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Abstract. This work presents a numerical model based on Computational Wind Engineering (CWE) 
techniques to simulate the wind action over buildings. CWE deals with application of Computational 
Fluid Dynamics (CFD) methodologies in classical Wind Engineering problems, which are usually 
analyzed employing experimental tools in wind tunnels. In Wind Engineering procedures the 
aerodynamic analysis is performed to investigate effects of the wind action over structures where the 
structural motion may be neglected. The Navier-Stokes equations for viscous incompressible flows 
and a continuity equation based on the pseudo-compressibility hypothesis are the governing equations 
for the fluid analysis. The numerical model to simulate wind flows is obtained applying the explicit 
two-step Taylor-Galerkin method on the governing equations. Spatial approximations are performed 
using the Finite Element Method with eight-point hexahedral elements and one-point quadrature, 
which leads to analytical evaluations of the element matrices. Large Eddy Simulation (LES) is 
employed to analyze the large scales of turbulent flows and the dynamic model is used for the sub-grid 
scales modeling. Typical applications on building aerodynamics are simulated in order to demonstrate 
the accuracy of the present formulation. 
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1 INTRODUCTION 

Computational Wind Engineering (CWE) deals with numerical simulation of classical 
Wind Engineering problems using numerical algorithms developed by Computational Fluid 
Dynamics (CFD). Although wind tunnel tests have been traditionally used in the field of 
Wind Engineering to evaluate the wind action over structures, many investigations are 
performed now by the computational approach (see Murakami, 1997 and Sthathopoulos, 1997 
for detailed information). In this context, applications on building aerodynamics are very 
useful for validation of CWE codes since highly complicated flow characteristics are usually 
generated around buildings, such as impingement, separation, reattachment, circulation, 
vortices, turbulence and 3-D flows.  

Building aerodynamics is concerned about the determination of pressure distributions and 
wind forces acting on building structures. Furthermore, the determination of air flow patterns 
around buildings or a group of buildings is of great importance for the prediction of wind 
environmental conditions in urban areas. It is well known that interference effects among 
adjacent buildings may alter significantly the velocity field in the surroundings of these 
buildings such that the comfort of pedestrians may be affected. Numerical applications on this 
subject may be found in Baskaran and Kashef (1996), Sthathopoulos and Baskaran (1996), He 
and Song (1999) and Tutar and Oguz (2002). 

Wind flows are simulated in CWE problems using numerical methods to solve the flow 
governing equations. Pressure and velocity fields are then created over a spatial domain in 
which the flow is analyzed. In addition, the dependence of the governing equations on the 
time domain must be taken into account using some time-marching scheme to solve the 
transient problem. Numerical models based on the FEM have been developed in the field of 
CFD over the last forty years and a great success has been reached by these algorithms in 
many simulations related to engineering applications (see, for instance, Reddy and Gartling, 
1994; Gresho and Sany, 1999; Zienckiewicz et al., 2005). 

When compared with the sound speed in the air the wind velocity is small for usual CWE 
applications and therefore, the incompressible flow equations are employed to model these 
kinds of flows. The mathematical treatment of incompressible flows is subjected to 
restrictions imposed to the continuity equation by the incompressibility assumption 
(divergence-free condition on the velocity field). The incompressibility constraint usually 
leads to implicit treatment of the pressure field, which requires additional storage of 
computational memory. Moreover, implicit algorithms are not suitable to analyze highly 
transient problems, as for example, turbulent flows, where the time step is limited by physical 
reasons. These drawbacks may be circumvented using the pseudo-compressibility hypothesis, 
introduced by Chorin (1967) to solve incompressible flows by an explicit way. Slight 
compressibility is justified by natural flows, where the sound is propagated with finite speed, 
unlike the infinite value predicted by the incompressibility assumption. 

Although direct simulation will be an executable task for all Reynolds numbers in a near 
future, turbulence modeling is still required to represent the effects of small scales over the 
main flow. Large Eddy Simulation (LES) is recognized as one of the best turbulence models 
available for CWE applications, since LES can predict the flowfield around a bluff body more 
accurately than other models do. In the LES formulation, the turbulence’s large scales are 
solved directly and the small scales are reproduced by sub-grid models. In the last decade, 
computations with the conventional Smagorinsky’s sub-grid model (see Smagorinsky, 1963) 
have been gradually replaced by the dynamic model (see Germano et al. 1991 and Lilly, 
1992), which removed some shortcomings of the conventional Smagorinsky’s model in the 
calculation of the eddy viscosity. 
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In the present paper the flow governing equations are the Navier-Stokes equations and a 
special form of the mass conservation equation, which is obtained using the pseudo-
compressibility hypothesis. Turbulent flows are analyzed using Large Eddy Simulation (LES) 
with the dynamic model for sub-grid scales. The numerical scheme for the flow analysis is 
obtained applying the explicit two-step Taylor-Galerkin method (see Kawahara and Hirano, 
1983) on the governing equations set. The Finite Element Method is employed for spatial 
discretizations using the eight-node hexahedrical isoparametric element with one-point 
quadrature. Typical applications on building aerodynamics are carried out in order to 
demonstrate the applicability of the present formulation. 

2 THE GOVERNING EQUATIONS FOR WIND FLOWS 

Wind flows are usually characterized by the following properties: 
1) Natural wind streams are considered to be within the incompressible flow range; 
2) Wind is always flowing with a constant temperature (isothermal process); 
3) Gravity forces are neglected in the fluid equilibrium; 
4) Air is considered as a Newtonian fluid. 
Considering the properties presented above and in the absence of structural motion 

(aerodynamic analysis), the flow governing equation are defined in a classical Eulerian 
kinematical description by the following expressions (see, for instance, Schlichting, 1979): 

a) Momentum conserving equations – the Navier-Stokes equations: 

 
ij fi i

j
j j j

1 1 ( , 1, 2,3) in v v pv i j
t x x x

σ
ρ ρ

∂∂ ∂ ∂
+ = − + = Ω

∂ ∂ ∂ ∂  (1) 

b) Mass conserving equation for pseudo-compressible flows (see Braun and Awruch, 2005 
for further information) – the continuity equation: 

 
j2 f

j
j j

0 ( 1,2,3) in 
vp pv c j

t x x
ρ

∂∂ ∂
+ + = = Ω

∂ ∂ ∂  (2) 

c) Constitutive equation for Newtonian fluids: 

 
ji k

ij ij ij ij ij
j i k

; ( , , 1, 2,3)
vv vp i j k

x x x
σ δ τ τ µ λ δ

⎛ ⎞∂∂ ∂
= − + = + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3) 

where vi are components of the velocity vector in the i direction, xj are components of the 
cartesian coordinates vector in the j direction, t indicates the time domain, p is the 
thermodynamic pressure, ρ is the fluid’s specific mass, c is the sound speed in the fluid field 
and Ωf is the flow’s spatial domain, which is bounded by TfΓ , δij are components of the 
Kroenecker’s delta ( ij ij1  for  ;  0  for  i j i jδ δ= = = ≠ ) and µ and λ are the dynamic and 
volumetric viscosities of the fluid, respectively. 

Neumann and Dirichlet boundary conditions must be specified on TfΓ  to solve the flow 
problem, which are given by the following expressions: 

 
v

i i ( 1, 2,3) on v v i= = Γ  (4) 

 
ponp p= Γ  (5) 
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j ij ji k
ij j i

j i k

( , , 1,2,3) on Γ
v nv vp n S i j k

x x x
σµ λδ

ρ ρ ρ ρ
σ

⎡ ⎤⎛ ⎞∂∂ ∂
− + + + = = =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦  (6) 

where vΓ  (boundary with prescribed values iv  for the fluid velocity field), pΓ  (boundary 
with prescribed values p  for the pressure field) and Γσ  (boundary with prescribed values iS  
for the fluid boundary tractions) are complementary subsets of the boundary TfΓ , such that 

Tf v p  ΓσΓ = Γ +Γ + . In Eq. (6) nj are components of the unit normal vector n at the boundary 
Γσ . Initial conditions for the pressure and velocity fields must be also specified at t = 0 to 
start up the flow analysis. 

2.1 The turbulence modeling 

Although any viscous incompressible flow can be analyzed with the set of governing 
equations given above, it is observed that only flows with moderate Reynolds numbers can be 
in fact simulated using direct simulation, considering the computational capacity of the 
modern computers. Turbulent flows are very restrictive because the smaller turbulence scales, 
which are associated to the smaller eddies of the flow field, require computational meshes 
with very fine definition in order to describe the motion of this flow structures correctly. The 
turbulence problem is usually solved employing modified governing equations that reproduce 
the turbulence effects over the main flow statistically. These turbulence effects are 
represented by means of turbulence models. In this work, LES is used in the turbulence 
modeling. 

In the LES formulation the governing equations are submitted to a spatial filtering process 
where the flow field is decomposed into large and small scales (or large and small eddies). 
Large eddies are solved directly with the filtered equations, which are described by field 
variables associated to the large scales, and eddies smaller than the grid resolution are 
modeled using turbulence closure models, which are employed in order to represent the small 
scales effects over the large scales. 

The governing equations may be written after the filtering process as follows: 

 
ij SGS fi i

j ij
j j j

1 1 ( , 1, 2,3) in v v pv i j
t x x x

σ
τ

ρ ρ
⎛ ⎞∂∂ ∂ ∂

+ = − + + = Ω⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (7) 

 
j2 f

j
j j

0 ( 1,2,3) in 
vp pv c j

t x x
ρ

∂∂ ∂
+ + = = Ω

∂ ∂ ∂  (8) 

where SGS
ijτ  are components of the Reynolds sub-grid stress tensor (which is associated to 

unsolved sub-grid terms that must be modeled) and overbars indicate large scale variables. 
The Reynolds sub-grid tensor is usually approximated according to the Boussinesq 
assumption: 

 ( )SGS
ij i j t ij2v v Sτ ρ µ′ ′= =  (9) 

where commas indicate sub-grid scale variables, µt is the eddy viscosity and ijS  are 
components of the strain rate tensor, which are expressed in terms of large scale variables as 
follows: 
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ji

ij
j i

1
2

vvS
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (10) 

The eddy viscosity µt must be obtained using some sub-grid scale model. In the present 
work, this is made employing the dynamic sub-grid scale model. The dynamic model was 
presented first by Germano et al. (1991) and adjusted later by Lilly (1992). 

The eddy viscosity µt is usually expressed in the dynamic model as shown below: 

 ( ) 2
t ,C x t Sµ ρ= ∆  (11) 

where ( ),C x t  is the dynamic coefficient (with x  and t indicating space and time 

dependencies), S  is the filtered strain rate tensor modulus and ∆  is the characteristic 
dimension of the grid filter, which is associated to element volumes in FEM formulations 
( 3ele elevol∆ = ). The dynamic coefficient is updated along the time integration process taking 
into account instantaneous conditions of the flow field. The expression due to Lilly (1992) is 
employed here as follows: 

 ( ) ij ij

ij ij

1,
2

C x t = −
L M

M M  (12) 

where: 

 ij i j i jv v v v= −L  (13) 
and: 

 
2 2

ij ij ijS S S S= ∆ − ∆M  (14) 

The solution of Eq. (12) demands two filtering processes on the flow governing equations: 
the first filtering is associated to the use of the LES formulation, which is related to grid filter 
∆  and large scale variables represented by overbars ( • ). The second filtering is referred to a 
second filter called test filter ∆ , which must be larger than the first filter ∆ . Second 

filtering variables are identified by the symbol •  and they are computed using the 
expression below: 

 

jn

j
i j 1 i

n

j
j 1 i

1

k
d

k

d

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 (15) 

where 
i

k  is the second filtering value at the nodal point i of a generic variable k , which is 
associated to large scales of the first filtering, n is the number of nodal points with direct 
connectivity to the nodal point i, j

id  is the distance between the nodal points i and j and jk  is 
the first filtering value of a generic variable k computed at the nodal point j. The second filter 
arrangement is illustrated in Figure 1. 

The characteristic dimension of the second filter at a nodal point i is determined by: 
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nei

3
p 1

(p)vol
=

∆ = ∑  (16) 

where ne is the number of elements in the neighborhood of node i and vol(p) is the volume of 
the element p. 

j3

4j

j

6j

2

i

j5

j1

 
Figure 1. Second filter arrangement. 

The final form of the governing equations with turbulent effects is written as follows: 

( ) ij fi i ii ik
j t ij

j j j j i k

1 1 ( , , 1, 2,3) in 
vv v v vpv i j k

t x x x x x x
µ µ λ δ

ρ ρ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂∂ ∂
+ = − + + + + = Ω⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦  (17) 

 
j2 f

j
j j

0 ( 1,2,3) in 
vp pv c j

t x x
ρ

∂∂ ∂
+ + = = Ω

∂ ∂ ∂  (18) 

3 THE NUMERICAL MODEL FOR THE FLOW ANALYSIS 

The explicit two-step Taylor-Galerkin scheme is employed in this work for the time 
discretization of the flow governing equations. Additional information about this numerical 
model may be found in Kawahara and Hirano (1983) and Braun and Awruch (2003). The 
algorithm for the flow simulation may be summarized in the following steps: 

(1) Calculate n 1 2
iv +  with: 

n 1 2 n
i i

n2
j jti i k

j ij ij j k
j j j j i k j k

1           
2 4

v v

v vv v vt p tv v v
x x x x x x x x

µ µ λδ δ
ρ ρ ρ

+ = +

⎡ ⎤⎧ ⎛ ⎞ ⎫∂ ∂+∂ ∂ ∂∆ ∂ ∂ ∆⎪ ⎪⎛ ⎞− − + + + +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎢ ⎥⎩ ⎝ ⎠ ⎭⎣ ⎦

 (19) 

 
(2) Imposition of the boundary conditions (4) and (6) on n 1 2

iv + . 
(3) Calculate n 1 2p +  with: 

 

n
2

jn 1 2 n 2
j i j

j j j i2 4
vt p t pp p v c v v

x x x x
ρ+

⎧⎡ ⎤ ⎫∂∆ ∂ ∆ ∂⎪ ⎪⎛ ⎞= + − − +⎢ ⎥⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥ ⎪⎪⎣ ⎦ ⎭⎩  (20) 
(4) Imposition of the boundary condition (5) on n 1 2p + . 
(5) Calculate the incremental pressure field with n 1 2 n 1 2 np p p+ +∆ = − . 
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(6) Calculate n 1 2
iv +  with: 

 
2 n 1 2

n 1 2 n 1 2
i i

i

1
8
t pv v

xρ

+
+ + ∆ ∂∆

= −
∂  (21) 

(7) Imposition of the boundary conditions (4) and (6) on n 1 2
iv + . 

(8) Update the velocity field with n 1 n n 1 2
i i iv v v+ += + ∆ , where: 

 

n 1 2

jn 1 2 ti i k
i j ij ij

j j j j i k

1 vv v vpv t v
x x x x x x

µ µ λδ δ
ρ ρ ρ

+

+
⎡⎧ ⎛ ⎞ ⎫∂ ⎤+∂ ∂ ∂∂ ∂⎪ ⎪∆ = ∆ − − + + +⎢ ⎜ ⎟⎨ ⎬⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ⎪⎪ ⎢ ⎦⎭⎩ ⎝ ⎠⎣  (22) 

(9) Imposition of the boundary conditions (4) and (6) on n 1
iv + . 

(10) Update the pressure field with n 1 n n 1 2p p p+ += + ∆ , where: 

 

n 1 2

jn 1 2 2
j

j j

vpp t v c
x x

ρ
+

+
⎧ ⎫⎛ ⎞∂∂⎪ ⎪∆ = ∆ − − ⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭  (23) 

(11) Imposition of the boundary condition (5) on n 1p + . 
The final form of the numerical model is obtained applying the Bubnov-Galerkin’s 

weighted residual scheme into the FEM context on the discrete forms of the flow governing 
equations. Eight-node hexahedral elements are used for spatial approximations employing the 
one-point quadrature technique for the evaluation of element matrices. An efficient method 
for hourglass control in the fluid mesh is adopted according to the model proposed by 
Christon (1997). 

4 THE NUMERICAL EVALUATION OF AERODYNAMIC COEFFICIENTS 

The use of aerodynamic coefficients is very popular in Wind Engineering analyses and 
many analytical models to describe aerodynamic/aeroelastic phenomena are formulated using 
this important information. Aerodynamic forces are developed over the body surface of 
structures immersed in a fluid stream. These forces are usually obtained by the integration of 
pressures and shear stresses developed on the fluid-structure interface owing to the flow 
action. The components of the aerodynamic forces in the along-flow and across-flow 
directions are referred to as drag and lift, respectively. 

The aerodynamic coefficients are evaluated in this work using the formulae below: 

 

( ) ( ) ( )

( ) ( ) ( )

NNI NNI NNI
ii i

x y z
i 1 i 1 i 1

Fx Fy Fz2 2 2

NNI NNI NNI
i i i

y x x y z y y z x z z x
i 1 i 1 i 1

Mz Mx My2 2 2 2 2

F F F
C ; C ; C

1 2 V HW 1 2 V HL 1 2 V WL

F F F F F F
C ; C ; C

1 2 V HLW 1 2 V H L 1 2 V H W

ρ ρ ρ

ρ ρ ρ

= = =

∞ ∞ ∞

= = =

∞ ∞ ∞

= = =

∆ − ∆ ∆ − ∆ ∆ − ∆
= = =

∑ ∑ ∑

∑ ∑ ∑
 (24) 

with: 
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( )

( )
( )

i
x i g

i

y i g

i
z i g

= X - X

= Y - Y

= Z - Z

∆

∆

∆
 (25) 

where Xi, Yi and Zi are Cartesian global coordinates of a nodal point i on the fluid-structure 
interface, Xg, Yg and Zg are Cartesian global coordinates of the body gravity center, V∞  is the 
flow reference speed, NNI is the number of fluid nodal points on the body surface and L, W 
and H are characteristic dimensions related to length, width and height of the immersed body. 
The aerodynamic forces Fx, Fy and Fz at a nodal point i are obtained by numerical integration 
of Eq. (6) over the body surface as follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

i ii i i i i
x 1 S 1j 1j j S

i i ii i i i
y 2 S 2 j 2j j S

i ii i i i i
z 3 S 3 j 3j j S

F A A

F A A

F A A

t p n

t p n

t p n

τ δ

τ δ

τ δ

⎡ ⎤= − = − −⎢ ⎥⎣ ⎦
⎡ ⎤= − = − −⎢ ⎥⎣ ⎦
⎡ ⎤= − = − −⎢ ⎥⎣ ⎦

 (26) 

where ( )i
SA  is the influence area of a nodal point i at the fluid-structure interface, which may 

be obtained by some smoothing procedure taking into account face areas of elements in the 
neighborhood of the node i, and ( )i

jn  are components of  the unit normal vector n at the same 

nodal point i. Although nodal values for the pressure field ( )ip  are obtained by the flow 
analysis straightforwardly, viscous stresses are variables given at element level in FEM 
formulations and thus, they must be evaluated at nodal level using smoothing techniques. In 
this paper the viscous stresses at a nodal point i on the body surface are calculated in the 
following manner: 

 

( )
NFC

ij kk
A k 1
ij NFC

k
k 1

τ
τ =

=

Γ
=

Γ

∑

∑
 (27) 

where NFC is the number of elements in the neighborhood of a nodal point A at the fluid-
structure interface, kΓ  is the face area of the element k and ( )ij k

τ  are shear stress components 

of the element k, which are evaluated at the finite element center according to the reduced 
integration technique. 

5 NUMERICAL APPLICATIONS 

5.1 Wind loads and air flow patterns over a building model 

This first numerical application presents the aerodynamic analysis of a building model. 
The building is submitted to a wind stream with atmospheric boundary layer characteristics in 
order to obtain circulation patterns of the wind flow around the building and the aerodynamic 
coefficients. It is important to notice that the present simulation does not consider turbulence 
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fluctuations in the inflow boundary conditions. Figure 2 shows the referred boundary 
conditions and the geometrical characteristics of the computational domain, which is 
constituted by 467840 elements. Physical properties of the wind flow as well as geometrical 
and numerical constants used in the numerical simulation are presented in Table 1. The 
present simulation is carried out with a Reynolds number Re = 9.5x104 (Re = ρV0D/µ). 

5H 20HH/2

H

H/2
H/2

10.5H
X

Z
Y

5HX = 0
V1 = V0(Z/δ)
V2 = V3 = 0

Y = 0
V1 = V0(Z/δ)
V2 = V3 = 0

Y = 10.5H
V1 = V0(Z/δ)
V2 = V3 = 0

X = 26.5H
p = 0

V1 = 0
V2 = 0
V3 = 0

V0 = 50 m/s
H = 60 m
δ = 300 m
n = 0.34

n
n

n

Z = 0
V1 = V2 = V3 = 0

α

 
Figure 2. Geometrical characteristics of the computational domain for a building model. 

Specific mass (ρ) 1.25 Kg/m3 
Dynamic viscosity (µ) 6.96x10-3 Ns/m2 

Volumetric viscosity (λ) 0.0 Ns/m2 
Sound speed (c) 330.0 m/s 

Reference velocity – V0 (avrg. vel. over the bldg. height) 17.6 m/s 
Characteristic dimension 30 m 

Time step (∆t) 6.5x10-4 s 

Table 1. Constants employed in the aerodynamic analysis of a building model. 

Table 2 presents time-average values of force coefficients obtained by the present work in 
the aerodynamic analysis of the building model proposed above. These values were calculated 
from time histories that are referred to drag, lift and moment resultants collected along the 
numerical simulation. Results referred to the experimental work performed by Akins et al. 
(1977) in wind tunnel studies are also presented, where a good agreement can be observed 
between numerical and experimental data. 
 

Aerodynamic coefficients References 
CFx CFy CFz CMx CMy CMz 

Present work 1.407 0.012 1.340 0.000 0.874 0.024 
Akins et al. (1977) 1.457 0.009 1.266 0.000 0.829 0.000 

Table 2. Aerodynamic coefficients obtained in the aerodynamic analysis of a building model. 

The wind environment conditions around the building model may be evaluated from 
Figure 3, where instantaneous streamlines obtained by the present simulation are shown. It is 
observed that the present formulation was able to reproduce most of the circulation patterns 
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typically developed in the surroundings of high-rise buildings immersed in wind streams with 
atmospheric boundary layer characteristics. Circulation phenomena such as the development 
of horseshoe vortices on the floor, recirculation zones behind and in front of the building, 
conical vortices at the corners of the roof and separation/attachment zones on the 
lateral/frontal walls were reproduced in accordance with experimental observations (see 
Peterka et al., 1985 for detailed information about flow circulation around buildings). 

   

   
Figure 3. Instantaneous streamlines over the building model. 

5.2 Wind loads and air flow patterns over two parallel building models 

The present simulation shows the aerodynamic analysis of two parallel buildings with 
different configurations, which are immersed in a wind flow with atmospheric boundary layer 
characteristics.  Airflow conditions around the buildings as well as aerodynamic forces acting 
on each building are investigated in this example. A schematic view of the computational 
domain with the respective boundary conditions may be found in Figure 4. The inflow 
boundary conditions are represented using a power law mean wind profile without velocity 
fluctuations. The computational grid is constituted by 752640 elements. Fluid properties are 
presented in Table 3 with additional constants employed by the numerical algorithm. The 
numerical analysis is performed with a Reynolds number Re = 7.9x105. 

Table 4 presents time-average values of force coefficients obtained by the present work in 
the aerodynamic analysis of the parallel buildings proposed above. As in the preceding 
example, these values were calculated from time histories that are referred to drag, lift and 
moment resultants collected along the numerical simulation. Unfortunately, experimental 
results for aerodynamic coefficients are not available in this case. 
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Figure 4. Geometrical characteristics of the computational domain for two parallel building models. 

Specific mass (ρ) 1.25 Kg/m3 
Dynamic viscosity (µ) 1.09x10-3 Ns/m2 

Volumetric viscosity (λ) 0.0 Ns/m2 
Sound speed (c) 280.0 m/s 

Reference velocity – V0 (avrg. vel. over the bldg. height) 34.7 m/s 
Characteristic dimension 20 m 

Time step (∆t) 5x10-4 s 

Table 3. Constants employed in the aerodynamic analysis of two parallel building models. 

Aerodynamic coefficients Buildings 
CFx CFy CFz CMx CMy CMz 

Building 1 (H = 40 m) 1.050 -0.045 0.380 0.006 0.055 0.024 
Building 2 (H = 20 m) 0.800 -0.400 0.450 -0.019 0.062 -0.048 

Table 4. Aerodynamic coefficients obtained in the aerodynamic analysis of two parallel building models. 

Figure 5 shows the wind circulation around the building models, which is characterized by 
the time averaged velocity vector field taken at a height of 2 m above the ground. The 
velocity field obtained here is compared to the work by Tutar and Oguz (2002), where a 
reasonable agreement is verified. It is observed that some important characteristics of the flow 
field were reproduced by the present simulation: (a) development of stagnation zones at the 
frontal faces of the buildings; (b) development of reverse flow in front of the higher building; 
(c) flow separation at the frontal corners of both buildings; (d) acceleration of the flow in the 
passage between the buildings. On the other hand, it is clearly observed that some 
characteristics were not reproduced adequately. The main difference between numerical and 
experimental results is found in the frontal region of the parallel buildings, where the area of 
reverse flow obtained by the present simulation is more pronounced for both buildings. In 
addition, the flow configuration in the wake of the building models is somewhat different 
when compared to the reference work. However, these results are justified by the lack of 
inflow turbulence in the present formulation, which leads to significant modifications in the 
flow characteristics. 
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Z = 2 m       
Figure 5. Time averaged velocity vector field around two parallel building models at Z = 2 m. 

The wind environment conditions around the parallel buildings are presented in Figure 6, 
where instantaneous streamlines obtained by the present simulation are shown. The main 
circulation phenomena of the preceding application can be found in this example. 
Furthermore, interference effects can be easily observed near the passage between the 
buildings. 

   

   
Figure 6. Instantaneous streamlines over two parallel building models. 

5.3 Wind environment conditions around a block of buildings 

In the present application a typical urban area is selected as a test case for the computation 
of wind environment conditions around buildings immersed in a flow with atmospheric 
boundary layer characteristics (except for the turbulence intensity of the incident stream, 
which is not taken into account by the present formulation). Information about geometrical 
properties and boundary conditions of the computational domain as well as locations of points 
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of measurements of wind speeds are presented in detail in Figure 7 with the repective finite 
element mesh. 
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Figure 7. Geometrical characteristics and finite element mesh of the computational domain for the block of 

buildings. 

The computational grid is constituted by 1268272 elements. Fluid properties are presented 
in Table 5 with additional constants employed in the numerical analysis. The present 
simulation is performed with a Reynolds number Re = 105 (Re = ρV0D/µ). 

 
Specific mass (ρ) 1.25 Kg/m3 

Dynamic viscosity (µ) 3.17x10-2 Ns/m2 
Volumetric viscosity (λ) 0.0 Ns/m2 

Sound speed (c) 230.0 m/s 
Reference velocity – V0 (Z = 40 m) 42.3 m/s 

Characteristic dimension – D (= 0.2B) 60 m 
Time step (∆t) 6x10-4 s 

Table 5. Constants employed in the wind environment analysis of a block of buildings. 

Time-average pressure fields computed by the present work are shown in Figure 8. It is 
verified that zones with high pressure are developed in the frontal area of the block of 
buildings for Z = 5 m and Z = 10 m owing to the action of horseshoe vortices (see Peterka et 
al., 1985 for further details) near the ground. Zones with complex flow characteristics are also 
observed between the buildings A and X for Z = 5 m and Z = 10 m, where a recirculating 
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region with high suction is generated. It is observed that the building X is submitted to larger 
pressure zones on the frontal surface as well as larger separation areas on the lateral walls due 
to direct incidence of the wind stream for Z = 25 m and Z = 40 m. 

      

      
Figure 8. Time-average pressure fields referred to the wind environment analysis of a block of buildings. 

The time-average wind speed W ( 2 2
1 2 inW Vv v= + ; Vin = inflow wind speed at Z = 2 m) 

obtained by the present work at some points of measurement indicated in Figure 7 are shown 
in Table 6. The present results are compared to experimental and numerical data obtained by 
Stathopoulos and Baskaran (1996), where a reasonable agreement can be observed. 

 
Time-average wind speed W 

Stathopoulos and Baskaran 
(1996) Point of measurement Present work

Numerical Experimental 
1 0.80 0.73 0.98 
2 1.49 0.98 1.32 
3 0.34 0.57 0.23 
4 1.43 1.08 1.28 
5 1.26 0.89 1.02 
6 1.14 0.81 0.67 
7 0.60 0.96 0.76 
8 0.27 0.26 0.05 
9 0.61 0.58 0.44 

10 0.83 0.84 0.64 

Table 6. Time-average wind speed W at points of measurements. 
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6 CONCLUSIONS 

A numerical model for building aerodynamics was presented in this work. Some typical 
applications were analyzed and results obtained by the present algorithm were compared to 
experimental data from wind tunnel studies. It was verified that the numerical scheme 
proposed in this paper predicted well most of the physical phenomena referred to the 
examples simulated here. Insufficient results are related to deficiencies in the boundary layer 
representation and spatial discretization. Some improvements may be performed in the 
present formulation in order to obtain a better approach for the physical problem as well as a 
more efficient code. Suggestions include implementation of a numerical model to consider 
turbulence fluctuations in the inflow boundary conditions and a numerical algorithm for 
adaptative meshes. 
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