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Abstract. A numerical single-phase model for unsteady state unsaturated flow has been derived and 
solved using the boundary element method (BEM). BEM procedures have had a relatively restricted 
development due to the limitation of the conventional BEM to deal with the highly non-linear 
governing equations. Here, the governing equation has been represented as a non-homogeneous 
Laplace equation, and the non-homogeneous part has been dealt with by using the dual reciprocity 
method (DRM). The soil-water characteristic curve according to a van Genuchten approach was 
employed. The developed scheme was implemented in a 3D code and applied to solution of upward 
and downward infiltration in clay showing good agreement with numerical solutions previously 
reported in open literature. 
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1 INTRODUCTION 

Modelling of unsaturated flow in porous media is applied in a number of different areas. 
Some areas of interest include hydrology, environmental protection and remediation and 
disposal of hazardous waste in underground repositories. In this work a numerical model for 
unsaturated flow where both phases, water and air, are modelled is developed. Such model 
could be of importance for solution of the problem of wetting of clay in underground 
repositories where the air cannot escape freely during the wetting of the clay, a process which 
may increase the air pressure slowing down the actual wetting process. 

Unlike the FEM and other domain based methods, which have been widely applied to the 
problem of unsaturated flow, BEM procedures have had a relatively restricted development 
due to the limitation of the conventional BEM to deal with the highly non-linear governing 
equations. Early work on the solution of the Richard’s equation used linearization schemes 
(Philip, 1969, 1989; Raats, 1970; Pullan, 1988, 1990), but Taigbenu and Onyejekwe (1995) 
pointed out that this lead to formulations that can at beast accommodate weak variations of 
medium properties. For instance, Martinez and Mc Tigue (1991) developed an effective 
solution technique, provided the domain is homogeneous, by applying a Kirchhoff 
transformation to the steady form of the Richard’s equation and using an exponential model 
for the hydraulic conductivity. In order to implement the procedure to problems defined in 
piecewise homogeneous domains, Martinez (1992) had to employed domain subdivision, in 
which case non-linear conditions appear at the interfaces of subdomains with different 
properties. Taigbenu and Onyejekwe (1995) were the first ones who solved the transient 
Richard’s equation without either linearizing or using a special case of soil constitutive 
relation. They used a BEM procedure known as the Green element method (GEM)(Taigbenu, 
1999). The GEM subdivides the domain in large number of sub-regions resulting in a mesh 
that looks like a FEM mesh. It uses the fundamental solution of the Laplace equation and 
domain integration in each subdomain. The matrix of coefficients of the resulting system of 
equations is banded and the procedure is apt to cope with non-homogeneous domains. 

In this work, the model is solved by using the BEM dual reciprocity -  multy domain 
approach (DRM-MD), which has shown good stability for solving non-linear problems in the 
past. The extension of the DRM-MD to different cases of unsaturated flow has been 
accomplished by Natalini (2005) and Samardzioska and Popov (2006). The DRM-MD shall 
be introduced in section 5. 

2 GOVERNING EQUATIONS FOR FLOW IN UNSATURATED POROUS MEDIA 

In this section a quick derivation of the governing equations is presented. It is considered 
that each phase occupies part of the domain and follows its own set of tortuous paths. A 
detailed treatment of the theory of flow in unsaturated media is given by Bear and Verruijt 
(1987) and Helmig (1997). 

2.1 Equation for the water phase 

The mass balance equation is given as 
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where n is the porosity, ρw  is the water density and Sw is the water saturation. Sw is defined as 
the relation of the volume of water in a representative elementary volume (REV) and the 
volume of voids in the REV. Sw ranges from zero to one. 
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The specific discharge is defined using the Darcy law 
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where kw is the effective permeability for water (a function of Sw), µw  is  the dynamic 
viscosity of water, pw is  the water pressure and z is the elevation. 

By substituting (2) into (1) and considering that n and ρw are constant, (1) can take the 
following form 
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The water relative permeability is defined as 
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where wK  is the hydraulic conductivity for water, yielding 
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By substituting (6) into (3), the equation for the water phase is obtained as 
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Note that it is possible to use equation (3) for the water phase, however (7) is a more 
suitable form since  rwk  is non-dimensional and ranges from 0 to 1. Conversely, wk  has 
dimensions, which makes its order of magnitude dependant on the scale factors, which can 

produce higher errors when the term w
w

k
k

∇
r1  is calculated rather than rw

rw
k

k
∇
r1 . 

2.2 Equation for the air phase 

The starting point for development of the equation for air phase is the mass balance 
equation: 
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combined with the Darcy law 
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where the nomenclature analogous to the one in (1) and (2), the sub-index ‘a’ identifying air 
properties. Note that 

1   S S aw =+                                                        (10) 

By substituting (9) into (8), considering n to be constant and neglecting the gravitational 

term zga ∇
r

ρ , and by using 
g

Kkk
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= , the following equation is obtained 
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Further, developing both terms in (11), considering that ρa is linked to pa through the 
equation of state and rearranging the equation yields 
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The derivative in time of the saturation appearing in (7) and (12) can be handled in the 
following way: 

w w c w c
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where subscript γ stands for “w” or “a” depending on the equation that is solved. Taking into 
account that the capillary pressure can be expressed as pc = pa – pw, it is obvious that ∂pc/∂pγ = 
(1 or –1). If furthermore we use (10) to eliminate aS , the final equations for water and air 
become 
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and 
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Equations (14) and (15) are the equations to be solved by the code, being wp  and ap  the 
unknown potential fields. The constants needed in the model are g , wρ , n , wK , aK , 'R  and 
T  while rwk , wS and rak  are functions of wp  and ap . The functions linking the potential 
fields and rwk , wS and rak  variables are given by the soil water retention curve. 

3 SOIL WATER RETENTION CURVE 

The soil water retention curve describes the relation between the capillary pressure, pc, and 
wS . There are several functions that have been proposed; among the most popular for the air-

water system are those given by Leverett (1941), Brooks and Corey (1964) and van 
Genuchten (1980). Recently Vogel et al. (1988, 2001) suggested the use of the following 
relation: 
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where Sm is a fictitious extrapolated parameter; Sm > 1, and ps is called the minimum capillary 
pressure. As (16) has evolved from the van Genuchten’s model, here it will be referred as the 
modified van Genuchten’s model. The modified Van Genuchten’s relative water 
permeabilities as a function of saturations are 
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Equation (16) has been originally proposed in terms of water contents; here it is modified 
in order to match with the definition (19), which takes into account 0aS , and the relative 
permeability of the air phase. Equations (16) – (19) will be referred to as the modified Van 
Genuchten model (VGM). The modified VGM eliminates numerical instabilities appearing 
near saturation and this formulation is further used in the numerical examples in section 6.  

4 SOLVING THE SYSTEM OF EQUATIONS 

When considering the simultaneous flow of both the water and the air in the unsaturated 
zone, the system of equations is represented by (14) and (15) together with those coming from 
the soil water model. Though the numerical model is developed for the case of variable air 
pressure, further in this work the air pressure is considered to be constant and equal to the 
atmospheric pressure. Therefore, in the examples presented here only (14) is solved; which is 
equivalent to solving the Richard’s equation.  

The code developed obtains solutions at different timesteps by using a linear time finite 
difference approximation. As the equations are non-linear, in each timestep an iterative 
procedure is applied. The code starts by calculating pc from the initial conditions of the 
problem, then Sw and krw are calculated and finally (14) is solved. In the next iteration, with 
the obtained value of pw, a new value for pc is calculated, then Sw and krw are recalculated and 
(14) is solved again. The process is repeated until convergence is reached within each 
timestep. 

The derivative of wS  in respect to cp  appearing in the equations will depend on the soil 
water retention model used and for the modified VGM it can be obtained as 
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5 BEM DRM-MD IMPLEMENTATION FOR THE WATER PHASE 

The dual reciprocity method (DRM), which was introduced by Nardini and Brebbia 
(1983), is acknowledged to be one of the most effective boundary element method (BEM) 
techniques for transforming domain integrals into boundary integrals.  

Popov and Power implemented a scheme using domain subdivision in conjunction with the 
DRM to avoid domain integration and called it the Dual Reciprocity Method − Multi-Domain 
approach (DRM-MD). The initial problem solved using this formulation was the flow of a 
mixture of gases through a porous media (Popov and Power, 1999a, 2000; Popov, Power and 
Baldasano,1998). The DRM-MD has also been applied to linear and non-linear advection-
diffusion problems (Popov and Power, 1999b), driven cavity flow of Navier-Stokes equations 
(Florez and Power, 2002a), non-Newtonian fluids (Florez and Power, 2002b), and flow of 
polymers inside mixers with complex geometries (Florez, 2001). Though the above 
applications are two-dimensional (2D), recently the technique has been applied to three-
dimensional (3D) problems by Natalini and Popov (2006, 2007) and Peratta and Popov (2006, 
2007). 

DRM-MD does not suffer the two main problems related to standard DRM; the systems of 
equations produced by DRM-MD are sparse and well conditioned, and the number and 
position of DRM nodes is usually not critical, since small sub-domains usually require no or 
few interior DRM nodes. 

Starting from a Poisson-like governing equation 

( ) ( )2u ,t b u, ,t∇ =x x                                                     (21) 

where u(x,t) is a scalar field (potential field), b(u,x,t) is the non-homogeneous term and x  is a 
position vector in the domain with components xi, after applying the DRM approach (for more 
details see Partridge et al., 1992), the following equation is obtained 
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where u*(x,y) is the fundamental solution of the Laplace equation, q(y) = ∂u(y)/∂n, q*(x,y) 
= ∂u*(x,y)/∂n and n is the unit vector normal to the boundary of the domain. The constant λ(x) 
has values between 1 and 0, being equal to 1/2 on smooth parts of boundaries and being equal 
to 1 for points inside the domain. Constants αk are unknown coefficients and the DRM 
approximation is applied to J nodes on the boundary Γ of the domain and I nodes inside the 
domain Ω.  

After application of collocation technique to all boundary nodes, (22) can be written in 
terms of four matrices, H, G, Û  and Q̂  which depend only on the geometry of the problem 
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Since the non-homogeneous term b in the DRM is expressed in the following form 

= Fb α                                                                 (24) 

after expressing α in terms of b, the following equation is obtained 
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The DRM integral formulation for wp  is obtained by replacing the non-homogeneous term 
in (14) into (25) 
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where sij is the matrix 1)ˆˆ( −− FQGUH  and 
jrwk~  and 

jw cS / p∂ ∂%  are calculated using values of 

ap = patm (atmospheric pressure) and wp  coming from the previous iteration, which will be 
denoted by wp~  from here on. 

x

p
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∂
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 and all the others partial derivatives are obtained by applying the DRM 

approximation (24) which in index notation is given as 

x

p
jw

∂

∂
=∑∑

= =

−

∂

∂n

k

n

l
wlk

jl
k

pf
x

f

1 1

1       (27) 

The time discretization is based on the implicit/explicit Euler method 
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The time derivative is approximated using a finite-difference scheme  
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By applying (27) – (30), (26) can be recast as 
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where wR~ is a matrix of components 
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and WT~  is defined as 
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and similar for yD~  and zD~ matrices. The components of vector v~  are defined as 
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The interface conditions between two sub-domains for pressure and flux state that the 
pressure and the flux must preserve continuity. In the case of pressure the interface conditions 
result in the following equation 

21 ww pp =                                                             (36) 

In the case of flux the interface conditions are equivalent to applying the mass 
conservation principle and can be derived starting from the flux of water trough the interface 
per unit surface and unit time for both interfaces as given below 
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where 
1

nz  is the z-component of 1n
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nz is the z-component of 2n
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. Finally, the matching 
condition for flux is obtained as 
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6 NUMERICAL EXAMPLES 

All the examples presented here use discontinuous elements combined with the augmented 
thin plate spline function as approximation function in the DRM approximation with no 
internal DRM nodes. The parameters 

wpθ and 
wqθ in equations (28) and (29)(29) were set 

equal to 1, consequently the time discretization scheme becomes implicit Euler type. 

6.1 CASE 1: Upward infiltration in clay  

The first case simulates infiltration in a 1m long clay column that initially is assumed to be 
in equilibrium with an imposed water pressure, wp , of zero Pa at the bottom of the column (z 
= 1). The boundary conditions were 98060 Pa of water pressure (atmospheric pressure) at the 
bottom of the column (z = 1) combined with zero flux at the top (z = 0), leading to upward 
infiltration against gravity. A numerical solution of this case using a 1D model has been 
presented by Vogel et al. (2001). The soil-water retention curve used was the modified Van 
Genuchten model. The same parameters were used as in the Vogel’s example: 

Porosity, n     0.38 
Hydraulic conductivity of water, wK  5.56E-07 m/s or 4.8 cm/day 
Irreducible water saturation, 0wS   0.17895 
Van Genuchten’s a  parameter  0.8 1/m or 0.008 1/cm 
Van Genuchten’s n parameter  1.09 
Conversely to Vogel’s code, which used an adaptive time stepping algorithm, this code 

used a fixed timestep of 0.1 day. The 3D domain was a prismatic column of 0.2 × 0.2  × 1 m3. 
The mesh had 410 subdomains being finer in the bottom. Figure 1 presents a view of the 
mesh. Preliminary tests failed when a uniform mesh of 173 subdomains was used. In order to 
produce results equivalent to the 1D case, a zero flux boundary condition was imposed on the 
sides of the domain. In order to start the iterations of the non-linear loop in the first timestep, 
the code requires an initial guess for wp~ different from zero within the domain, see Figure 2. 
For the results presented in Figure 3, the initial guess was that wp~  was equal to the initial 
conditions when 9.0≤z and from there the water pressure increased linearly up to the 
atmospheric pressure at 1=z , where it matched the boundary condition.  
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Figure 1: mesh of 410 subdomains. 
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Figure 2: Initial guess and initial condition for case 1. 
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Figure 3: results of case 1. 

The agreement of the results displayed in Figure 3 and those of Vogel et al. (2001) is very 
good.  

Table 1 presents the number of iterations needed in every timestep to converge. Note how 
the convergence is easier as the pressure distribution becomes smoother. 

Timestep 1 2 3 4 5 6 7 8 9 10 
No. of 

iterations 
19 18 15 12 11 9 8 8 6 6 

Table 1: number of iterations in every timestep for case 1. 

6.2 CASE 2: Downward infiltration in clay  

This example was used by Vogel et al. (2001). It is the simulation of infiltration in a 1m 
long clay column that, again, initially was assumed to be in equilibrium with an imposed 
water pressure, wp , of zero Pa at the bottom of the column. The boundary conditions were 
98060 Pa of water pressure (atmospheric pressure) at the top of the column combined with 
zero flux at the bottom, leading to downward infiltration. Three meshes were used. The first 
one was identical to the one displayed in Figure 1, though the domain was inverted in order to 
have the finer part of the mesh in the top. The other two meshes, which had 1062 and a 2233 
subdomains, are shown in Figure 4. The initial guess was a linear function of the z-coordinate 
that started with wp~  = atmospheric pressure at 0=z  (top of the domain) and decreases to 
meet the initial condition curve at 1.0=z , from there the initial guess is identical to the initial 
condition. Figure 5 shows the initial guess and the initial condition. The remaining part of the 
set up was identical to case 1.  
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Figure 4: Case 2, view of the 1062 and 2233 subdomains meshes. 
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Figure 5: Initial guess and initial condition for case 2. 

Figure 6 to Figure 8 show results using the three meshes described above. In Table 2 the 
number of iterations in every timestep is shown. 
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Figure 6: results of case 2 using the 410 subdomains mesh. 
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Figure 7: results of case 2 using the 1062 subdomains mesh. 
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Figure 8: results of case 2 using the 2233 subdomains mesh. 

Solving the downward infiltration case is more difficult than the upward infiltration case 
because the water goes down in a sharp front that resembles a step function. The severe non-

linearity of the soil-water curve near saturation makes difficult computing the term rw
rw

k
k

∇
r1  

in (14), because in some points near saturation there are high values of rwk∇
r

 combined with 
very small values of rwk . Compared to case 1, when using the same mesh, the code needs 
more iterations to converge in the first 2 timesteps (see Table 2) and it does not converge in 
the third timestep within 150 iterations. The code was set to stop the iterative procedure after 
certain number of iterations (150 or 300) and these results are indicated in Table 2 as 
“truncated”. The situation improves with mesh refinement, as can be seen in Table 2. Mesh 
refinement improves only the convergence; the quality of the results is similar with different 
meshes, provided convergence has been reached. Compared to the results of Vogel et al., the 
agreement is not as good as in case 1.    

 
Timestep 1 2 3 4 5 

410  
subs 

28 56 150 
(truncated) 

150 
(truncated) 

150 
(truncated) 

1062 
subs 

29 46 117 150 
(truncated) 

150 
(truncated) N

o.
 o

f 
ite

ra
tio

ns
 

2233 
subs 

24 37 75 300 
(truncated) 

300 
(truncated) 

Table 2: number of iterations in every timestep for case 2. 

7 CONCLUSIONS  

A numerical model for flow in unsaturated media has been developed and solved using the 
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BEM DRM-MD approach. The model was developed in order to predict the saturation of clay 
in underground repositories, which requires solving two coupled non-linear partial differential 
equations; one for the air and one for the water phase. Taking into account that such a 
complex model can be solved in different ways, in order to study the basic behaviour of the 
formulation under simpler conditions before solving the full two phases model, the air was 
assumed to be at atmospheric pressure; a situation that is equivalent to solving the Richard’s 
equation.  

       The code showed that it is able to accurately solve problems of infiltration in clay. For 
instance, cases 1 and 2 showed an excellent performance in regard with the one-dimensional 
results of Vogel et al. (2001). However, there was slow convergence for downward 
infiltration. All the results indicate that the terms of the governing equation containing 

rw
rw

k
k

∇
r1  are the cause for slower convergence in some cases. The severe non-linearity of the 

soil-water curve near saturation makes the task of computing the term rw
rw

k
k

∇
r1  in (14) a very 

difficult one, because in some points near saturation there are high values of rwk∇
r

 combined 

with very small values of rwk . The code loses accuracy when it has to calculate rwk∇
r

 and the 
water advances in a sharp front that resembles a step function, as it happens in case 2. Case 2 
shows that the problem can be resolved by using mesh refinement. However, mesh refinement 
in 3D increases much more computer requirements in terms of CPU and memory than in the 
cases of 1D and 2D.  
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