, t) for the three-dimensional case, the
free surface can be expressed as F (x) = x3− η = 0, and its normal vector is determined as the
gradient, taken as

n = ∇F (x) =

[
−∂(ηŝ1)

∂x1

; −∂(ηŝ2)

∂x2

; 1

]T

; (17)

By replacing in Eq. (16) with (17) and introducing H = ŝ · n,

∂η

∂t
=

1

H
v · n =

1

H

[
−v1

∂(ηŝ1)

∂x1

− v2
∂(ηŝ2)

∂x2

+ v3

]
; (18)

giving the expression for η as an advection equation. The reduction for two-dimensional (2D)
free surface flows is immediate.

From Eq. (18), and considering that for small deformations of the free surface n is nearly
vertical and ŝ = ê3, being ê3 the coordinate unit vector corresponding to the vertical axis
adopted, then H = ŝ · n ≈ 1.

In order to maintain a uniform notation in following expressions, and for giving a clearer
formulation, the problem to solve is written as the advective system,

∂η

∂t
+ v‖ · ∇̂η = s in Ω′

FS ;

η = ηD over Γ′
D ;

(19)

being v‖ = [v1; v2]
T the tangential velocity vector, ∇̂η = [ ∂η

∂x1
; ∂η

∂x2
]T the two-dimensional

gradient of η and s = v3 the source term given by the velocity of the fluid in vertical direction
at each point of the free surface, i.e. over the normal to the interface. Besides, Ω′

FS = ΓFS

in Eq. (5) is the ndim − 1 interface domain, corresponding to a ndim flow problem with a free
surface, and Γ′

D is the boundary Dirichlet condition for the advection equation given. As Eq.
(19) represents a hyperbolic problem, Γ′

D is the inflow boundary, where v‖ · n̂ < 0 is verified,
with n̂ = [n1; n2]

T .
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3.2 Numerical Stabilization

As mentioned in the Introduction, other authors already reported that the free surface kine-
matic condition is a transport-like equation that shows numerical instabilities under certain con-
ditions such as high convective velocity. In order to improve results, there are some “classic”
stabilization methods that have been applied to free surface displacements, which are the SUPG
(see again Soulaı̈mani et al. (1991) or Güler et al. (1999)) and the GLS (Behr and Abraham,
2002) ones.

In previous works, like Battaglia et al. (2006a), the free surface stabilization was made
through a smoothing operator based on solving a pseudo-heat problem over the free surface
with artificial parameters. This procedure is appropriate for low velocities and deformations,
but as the mean values of these fields grows, results become unstable or show important differ-
ences when they are compared to analytical or semi-analytical solutions.

The SUPG method, introduced in Brooks and Hughes (1982), was chosen to be applied over
the NS solver results, i.e. before the mesh update process, for determining the free surface nodal
positions for the next time step. The variational formulation followed was taken from Donea
and Huerta (2003), and is based on the functional spaces S := {η ∈ H 1(Ω′

FS)|η = ηD over Γ′
D}

and W := {w ∈ H 1(Ω′
FS)|w = 0 over Γ′

D}. The problem statement is find η ∈ S such that∫
Ω′

FS

w
∂η

∂t
dΩ′

FS +

∫
Ω′

FS

w
(
v‖ · ∇̂η

)
dΩ′

FS =

∫
Ω′

FS

w s dΩ′
FS ; (20)

or expressed in compact form,

a (w, η) + c
(
v‖; w, η

)
= (w, s) in Ω′

FS ; (21)

where the terms are identified with the former expression as follows,

a (w, η) =

∫
Ω′

FS

w
∂η

∂t
dΩ′

FS ;

c
(
v‖; w, η

)
=

∫
Ω′

FS

w
(
v‖ · ∇̂η

)
dΩ′

FS ;

(w, s) =

∫
Ω′

FS

w s dΩ′
FS .

(22)

A consistent stabilization over the formulation given in Eq. (21) can be written like

a (w, η) + c
(
v‖; w, η

)
+

∑
e

∫
Ω′

e

P(w) τS R(η) dΩ′
e = (w, s) in Ω′

FS ; (23)

with τS the intrinsic time or stabilization parameter, described later in this section, Ω′
e indi-

cates that integration is carried out over each element, the residual of the differential equation
calculated as

R(η) =
∂η

∂t
+ v‖ · ∇̂η − s = L(η)− s ; (24)

and the operator P(w), which in the case of SUPG stabilization is

P(w) = v‖ · ∇̂w . (25)
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The resulting discrete problem takes the form of find ηh ∈ Sh such that

a
(
wh, ηh

)
+ c

(
v‖; w

h, ηh
)

+
∑

e

∫
Ω′

e

P(wh) τS R(ηh) dΩ′
e =

(
wh, s

)
; (26)

for all wh ∈ Wh, with ηh ∈ Sh, being Wh and Sh subspaces of finite dimension of W and S,
respectively.

The intrinsic time τS is taken as

τS =
h

2||a||
; (27)

where h is a characteristic element size and a is a mean velocity at each element, considering
that there is a velocity field with, in general, different values of vparallel for different nodes.

3.3 Implementation

The FEM implementation of the free surface stabilization for a 2D flow problem implies
that the advective system is one-dimensional (1D). Then, while the NS problem and the MMV
instance are solved over quadrangular elements, the interface is discretized by 2-node linear
elements for solving Eq. (26), but considering now that the vertical axis has x2-direction, i.e.
for v = [v1; v2]

T the velocities in the advection problem are v‖ = v1 and s = v2.
Replacing in Eqs. (24) to (26), the problem become find ηh ∈ Sh

FS such that

a
(
wh, ηh

)
+ c

(
v1; w

h, ηh
)

+
∑

e

∫
Ω′

e

(
v1

∂wh

∂x1

)
τ e
S

(
∂ηh

∂t
+ v1

∂ηh

∂x1

− v2

)
dΩ′

e =
(
wh, v2

)
;

(28)

for all wh ∈ Wh
FS , with ηh ∈ Sh

FS , being Wh
FS and Sh

FS subspaces of finite dimension of WFS

and SFS , the functional spaces corresponding to W and S from Sec. 3.2 for 1D problems,
respectively.

The intrinsic time τ e
S = h(2a)−1 is calculated for each element, taking in account that h is

the length of the element considered and a the arithmetic mean between the nodal velocities in
x1-direction.

The matrix form of Eq. (28) after the elemental assembly is:

(M + CS) ηt + (C + KS) η = (M + CS)s ; (29)

where M and C are the mass and the convection matrices, respectively, CS and KS are the
pseudo-convection and pseudo-diffusion matrices which arise from integration of stabilization
terms. All the matrices count on nnodFS × nnodFS elements, being nnodFS the number of free
surface nodes, which is the same as the quantity of the unknowns. The vector s groups the
nnodFS “source” terms given by the vertical velocity components v2, η is the vector of unknowns
and ηt is the vector of temporal partial derivatives of η.

The temporal integration is made through a “θ family of methods” which requires a refor-
mulation of Eqs. (28) and (29), and taking into account that ηt = (ηn+1 − ηn)/∆t, the system
of equations to be solved looks like the following,[

M + Cn+1
S + θ∆t

(
Cn+1 + Kn+1

S

)]
ηn+1

=
(
M + Cn+1

S

) [
θ∆t sn+1 + (1− θ)∆t sn + ηn

]
− (1− θ)∆t

(
Cn+1 + Kn+1

S

)
ηn ; (30)
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where the value of θ leads to different methods, being θ = 1 for Backward-Euler, θ = 0 for
the classic Euler, and θ = 0.5 for Crank-Nicolson. Regarding the unconditional stability of
methods with θ ≥ 0.5, all the problems are solved with θ inside this interval.

After some tests, especially those where velocities were relatively important, it was necessary
the incorporation of a prediction step for both the NS and the MMV instances, in order to count
on an updated fluid state at the time of computing the updated nodal positions over the mesh.

The system of Eq. (30) is solved inside a “hook”, which is a C program that, in this case,
communicates the NS instance with the MMV one and uses PETSc (Balay et al., 2005) iterative
routines for solving the linear system of equations. In this way, the hook is prepared to be used
for parallel computations.

NS

MMV

FS displacement
(SUPG)

1

3

2

Flow
Field

FS nodal
positions

Updated
mesh

Figure 2: Sequence of execution of the different instances involved in free surface problems.

A graphic representation of the scheme implemented can be apreciated in Figs. 2 and 3.
The first of them shows the simplest case, where the NS solver determines the flow field, then
the free surface nodal displacements are calculated and, at the end of each time step, the nodal
positions for the whole mesh are updated through the MMV process. The second figure shows
the order of execution of each part of the system when there is a prediction loop with a user-
chosen quantity of time steps “p”. The difference consist of the determination of the fluid state
for a global step over a predicted mesh, which was found after the interaction of two auxiliar
NS and MMV processes. This auxiliar prediction part of the resolution leads to more precise
results from the main instances, indicated with numbers 2 and 4 in the graphic.

"p" prediction
steps

FS displacement
(SUPG)

NS

MMV

NS

MMV

2

4

1 3
"p"

steps

Flow
Field

FS nodal
positions

Updated
mesh

Predicted
mesh

Figure 3: Sequence of execution of the different instances for free surface problems with prediction instance.
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4 NUMERICAL EXAMPLES

4.1 Viscous free surface flow with periodic boundary conditions

The free surface position in a two-dimensional (2D) incompressible viscous fluid with a
given initial deformation over the interface is known for the case of infinite depth and lateral
extent, see Prosperetti (1981). The problem consist of a small-amplitude wave as initial condi-
tion which evolves in time, being damped by the fluid viscosity.

The simulation was performed over a domain of height H and width L, see Fig. 4, being a0

the initial amplitude of the motion, which is negligible compared to the depth H . The infinite
lateral domain is taken in account with periodic boundary conditions over the laterals, with
a wave length of L. The perfect slip condition is imposed over the bottom of the domain,
considering that the superficial perturbations are small and does not modify the flow there.
There are also a gravity acceleration g applied and a kinematic viscosity ν involved.

H

L

a0

slip condition

periodic 
conditions

free surface
initial position

Figure 4: Geometrical data and boundary conditions for the waves with periodic flow.

The initial free surface profile is given by

h(x) = 1.5 + a0 cos(2πx) . (31)

In the linearized case, the analytical solution describing the vertical movement of one point
of the free surface as a function of time t is

a(t) =
4ν2k4

8ν2k4 + ω0
2

a0 erfc(νk2t)1/2 +
4∑

i=1

zi

Zi

(
ω2

0a0

z2
i − νk2

)
exp[(z2

i − νk2)t] erfc(zit
1/2) ;

(32)

with k the wave number, ω2
0 = gk the inviscid natural frequency, and each zi a root of the

following algebraic equation,

z4 + k2νz2 + 4(k2ν)3/2z + ν2k4 + ω2
0 = 0 ; (33)
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being Z1 = (z2 − z1)(z3 − z1)(z4 − z1) and Z2, Z3, Z4 obtained by circular permutation of the
indices. Finally, erfc(...) is the error function for complex variable. This expression is valid for
small-amplitude flat waves in an infinite depth domain.

-0.02

-0.01

 0

 0.01

 0.02

 0  1  2  3  4  5  6

A
m

pl
itu

de
 [m

]

Time [s]

SUPG - Dt

SUPG - 2Dt

Analytic

Figure 5: Vertical displacement of the left node of the free surface.

The set of data used for the numerical resolution is H = 1.50 m, L = 1.00 m, a0 = 0.02 m,
with p = Patm and τ · n = 0 over the surface, g = 1 m/s2, together with density ρ = 1 kg/m3

and kinematic viscosity ν = 0.0001 m2/s as the fluid characteristics. The problem was solved
until t ≈ 6 s, with a time steps ∆t = T/80 = 0.022 s and ∆t′ = 2∆t, with T an estimation of
the period of the wave imposed as initial position of the free surface. The spatial discretization
counts on 40× 60 quadrangular elements with equal sides, being 40 the free surface elements.

The free surface left node takes different vertical positions as the time evolves, describing
a curve plotted in Fig. 5, where there are also shown the numerical results, as crosses for
∆t = T/40 and dots in the case ∆t = T/80. In this figure, it is possible to see that the
numerical solution converges to the analytic one as ∆t diminishes, showing the consistency of
the method.

4.2 Rectangular container submitted to horizontal periodic acceleration

This example consist of the simulation of large amplitude sloshing inside a tank generated
by a horizontal acceleration whose value is periodic in time. The problem was first proposed
by Huerta and Liu (1988) and reproduced by Soulaı̈mani et al. (1991). In spite of the formula-
tion considered in the present work, focused on small free surface displacements, this examples
shows how robust is the method at the time of solving large displacements and horizontal ve-
locities higher than those determined in the problem of Sec. 4.1.

The tank is a rectangular container of width W = 0.80 m with water height D = 0.30 m, as
shown in Fig. 6, which is modelled as a 2D problem. As this fluid counts on a low kinematic
viscosity of ν = 1.0 × 10−6 m2/s, perfect slip boundary conditions are taken over the walls.
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W

D

Free surface
initial position

Slip
boundaries

Figure 6: Geometrical data and boundary conditions for the horizontally accelerated container.

The acceleration over the domain is G = [g1, g2]
T , being the vertical component g2 = −g =

−9.81 m/s2 and the horizontal one g1 = A g sin ωt, where the coefficient of amplitude is
A = 0.01, t is the time and ω the circular frequency. This frequency was calculated in such a
way that the first sloshing mode is excited, considering that the wavelength is λ = 2W , that is,

f =

√
g

4πW
tanh

πD

W
= 0.89825 1/s . (34)

Then, the circular frequency to be imposed is ω = 2πf = 5.64 rad/s.
This problem was solved for several mesh discretizations and different time steps, using

Crank-Nicolson and Backward Euler for temporal integration, and performing one or more
prediction steps before each time step. Results are plotted in Figs. 7 to 9.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  1  2  3  4  5

R
el

at
iv

e 
ve

rt
ic

al
 d

is
pl

ac
em

en
t

Time [s]

A

B

Figure 7: Vertical displacements for the left free surface node relative to the container depth, with ∆t = 0.018 s
for “A” and ∆t = 0.009 s for “B”
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First, the problem was solved for different mesh refinement, in this case for 60 × 160 and
54× 144 quad elements, showing small differences among the results achieved, underO(10−5)
in the case of free surface displacements relative to D. The time step was also modified, proving
that the free surface displacements are much sensitive to this paramenter, as shown in Figs. 7
and 8, where both the “A” and “B” tests were solved with a 2D mesh of 54 × 144 quads, with
∆t = 0.018s for the first and ∆t = 0.009s for the last one.
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Figure 8: Evolution of the volume of fluid inside the container, taking ∆t = 0.018 s for the example “A” and
∆t = 0.009 s for the “B” one.

The use of different temporal integration schemes, as plotted in Fig. 9 for a 39×104 elements
mesh solved with ∆t = 0.009 s, shows the evolution of the left node displacement during 2000
time steps. Taking into account that the container is excited with the frequence of the first
sloshing mode, the permanent increase in the amplitude of the movement is expected, that would
indicate that θ = 0.5 gives a more appropriate temporal integration. In this case, for θ = 0.5 the
volume was increased in less than 4%, while for θ = 1.0 the increment is practically negligible.

4.3 Supercritical flow over a bump

In this case, a supercritical flow in a channel with a parabolic bottom obstruction, called
“bump”, is simulated as another example for testing the developed stabilization procedure. For
the viscous fluid case, neither (semi)-analytic solutions nor experimental results were available
for the range of parameters considered, but potential analytic solutions such as those proposed
by Forbes and Schwartz (1982) for semicircular bumps are taken as reference for the compu-
tational results. These potential results indicate that the free surface position for a supercritical
flow over an obstruction is a symmetric curve, centered with its vertical axis and situated above
the interface position at rest.

The geometry of the domain is presented in Fig. 10, as well as the references for the boundary
conditions and the free surface initial position. Dimensions are Hc = 1.00 m as the initial
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Figure 9: Vertical displacement of the left node of the free surface relative to the depth of the tank for different
temporal integration paramenters.

deep of the fluid, up-water and down waters lengths are respectively Lu = 3.00 m and Ld =
5.00 m, while the bump has a parabolic profile of Hb = 0.50 m height and Lb = 1.00 m width.
Conditions imposed over the boundaries for the NS problem are given as follows: for the free
surface, number (1) in the figure, the traction free condition is used, the perfect slip one is
considered over the bottom (3), the outlet section is free (4), i.e. there is no condition applied,
and for the inlet section (2) the horizontal velocity is set to vin = 1.50 m/s. In the case of
the MMV instance, carried out with the method described in Sec. 2.2.1, all the nodes of (3)
are fixed, while the inlet (2) and outlet sections (4) have null horizontal displacements and the
movement of the nodes over the free surface (1) is the result of the updating routine between
the NS and the MMV modules. Besides, vertical displacements over (2) are prevented because
of the supercritical condition of the flow, which means that all the data for the problem should
be fixed over the inlet section, which in this case consist of the incoming velocity and the height
of the section considered.

Finally, the fluid with kinematic viscosity ν = 0.005 m2/s and density ρ = 1 kg/m3 is
submitted to a gravitational field of g = 1 m/s2 in the negative vertical direction. These data

Hc

Lu Lb Ld

Hb

Free surface initial position

vin
4

1

2 3
3

3

Figure 10: Geometry and references for the channel with supercritical flow over a bottom obstruction.

1026



leads to a Froude number of Fr = 1.50 and a Reynolds number of Re ≈ 300, indicating that
the flow is supercritical and that no turbulence should be taken into account for the numerical
resolution.

Figure 11: Free surface profile and absolute velocity values, in m/s, for the auxiliary problem with high viscosity
(ν′ = 0.05 m2/s), for different times.

The simulation was made over a regular mesh of 15 × 135 quadrilateral elements and 2176
nodes. As in the beginning of the study there are violent free surface displacements due to
the height of the obstacle and the mean flow velocity, an auxiliary analysis was made with
ν ′ = 0.05 m2/s and time step ∆t′ = 0.01 s along 1000 time steps, see Fig. 11. The objective
of this first approach was obtaining a different initial position for the final study, that was made
with the time step ∆t = 0.01 s and the original viscosity value. All of the analyses were carried
out with θ = 0.5 and one prediction step, regarding the predominance of horizontal velocities
over the vertical ones.

1027



In spite of the character of an auxiliary result, the development of the profile of the free
surface with higher viscosity and the evolution of the velocity field, also shown in Fig. 11,
contribute with some interesting observations in comparison with the potential solution, such
as the down waters displacement of the vertex of the free surface, probably originated by a kind
of extension of the bump in the same direction produced by the low velocity sector. The peak
height is of 1.70 m over the bottom of the channel, which is higher than the analogous potential
problem solved in Forbes and Schwartz (1982).

Figure 12: Free surface profile and absolute velocity values, in m/s, for the problem with ν = 0.005 m2/s, for
five time steps.

The absolute velocity field and the evolution of the interface for the definitive value of ν, with
∆t = 0.01 s and for 2000 time steps, are plotted in Fig. 12. Unlike the more viscous analysis,
the maximum profile height is lower, in this case of 1.38 m, and the vortex is practically centered
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with the bump, giving an almost symmetric free surface profile, at least for the section closer
to the bottom obstacle. Another difference with the former study is the maximum velocity
position, which in this case is measured right over the bump instead the outlet section, while
the low velocity sector down waters of the bump is smaller. The analysis gave a final state with
quasi-stationary characteristics, i.e. very low variations in nodal positions and velocity values
between consecutive states.

5 DISCUSSION

The wide range of performed tests allows the determination of the appropriate parameters to
be used for different kind of problems, so far restricted to two-dimensional flows.

It was shown in Sec. 4.2 that one prediction step ensures mass conservation, e.g. an incre-
ment of less than 4% after 2000 time steps for θ = 0.5 in the example. This situation was seen in
other cases where horizontal velocities have stronger influence than vertical ones, like the super-
critical flow considered in Sec. 4.3. Besides, the proposition of more prediction steps generates
an increment of computational costs without leading to results of much higher quality, regard-
ing either mass conservation or free surface displacements. From this point of view, a smaller
time step would be more convenient than incrementing the prediction steps, and, even more, it
is worth to test if some problems are well solved without any prediction step, as happened in
the example presented in Sec. 4.1.

As in the case of the number of prediction steps used, the temporal integration should be
also proposed as a function of the dominant velocity, i.e., a full implicit method when vertical
velocity is larger than the horizontal one, or a semi-implicit one with 0.5 ≤ θ < 1 for the
opposite situation.

6 CONCLUSIONS

A free surface stabilization method was implemented and tested for two-dimensional prob-
lems as part of the PETSc-FEM library. Numerical tests were performed and its results were
compared to reference solutions, showing good agreement between them, and consequently the
consistence of the method. Nevertheless, there are some issues that should be solved in future
work, like a deeper analysis of the intrinsic time τS influence, the parallel implementation of
the code and the three-dimensional extension of the procedure.
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Güler I., Behr M., and Tezduyar T. Parallel finite element computation of free-surface flows.

Computational Mechanics, 23(2):117–123, 1999.
Huerta A. and Liu W.K. Viscous flow with large free surface motion. Computer Methods in

Applied Mechanics and Engineering, 69:277–324, 1988.
Limache A. and Idelsohn S. Laplace form of navier-stokes equations: a safe path or a wrong

way? In Mecánica Computacional, volume XXV, pages 151–168. 2006.
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