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Abstract. The boundary element method (BEM) is used in this work for modelling the fluid flow
around a vibrating micro-electro-mechanical system (MEMS). Device motion induces flow and, there-
fore, drag-forces develop on the surface of the MEMS with a damping effect on the MEMS vibration.
We assume that the fluid around MEMS can be treated as a continuum and, further on, that the flow can
be modelled as incompressible with a very low Reynolds number. Under such conditions, met in a large
number of MEMS in practice, the fluid flow can be accurately described by Stokes theory of quasi-steady
incompressible flow. We take into account MEMS deformation effects on fluid flow analysis.

Fast integration is performed using the collocation method. Self-integrals containing singular kernels
are analytically computed over linear triangles.

This model has been computationally implemented into the engineering software OOFELIE:MEMS,
developed by Open Engineering SA.

The accuracy of the model is tested using a benchmark problem — the flow around a sphere moving
with constant velocity—, with satisfactory results. Preliminary results of an application to MEMS are also
shown.
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1 INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) consist of fixed or moving micro-structures
playing the role of actuators or sensors in many advanced applications. Typical MEMS are
arrays of beams or plates where the thicknes3(isum) and the length i£)(10um — 1mm).
MEMS motion or deformation can be induced by mechanical, electrical, thermal, acoustical or
photonic energy sources.

In this work, we are particularly interested in vibrating MEMS immersed in a fluid (typically,
air) environment. The aim is to determine the drag forces induced in the MEMS surface by the
fluid flowing around. Such forces have a damping effect on MEMS vibration.

The problem of MEMS vibration in a fluid media will be assumed to be governed by the
guasi-steady incompressible Stokes equation. This approach is valid for MEMS under the fol-
lowing hypotheses:

¢ the frequency of vibration is low enough to turn inertia forces negligible compared to
viscous forces,

e the fluid around MEMS is assumed to behave as a continuum, and hence the fluid, even a
gas, is modelled as incompressible.

The previous hypotheses hold in a large number of MEMS in pradticiijerjee et al.2005

Frangi and TausGi2005 Frangi and Di Gioia2005 Frangi et al.l2006 Wang et al,. 2006).

The first hypothesis is verified when the typical length of the MEMS device is smaller that the
penetration length, which depends on the vibration frequency and the fluid density. The second
hypothesis holds for gases when the Knudsen nuiidbethat is the ratio of the mean free path

of the gas molecule to the characteristic length of the flow, does not exceed Di6@&(d Ye

2009).

Continuum hypothesis is closely linked to the non-slip condition at the surface of the MEMS,
only valid for slightly rarified gases. Recenting and Ye&(2004 andFrangi et al.(2006
developed boundary element methods that take into account the slip-flow regime, extending the
validity of the continuum hypothesis #n < 0.1. In a preliminary approach, these effects will
be neglected in the current work.

On the other hand, unlike the above-mentioned works assuming the MEMS to be rigid-bodies
to the purpose of fluid analysis, we will take into account the effect of MEMS deformation on
fluid flow.

It is usually assumed that in the case of deformable bodies, certain terms in the fluid flow
computation can be neglected as if the body behaves as a rigickaneahd Karrilg 1997,

Ding and Ye 2004 Mukherjee et al.2005 Frangi and Tausgi2005 Frangi and Di Gioia
2005 Frangi et a/..2006 Wang et a.,..2006). For the sake of generality, the effect of MEMS
deformation on fluid flow will be accounted for in this work.

The current model is available into the software OOFELIE::MEMS, a virtual prototyping
tool for the analysis and design of MEMS developed by Open Engineering SA.

The outline of the paper is as follows. In Sect@rthe Stokes equations for incompressible
steady flow are derived, together with its fundamental solution and the Green identity that con-
stitute the base of the boundary integral formulation of Stokes equations. S&:aongl are
devoted to the integral representation of interior and exterior flow problems, respectively, con-
sidering points located either inside or outside the flow domain, or at the interface. In &ction
we develop a boundary element method to solve the exterior problem at boundary points, which
is the problem we are particularly interested in. Secfialescribes the analytical integration of
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singular integrals. Finally, in Sectiof) the current model is applied to the classical benchmark
of a sphere translating in a viscous fluid, as well as to simulate a vibrating beam in a MEMS.

2 BEM STOKES EQUATIONS

The flow of an incompressible Newtonian fluid in a dom&iis governed by the following
equations:

gV" =0, mass balance (or continuity) equation, (1)
Z;
p vy + uja— =I+ 809, momentum balance equation, (2)
8t 8;1:j 8xj
vV : . .
Oy = (8 + 8VJ> — Péj, constitutive equation, 3)
(?xj 8.751

whereV; is the velocity,o;; is the stress tensoF, is the pressurep is the fluid densityy is
the dynamic viscosity of the fluid;; is the body force per unit mass; is the Kronecker delta
(0;; = 1ifi =j,0;; = 0if i # j), x; is the Cartesian coordinate along thaxis, and is the
time.

We will next linearize the equations of fluid motion. Let us assume that the velocity field
V and the pressure fiel® can be expressed as the sum of small perturbations with respect to
reference stateg, and I, respectively, i.e.:

P =Py +p, V =Vgy+v.

We assume further that the fluid is at rest at the reference $tate O, , = const). Then,
the continuity equationl) reduces to

8’1}2'

and by considering the constitutive la@) (the last term of the r.h.s. of the momentum equation
(2) takes the form

doi; 0P N v, _Op N 0%v; 5)
ﬁxj a 8.731 u@xj(?xj 8x, 'uaxjﬁxj'

Then, in the case of negligible body forcds (= 0), the momentum equatioi2) can be
expressed as
i, o\ _ op O
P\ ot "0x;) 0w M@xjaxj'

Finally, the hypothesis of small perturbations allows us to ignore the second-order term in
the above equation, obtaining:

(%i 8]9 aQUZ' .
Vot T om  Mom0m ©)

which, together with the incompressibility conditic#) ( constitute theunsteady (linearized)
Stokes equations
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A last simplification consists of considering the inertia forces negligible compared to viscous
forces. This assumption can usually be made in MEMS applications for frequencies below
100Hz (Mukherjee et a].2005 [Frangi and TausGi200%5 Frangi and Di Gioia200% Frangi
et al, 2006 Wang et al.200€). This yields thequasi-steady (linearized) Stokes equatitirest
can be written as:

ov;
L= 7
oz, 0 (7)

8]) _ 82’02‘ .
8% M@azjaxj n

0. (8)

2.1 Fundamental solution

Let us consider the quasi-steady Stokes problem:

(91)1'

8332' N 0’
8}9 _ 827}2'
aJIi u@x]@xj

= gZ(S(X - y) VX, y € Rga

whered is the Dirac delta function, such that the forgas concentrated at point(the “load”
or “source” point). The solution of this problem —the so-called fundamental solution— can be
expressed a¥{m and Karrilg, [ 1997):

v;i(X) = Gy (X,¥)g;,

p(X) = Hi(X,Y)gi,

whereG,; and H; are the kernels defined as:

1 6z T
Gij(x,y) = i (TJ + 7“3]) ; 9)
1 T

withr = x —y andr = ||r||. The kernelG;; is known as “Stokeslet”, and can be derived from
the Kelvin kernel for elasticity

1 5ij rir;
S — — 11
i 167(1 —v)p {(3 ) r + r3 ] (11)

when the Poisson ratwequals 0.5 (incompressible case).

2.2 Green identity

Given a velocity fieldu and a pressure fielg the stress;;(u, ¢) is given by the expression:

aui 8Uj )

8xj + 8.1'1

0i;(U,q) = —qdi; + p (
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Then, the following identity holds:
@ 80@- Qvi

oz, (035 (U, q) vi) = 9z, i T i gy

_{_ 8q i azui v & 8uz i 8uj c%z-

n 8@ Mal’j&l’j ! a al’j 81’1 al‘j

B dq 9%u; p o Ou;  Ou; ov;  0Ov;
By integration on the domaif and after applying the Gauss theorem, we get the so-called
Green’s first formulaPower and Wrobegll 995):

A

— Vi dQ =
oy oy, !

1% ou;  Ouy; v  Ovj /
2/9(8yj+ayi) (ayj+8yi v EUJ(U q) vin; d%,, (12)

wheren is the unit vector normal t& pointing outwards?, as shown in Figuré.

n

Figure 1:Domain for the analysis of interior Stokes flow.

3 DIRECT INTEGRAL REPRESENTATION FOR INTERIOR PROBLEM
For g given by the canonic unit vector in tiiedirection, i.e.g; = dy;, it can be verified that

0H,, B G
0z, “a:cjaxj

= 5km5(x - y)

First, let us multiply the above equation byand then integrate over the doméain

0H,, 82Gmk> /
— AQ, = [ v,.6(x —y)dQ,.
/Q ( oye Mooy ) U T )" (x=y)da,

Using the definition of Dirac function, the right-hand side of the last equation becomes

/Q Un(Y)3(X — ¥) A, = a(X)un(X).
where

1 ifxeQ,
O‘(X):{ 0 ifxgQ,

1108



beingQ) = Q U X the closure of the (open) domain
By now using the Green identity P), we obtain:

i[OGk anm vy, (%j /
— Lind + L Q, — dX 13

wheres,,;. is the “tractionlet” kernel:

Sk (X, ) = Rrjm (X, Y)n;(Y), (14)

andRy;,, the “stresslet” kernel:

(15)

OG i anm) _ 3 TET T m

im A\ - _Hm(s j o

Secondly, we multiply the momentum equati@ iy G, and integrate ove®:

op 0%y, )
— G dQ, = 0.
/Q (5’% M oy0y; S

After applying the Green identityl@), we get:

aCTYm aGm av 8v~
/ﬁ( ay.k T 8;k ) (ayk. + 0_1/i> de_/EUkj (V, p) Grgn; dE, = 0. (16)
J J

Finally, subtracting equatioi€) from equation/13), we get the boundary integral equation
for the velocity field in the interior of2:

a(X)v,(X) = /

Gmko'kj (V,p) n; dEy — / Smkvk dZy (17)
by by

3.1 Interior problem on the boundary

The boundary integral equatiofid) becomes singular for points located at the boundary.
To avoid this singularity, let us replaéein equationL7) by Q U S., beingS, a portion of a
little sphere of radius and centex € ¥, as shown in Figur@2. Then, the boundary integral
expression of an interior Stokes problem at the boundary pwiat& can be obtained by taking
the limit of the equation7) for interior points wher — 0:

e—0

Um(X) = lim |:/E‘ o Gka'kj (V,p) n; dZy — /Z o Smk:vk d2y+
/ Gka'kj (V7 p) n; dEy — / Smkvk dEy:| , (18)
0Se 0Se

whereds; is the interface between andS,, andos, is the remainder portion of the boundary
of S. (see Figuré). The limit ase — 0 of the integral oved: — 0S; is the integral ovek: in
the sense of the Cauchy Principal Value (CFRais and Caas1997), denoted as:

][f dx, —hm fly)dx,. (29)
$-05;
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Figure 2:Domain for the analysis of interior Stokes flow at boundary points.
Sincev ande are continuous fieldy, — v(x) ando — o(X) ase — 0, then

C. e (X)vg(X) —][ Gmkok; (V,p) njdE, —][ Sk dX, + (liII(l) Gk d2y> ok (X),
) ) e~V Jas.
(20)

where

m
e—0 85,

Given the normal unit vector pointing outwards, by n; = —r;/c (see Figuré), we realize
that

1 Ok TETm \ T
Gpn; dX, = ——— — 24y, = O(e),
/ase K 8mp ase( € " e ) € ! ©
and therefore
lim G dX, = 0.
e—0 ase
This is not the case for the integral
3 T m
Sk dX, = — —=d¥, = 0(1), (22)
[ Swats,= o2 [ s, = o)

whose limit is computed below regarding the shape of the surface at

3.1.1 Smooth surface

When is smooth at the vicinity af, i.e. it exists a tangent planexgtoS. can be assimilated
to a hemispheric surface as— 0. This yields Power and WrobglL995)

1
lim [ Sy dS, = — =0, (23)
e—0 ase 2

and hence
1
Co(X) = 56’”’“' (24)

Therefore, when the surface is smooth at the vicinity ef 3., the boundary integral equation
describing interior Stokes flow at this point takes the form:

1
§vm(x) :][ Gmiorj (V,p)n; dE, —][ Sk dX,,. (25)
5 5
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3.1.2 Non-smooth surface

Invoking the definition of the Cauchy Principal Value given by equalidi), (we can write
lim Sk A2y = / Sk A2y, — ][ Sk A2y, (26)
=0 Jas. > b

Considering an interior point € 2, we know aftefPower and Wrobg[1995) that
/ Sk Xy = =0k (27)
%

Then,C, . (x) can be expressed as

Co(x) = —][E S 5. (28)

So, if the surface is not smooth in the neighborhooa @f >, the interior Stokes flow at this
point obeys the boundary integral equation

(—][ Smk: dEy) Um(X) :][ Gmkakzj (V, p) n; dEy —][ Smk;vk dEy (29)
% %

3

4 DIRECT INTEGRAL REPRESENTATION FOR THE EXTERIOR PROBLEM

Let Q be now a structure (e.g., a MEMS) surrounded by a dorfiinontaining a fluid
medium, as shown in Figui& The boundary of)' is composed of the internal surfage
(boundary of?) and the external surfacg,. The formulation developed in the previous section
for interior problems is still valid when applied to the dom&in

o (X)v, (X) = / Gk (V, p) 1 dB, — / Rijmurn; dS,,
SUSwe SUSeo

where
oy 1 ifxeQ |
Oz(X)—{O ifX¢Q/}_1_a7 (30)

andn’ is the unit vector normal to the surface(f (either or S..), pointing outwards$?'. At
the surface:, n’ is opposite to the previously defined normgbointing outwards the structure
Q.

Furthermore, whef2' becomes infinitely large (for a given fixed struct@ty contributions
coming fromS,, become infinitely small and we get:

11— a(X)] vm(X) = /E Sppop S, — /Z Gons (Vs p) 1y . (31)

4.1 Exterior problem on the boundary

Using a procedure analogous to that described in Se8tilythe extension of equatio31)
to pointsx € X takes the form

Cruk(X)v(X) = ][

Sk Vi Xy, —][ Grmkokj (V, p) njdX,, (32)
b ¥
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Figure 3:Domain for the analysis of exterior Stokes flow.

with

If the surface in the vicinity ok € ¥ is smooth, we tak€’ , as defined by equatioi24),
obtaining have

1
§Um(X) :][ Smkvk dEy —][ Gmkakj (V,p) n; dZy (34)

% P
Otherwise, we us€’, defined by equatiorg) in case of non-smooth boundary in the vicinity
of X € ¥ to write:

((5mk +][ Smk dEy) Uk(X) :][ Smk/Uk dEy —][ Gka'kj (V,p) n; dEy (35)
b by

3

4.2 Fluid/solid boundary conditions

Let ©2 be a solid body immersed in a fluid environméplt such thaty represents the
fluid/solid interface. The stress vector (or traction) at this interface is given by

tk = O;N;.

This vector can be computed in terms of the velocities at the boundary by solving the bound-
ary integral equation32), written now as:

ka(X)Uk(X) :][ Smkvk dEy —][ Gmktk dZy (36)
by b))

As aforementioned, we are particularly interested in determining the drag forces induced
by an exterior flow on the surface of the structure). Such drag forces will play the role of
damping forces in the analysis of vibrations in the solid structure. For exterior Stokes problems,
t represents the force per unit area exerted by the solid on the liquid through the interface
that the drag force (action of the liquid onto the solid) per unit area we are looking for is given
byt = —t. Usingt instead oft, the previous equation takes the form

Coni()04(x) = ][

Smkvk dEy +][ GmktNk dEy. (37)
3

3
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5 BEM DISCRETIZATION

The boundary integral equatic&4) will be discretized using the boundary element method.
To this end, the surfacE is approximated using a mesh of linear triangular finite elements.
Then, the velocity and the drag force per unit area are approximated in the standard (Galerkin)
way:
V(X) = Ny (x)V,
f(X) = NJ(X)TJ7
whereN; is the shape function associated to nodandV ; andT ; the approximations to the

velocity and drag force per unit area, respectively, at this point. In 3D applicatigris, the
diagonal matrix:

NJ(X) = NJ(X)',

whereN; is the scalar shape function associated to ngdgich thatV;(x;) = d;.
Introducing these approximations into equati@ii)( we obtain

[C(X)NJ(X) —][ S(x,y)N;(y) dX, dzx} V; = {][ G(X,y)N,;(y)d¥, d>, | T,. (38)
> >
5.1 Collocation discretization

The collocation method consists of enforcing the discretized boundary integral eqi&)ion (
to hold at certain points called collocation points. Here, we adopt as collocation points the

nodal pointsx; € ¥ (I = 1,2,...,N). At each collocation point, the following linear system
is obtained:
AV, =BTy, (39)

with

Ay = C(X1)drs —][ S(xr, YN (y) A%y, (40)

P
B1s = | G YN Y) S, (41)
by

Once the surfac& has been discretized infd boundary elements., the integrals in the
above equation can be computed by summing the contributions from every boundary element:

M S M
} sz, - > / )z, =3 / F00.y)az, + 3 / Fy)dz,

e=S+1

Let us notice that the integrals over those elements.,, ..., 3¢ containing the collocation
point x; exist only in the sense of CPV and can not be computed using standard quadrature
rules. Over the remainder elemehis, 1, ..., >, standard numerical quadrature is used.

1113



6 COMPUTATION OF SINGULAR INTEGRALS

Let X, = P, be a linear triangle with vertex nodés2, 3. Let us assume that one of these
nodes, say node 1, coincides with the collocation pbiritooking at both kernelsd) and (L5),
we realize thaG(x;,y) andS(x;,y) tends to infinity ay — X;. Such singular kernels require

special treatment.

The integral involvingSis null over the linear (then flat) triangle containing the collocation
point. To demonstrate this, we realize that the position vacterx; — y is orthogonal to the
surface normah throughout such element, such that; = 0 at every point inside the element.

Then,
S - _ T P
(X1, Y) = Ry = —— =3 Lryng =0 Wy € P
Let us focus then on the integral containi@g
1
B = Gmn X7, Nz d¥, = — Dmn an ;
o = 1, (X7, Y)Ni(y) dX, 87w( 7+ EFong)
where
N
Dan = 5mn — d2y7
p T

= ][ I’ N, dx,.
P r3

6.1 Change of coordinates

(42)

(43)

(44)

(45)

If &, n are the natural coordinates of the triangle with origin at the collocation point,,

we can write
Ni=1-§—n, Ny =¢, N3 =1.

Further, we define the transformatigi ) — (r, ) as follows:

b
gzi(ﬁcosg_sjn9>7 T]:C<—%COSQ+SHI0>7

C C

with r, 0, a, b, c andh defined in Figurel.
Using this change of coordinates, every integral d¥ecan be computed as

03 ph/cosf
[ fiemaz, - / / F(E(r.8).7(r, 6))r dr 6.

6.2 Computation of D,,,,,;
Using equation46) we obtain:

1 03 h/cos0
]00 :][ —dEy = / / drdf = h]seca
pT 02

h/ cos@ 1 2
]10 :][ g / / - (_ cos 6 — sin 6)) drdf = %Isec - h_jsectana
p T 2c 2c

h/ cos 0 1 h h?
Io1 :][ / / - _2 cos f + sin 9) drdf = — T + o Lectan,
P T h 2c 2¢
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Yy
/
a 2
993 6,

v

Figure 4:Parameters defining the coordinates transformation in a triangle.

where

03 05 + tan @ diz + b
JSQC:/ secdf = I eClsttants ) B3 0
0, sec 0y + tan 6, dis +a

s d13 - de
Isectan = / secf tan 6 df = sec 93 — sec 92 = T’
02

with d;; = ||X; — x;|| as the length of the sidg.
The termD,,,,,; can be now computed for= 1,2, 3 as

Dmnl - 6mn[OO - Dmn2 - Dmn37 Dmn2 - 5mn1107 Dmn3 - 6mn[01'

6.3 Computation of F,,,,,;

First, let us realize that we can use the shape functigrts interpolate positions inside the
elementP; (as usually done with isoparametric finite elements):

3
=) Nil&n)rl) =&l + iy,
=1

wherer! is thei-th component of the position vector of nogend we have assumed that the
origin coincides with the position of node 1. This yields:

Introducing this equation into the expressida)(for F,,,..;, we obtain
Frn1 = 7’53)7’,(12)1720 + (7’(2)7"7(13) + 7’ (2)) Ji + 7”(3) J02 — Fng — Finna,

Frne =15 rn2 J30 + (7’53)7"(3) + 7‘( (2)) Jo1 + r(?’) ( )J12,
2

Frns = 10713 Jo1 + (Tm) r® +rld (2)) Jig + 17 Jos,
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being the integrald;;, computed in a way analogous to that employed in the previous section,
defined as follows:

h* — ab a+b h

Jii = [cos —[sin - _Ise(:7
H he? * c? c?
b? — h? b h
Jog = —Icos - 2_[sin _[seca
20 he? c? * c?
a? — h? a h
J = —Icos - 2_Isin _[seca
0 hc? c? * c?
h*(a + 2b) — ab? 2ab + b* — h? h(a + 2b) h?
J = [cos [sin - Isec _Isec ans
2 2hc3 * 2¢3 2¢3 * 2¢3 7!
2h — h2(2 b 2+ 2ab— h? h(2 b h?
J12 ? ( o ) cos @ rza Isin + ( iy >Isec - _[sectana
2hc? 2¢3 2¢3 2¢3
g b3 — 3bh? 3b% — h? . 3hb h?
30 — 2hc3 cos 203 sin 203 sec 203 sec tans
3ah? — a? 3a® — h? 3ha h?
J - —Icos —]sin - _]sec _]sec an-
0 2he3 * 2c3 2c3 * ¢35t
with
03 b
Icos:/ cos@d@zsineg—sinegz——i,
05 diz  dio
s h  h
[Sin:/ sinf#df = cosfy — cosy = — — —.
62 d12 d13

7 APPLICATIONS
7.1 Drag of a Stokes flow on a rigid sphere

In order to evaluate the accuracy of the model, it is applied to the classical benchmark of a
rigid sphere translating with constant velocltlyin a fluid with viscosityu. The resultant of
drag forces on the spheref$= 6ruR||U||. Some of the meshes &% elements used for the
analysis are shown in Figuie

Figure B) shows the accuracy of the current model compared to that obtainiécgbygi and
Di Gioia (2005 using constantk) triangles as a function of the number of degrees of freedom
(d.o.f).

The improvement of accuracy achieved with the current model thanks to the use of higher-
order elements is quickly realized: note, for instance, that the error for the mesh ofP3888
elements (1946 nodes, 5838 d.o.f.) is smaller than that obtainEdaogi and Di Gioig2005)
using a mesh of 12658, elements (37962 d.o.f.).

7.2 Drag on a vibrating MEMS

Let us consider the VIA vibrating beam accelerometer depicted in Fi{jdezeloped by the
French aerospace laboratory ONERZ (Traon et al.1998 Massoin2007). We are interested
in determining the quality factor which is defined for a damped systeBlas(et al, 1992)

stored vibration energy
T .
dissipated energy per period

Q=2 47)

The part of the accelerometer that is the object of this study is the vibrating quartz beam high-
lighted in Figure/. This beam is clamped at both ends, and its dimensions are: Iéngtl2
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192 elements, 98 nodes 768 elements, 386 nodes 3888 elements, 1946 nodes

Figure 5:Some meshes for the translating sphere benchmark.

10

e P, clements (current work)
o P, clements (Frangi and Di Gioia, 2005)
Thooio @ i iioiilnll O
S . :
os ™
£ [ [ ]
= R [
e e @ il
01 : i .. o shmn
: (]
...E
.
0.01 : :
10° 10° 10" 10°

Number of d.o.f.

Figure 6:Numerical error for the translating sphere benchmark.

mm, widthb = 30 um, heighth = 60 um. In practice, this beam vibrates in vacuum. However,
for the purposes of the present study, we will assume it vibrating in a air medium.

Let us discuss first the pertinence of the stationarity assumption applied to this case. Inertia
forces can be neglected when compared to viscous forces when frequency of vibragion
small enough, or equivalently, when the Reynolds nuniteas much smaller than unity. If we
takeh as the characteristic dimension of the vibrating body, and introduce the penetration depth

- /2, (48)
pw

we know thatRe< 1 whenever/§ < 1 (Landau and Lifshitz1959).

Unfortunately, in this case, the frequency of the vibration mode (the one we are interested
in) isw = 4.45 x 10° s71, and hencéi/§ = 7.30, contradicting the initial stationary hypoth-
esis. Then, we carry out an analysis where the frequency of the first mode of vibration of the
given beam was decreased (by decreasing the Young modulus of the beam material) in order to
decreaseé /6 and detect the range of validity of the stationary hypothesis. Results are shown
in Figurel8, where the numerically computed quality factq},( is compared to the analytical
expression®,) fromZhang and Turne(2007). The present numerical model always overesti-
mate the quality factor. For currehfé = 7.30, @,, is one order of magnitude higher thgy.

Note however thaf),, — @, ash/j — 0, validating the application of this model for loy/é.

Anyway, the present problem involving high vibration frequencies can not be adequately
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represented as a steady Stokes problem. The model propod@iddpynd Ye(2009) for os-
cillatory Stokes problems should provides a better approximation to high-frequency vibrating
MEMS, and will be considered in future works.

Let us finally point out that the influence of deformation was found very small in this case:
the computed quality factor differs 0.02% for models with and without deformation terms.
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10 e Numerical (current work)
e Analytical (Zhang and Turner, 2007) | ®
00X U e ]
® S
\ e
§ TO Fovvrrrrriinniirirerir i B, @i
Q
S ®
> ®
% 10°L : ...........................................
=
& el
1 °
[ N T TST 0 TS FTTTIRY FITFPRPTSS
10° t
10° 10" 10° 10° 10" 10"
h/o

Figure 8:Numerically vs. analytically computed quality factor for the vibrating beam in ONERA's accelerometer.

8 CONCLUSIONS

We developed a boundary element method to solve the incompressible Stokes problem in
general, and the exterior flow around MEMS in particular. We take into account the effect
of MEMS deformation on fluid flow for the sake of generality, even though it seems to be
negligible in practical applications. More studies are needed to support this observation in
general MEMS applications. In any case, the present model is capable of simulating rigid-
boundary problems with a satisfactory accuracy. In fact, the use of linear elements —richer that
the constant elements commonly used- together with the analytical integration of singular terms
—more accurate than numerical integration— contribute to improve the accuracy of the method.
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Finally, despite the steady Stokes describes satisfactorily a large number of MEMS in prac-
tice were the Reynolds number is low enough, it is not the case with the VIA accelerometer
we are particularly interested in. Future work will include the development of a model for
oscillatory Stokes flow allowing to simulate MEMS vibrating at higher frequencies.
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