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Abstract. In this paper a Bond Graph methodology is used to model incompressible fluid flows
with viscosity and heat transfer. The distinctive characteristic of these flows is the role of pres-
sure, which doesn’t behave as a state variable but as a function that must act in such a way that
the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as
independent variables for a single-phase, single-component flow. Time-dependent nodal values
and interpolation functions are introduced to represent the flow field, from which nodal vectors
of velocity and entropy are defined as Bond Graph state variables. The system of equations for
the momentum equation and for the incompressibility constraint is coincident with the one ob-
tained by using the Galerkin formulation of the problem in the Finite Element Method, in which
general boundary conditions are possible through superficial forces. The integral incompress-
ibility constraint is derived based on the integral conservation of mechanical energy. All kind
of boundary conditions are handled consistently and can be represented as generalized effort
or flow sources for the velocity and entropy balance equations. A procedure for causality as-
signment is derived for the resulting graph, satisfying the Second principle of Thermodynamics.
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1 INTRODUCTION

In recent years, it was observed an increasing interest in formulating system models in which
fluid dynamic and heat transfer effects are important. In order to solve multidimensional prob-
lems with the aid of computer programs, it is important that these models can be implemented
numerically. This task, main concern of the area of Computational Fluid Dynamics (CFD),
is performed by systematically discretizing the continua, that is, by replacing the continuous
variables by a combination of a finite set of nodal values and interpolating functions. The re-
sult is a (generally nonlinear) algebraic approximation, instead of the original differential or
integro-differential problem.

The Bond Graph formalism allows for a systematic approach for representing and analyzing
dynamic systems.1 Dynamic systems belonging to different fields of knowledge like Electro-
dynamics, Solid Mechanics or Fluid Mechanics can be described in terms of a finite number of
variables and basic elements.

1.1 Incompressible Flows

An interesting type of problems are those in which the fluid is incompressible, this is, density
is constant.

When viscosity variations with temperature are small, the traditional incompressible form of
the Navier-Stokes (N-S) equation is usually selected for the analysis. A set of equations (conti-
nuity, momentum and thermal energy) results with three unknowns, for which usually velocity,
pressure and temperature are chosen; this is known as the primitive-variable approach. Other
alternatives have a limitation to bi-dimensional flows (vorticity-stream function approach), or
are less attractive for three-dimensional flows (vector potencial approach); consequently, the
N-S equations are often solved in their primitive variable form.

For constant viscosity, the energy equation can be uncoupled, so the temperature field can
be obtained after the velocity field has been computed. Since the non-linearities are related to
the convective term, the attention is focused on the solution of the continuity and momentum
equations.

An important characteristic of the N-S equations is that no time derivative of pressure ap-
pears. Pressure is no longer a thermophysical property, but a function that must act in such a
way that the resulting velocity field has divergence zero. In an incompressible flow pressure
perturbations propagate at infinite speed, obeying an elliptic, Poisson’s type partial differential
equation, where the source term is a function of the velocity field.

A strategy often employed for the numerical solution of the incompressible N-S equations is
the pressure correction approach, in which a derived equation is used to determine the pressure.
Typically, the momentum equations are solved for the velocity components using linearized
expressions in which time-lagged values are used for the variables other than the unknown,
including pressure. In this step, the obtained velocity field does not satisfy the continuity equa-
tion. Next, the solution is substituted in the discretized continuity equation and often a Poisson
equation is developed for the pressure (or pressure changes), from which a new pressure field
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is obtained. This pressure field is used to calculate a new velocity field until a solution is
produced that satisfies both the momentum and the continuity equations. The literature on nu-
merical schemes using the pressure correction approach is extensive, differing the methods in
the algorithms used to solve the component equations and the improved pressure field.2

1.2 Bond Graphs and CFD

The first attempt to apply Bond Graphs in fluid dynamic systems with a systematic spatial
discretization of flow fields, typical of CFD problems, appeared less than a decade ago.3 A
compressible flow was considered, although the formulation was restricted to prescribed shape
functions and nodalization. Besides, heat conduction (which leads to convection-diffusion prob-
lems) was not modeled.

A few years ago, a theoretical development of a general Bond Graph approach for CFD was
presented.4 Density, entropy per unit volume and velocity were used as discretized variables
for single-phase, single component flows. Time-dependent nodal values and interpolation func-
tions were introduced to represent the flow field. Nodal vectors of mass, entropy and velocity
were defined as Bond Graph state variables. It was shown that the system total energy can
be represented as a three-port IC-field. The conservation of linear momentum for the nodal
velocity is represented at the inertial port, while mass and entropy conservation equations are
represented at the capacitive ports. All kind of boundary conditions are handled consistently
and can be represented as generalized modulated sources. The methodology was successful in
different applications: one-dimensional convection-diffusion,5 one-dimensional problems with
constant piecewise shape functions,6, 7 shock tube problem8 and single-phase, multicomponent
flows.9, 10 The motivation of this paper is the extension of the methodology described before4 to
incompressible flows.

2 TOTAL ENERGY PER UNIT VOLUME

For an incompressible fluid, the density ρ0 is no longer a state variable. The internal energy
per unit volume uv (uv = ρ0 û, where û is the internal energy per unit mass) is only a function
of the entropy per unit volume sv (sv = ρ0 ŝ, where ŝ is the entropy per unit mass). The total
energy per unit volume ev can be written as:

ev = uv(sv) + t∗v(V ) (1)

where t∗v = 1
2
ρ0 V 2 is the kinetic coenergy per unit volume. The following potentials are

defined:

pv =
dt∗v
dV

= ρ0 V ; θ =
duv

dsv

(2)

where pv and θ are correspondingly the linear momentum per unit volume and the tempera-
ture. The time derivative of (1) can be written as:

∂ev

∂t
= pv .

∂V

∂t
+ θ

∂sv

∂t
(3)
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Since the internal energy per unit volume is only a function of the entropy per unit volume,
and the kinetic coenergy per unit volume is only a function of the velocity, these two energy
types can be split.

3 CONSERVATION EQUATIONS

For an incompressible fluid the mass, linear momentum and thermal energy conservation equa-
tions are:

∇.V = 0 (4)

ρ0
∂V

∂t
= −∇t∗v + ρ0 V × (∇× V )−∇P + ρ0 G +∇. τ (5)

∂uv

∂t
= −∇.q −∇uv .V +∇V : τ + ρ0 Φ (6)

where t is the time, τ is the viscous stress tensor, P is the pressure, G is the force per unit
mass, q is the heat flux and Φ is the heat source per unit mass. For a newtonian, incompressible
fluid and assuming Fourier’s law, the viscous stress and the heat flux can be written as:

τ = µ
(∇V +∇V T

)
; q = − λ θ

ρ0 cv

∇sv (7)

where µ, λ and cv are correspondingly the fluid viscosity, thermal conductivity and constant
volume specific heat.

4 BALANCE EQUATIONS

The balance equations are power equations (per unit volume) corresponding to each one of
the terms that contributes to the time derivative of the total energy per unit volume, namely (3).
Making the scalar product of (5) times the velocity and taking into account (4) and the following
identities:

[V × (∇× V )] .V = 0 (8)
(∇. τ

)
.V = ∇.

(
τ .V

)−∇V : τ (9)

we have:

pv .
∂V

∂t
= ∇.

[(−P I + τ
)
.V

]−∇t∗v .V + ρ0 G .V −∇V : τ (10)

Taking into account (2) we have:

θ
∂sv

∂t
= −∇. q − θ∇sv .V + ρ0 Φ +∇V : τ (11)

The balance equations show the power structure of the system. In the balance equations there
can be identified three type of terms: divergence, coupling and source terms. The divergence
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terms will take into account the power introduced in the system through the boundary condi-
tions. The coupling term∇V : τ represents the power transfer (mechanical energy dissipation)
between the velocity and entropy equations; this coupling term appears, with opposite signs, in
the balance equations. Finally, the remaining terms are regarded as power sources. Adding the
balance equations, it can be easily obtained the conservation of total energy:

ρ0
Dê

Dt
= ∇.

[(−P I + τ
)
.V − q

]
+ ρ0 G .V + ρ0 Φ (12)

where ê = û + 1
2
V 2 is the total energy per unit mass and D

Dt
is the material derivative.

5 DISCRETIZATION

5.1 Description of the Flow Fields

The description of the flow fields corresponding to the independent variables in the domain Ω is
made in terms of a finite set of nodal values and interpolation functions, as in the Finite Element
Method:11

V (r, t) =

nV∑
m=1

V m (t) ϕV m (r) = V T . ϕV (13)

sv (r, t) =

nS∑

l=1

sv l (t) ϕs l (r) = sv
T . ϕS (14)

P (r, t) =

nP∑

k=1

Pk (t) ϕP k (r) = P T . ϕP (15)

where V (size nV ), sv (size nS) and P (size nP ) are time-dependent nodal vectors, while
ϕV , ϕS and ϕP are the corresponding nodal interpolation or shape functions.

5.2 Nodal Entropy Vector

The nodal vector of entropy is defined as:

S = ΩS . sv ; (ΩS)l n = ΩS l δl n ; ΩS l =

∫

Ω

ϕS l dΩ (16)

where ΩS is a diagonal volume matrix associated to the entropy per unit volume. The system
entropy can be obtained as:

S =

∫

Ω

sv dΩ =

nS∑

l=1

Sl (17)
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5.3 Total Energy

The system total energy E is defined as the sum of the internal energy U and the kinetic coen-
ergy T ∗:

E = U(S) + T ∗(V ) (18)

where:

E =

∫

Ω

ev dΩ ; U =

∫

Ω

uv dΩ ; T ∗ =

∫

Ω

t∗v dΩ (19)

From (19), it can be easily shown that the system kinetic coenergy can be expressed as the
following bilinear form:

T ∗ =
1

2
V T . M .V (20)

where M is the system inertia matrix:

(M)m n = ρ0

∫

Ω

ϕV m ϕV n dΩ (21)

We define the following potentials:

p =
dT ∗

dV
= M .V =

∫

Ω

pv ϕV dΩ (22)

Θ (S) =
dU

dS
= ΩS

−1.

[∫

Ω

θ ϕS dΩ

]
(23)

where p and Θ are correspondingly nodal vectors of linear momentum and temperature.
The potentials defined in (22) and (23) allow to represent kinetic and internal energy storage
correspondingly as an inertial (I) and a capacitive (C) multibond field, as shown in Fig. 1.

 

I
 S�  

 

Θ
 

V�  

p  
 

C  
(a) (b) 

Figure 1: Inertial (a) and capacitive (b) fields, representing kinetic and internal energy storage for an incompressible
fluid.

Regarding the convention used in multibonds it can be observed that, in Fig. 1 (a), the
generalized effort and flow are nodal vectors whose elements are vector variables. For a three-
dimensional problem, it means that this type of multibond is equivalent to 3 n single bonds,
being n the size of the nodal vectors involved (in this case, nV ), as shown in Fig. 2. In Fig. 1
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(b), the generalized effort and flow are nodal vectors whose elements are scalar variables, which
means that this type of multibond is equivalent to n (in this case, nS) single bonds, as shown in
Fig. 3.
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( )12f  

(b) 
(c) 

Figure 2: Multibond with nodal vector of vector variables for a three dimensional problem (a), equivalent to n
multibonds of vector variables (b), each one of these equivalent to three single bonds (c).

Since the inertia matrix is constant, (22) defines a multibond transformer relating the nodal
vectors of velocity and linear momentum, as shown in Fig. 4 (a), with generalized effort given
by:

F = M . V̇ (24)

From (24) and (22), F = ṗ for incompressible flows. In this case, the inertia field from Fig.
1 (a) and the transformer of Fig. 4 (a) are equivalent to an inertia field in which the generalized
momentum is the nodal vector of linear momentum, as shown in Fig. 4 (b).

According to (22), the nodal vector of linear momentum can be regarded as a system volume
integral of the local values weighted by the velocity interpolation function. It can be easily
shown that the system linear momentum can be obtained as:

p =

∫

Ω

pv dΩ =

nV∑
m=1

pm (25)

According to (23), the nodal vector Θ can be regarded as system volume average of the
corresponding local value, weighted by the interpolation function.

The time derivative of (18) can be written as:

Ė = pT . V̇ + ΘT . Ṡ (26)
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Figure 3: Multibond with nodal vector of scalar variables (a), equivalent to n single bonds (b).
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Figure 4: Multibond transformer connected to the inertial port (a), and equivalent inertia field for incompressible
flow (b).

It can also be shown that the volume integrals of the left side terms of (10) and (11) can be
calculated as: ∫

Ω

pv .
∂V

∂t
dΩ = pT . V̇ ;

∫

Ω

θ
∂sv

∂t
dΩ = ΘT . Ṡ (27)

6 STATE EQUATIONS

6.1 Velocity Port

As it is done in the Galerkin method,11 we multiply the momentum conservation equation by the
test function ϕV m, integrate over the domain Ω and apply Green’s theorem whenever necessary,
obtaining:

M . V̇ = F
(Γ)
V + F

(Γ)
P + F G + F K + F R + F P − F V (28)

where:

F
(Γ)
V =

∫

Γ

(
τ . n̆

)
ϕV dΓ (29)
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F
(Γ)
P = −

∫

Γ

P ϕV n̆ dΓ (30)

F G = ρ0

∫

Ω

G ϕV dΩ (31)

F K = −
∫

Ω

∇t∗v ϕV dΩ (32)

F R = ρ0

∫

Ω

V × (∇× V ) ϕV dΩ (33)

F P =

∫

Ω

P ∇ϕV dΩ (34)

F V =

∫

Ω

τ .∇ϕV dΩ (35)

Adding the nodal components of (28) it can be easily shown that the integral momentum
equation is satisfied:

ρ0

∫

Ω

DV

Dt
dΩ =

∫

Γ

(−P I + τ
)
. n̆ dΓ + ρ0

∫

Ω

G dΩ (36)

Since the interpolation function were chosen as test functions, the product F X
T .V , where

F X is any nodal vector of force, recovers the corresponding power term integrated in the sys-

tem. Thus, the product F
(Γ)
V

T
.V recovers the power due to the flux of the viscous stress, the

product F V
T .V recovers the power dissipation and the product F R

T . V is zero, because of
(8).

6.2 Entropy Port

Nodal entropy weight functions wS l (r, t) are introduced, as it is done in the Petrov-Galerkin
method.11 The nodal entropy weight functions are introduced to satisfy the power interchanged
by the system through the boundary conditions, as well as to share the importance of different
power terms among neighboring nodes. These functions can be used, for instance, to introduce
upwind schemes in convection-diffusion problems.5–7

Each term of the entropy balance equation (11) is multiplied by wS l. Then, the resulting
terms are integrated over the domain Ω and Gauss’ theorem is applied whenever necessary,
obtaining:

Ṡ = Ṡ
(Γ)
Q + ṠQ + ṠF + ṠC + ṠV (37)

where:

Ṡ
(Γ)
Q = −Θ−1.

[∫

Γ

wS q . n̆ dΓ

]
(38)
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ṠQ = Θ−1.

[∫

Ω

q .∇wS dΩ

]
(39)

ṠF = Θ−1.

[
ρ0

∫

Ω

wS Φ dΩ

]
(40)

ṠV = Θ−1.

[∫

Ω

wS

(∇V : τ
)
dΩ

]
(41)

ṠC = −Θ−1.

[∫

Ω

wS θ∇sv .V dΩ

]
(42)

In (38) to (42) the temperature matrix Θ results:

(Θ)l j =
1

ΩS j

∫

Ω

θ wS l ϕS j dΩ (43)

The nodal vector of temperature is related to the temperature matrix as:

Θj =

nS∑

l=1

(Θ)l j (44)

Taking into account (44) it can be verified that the product of any nodal vector of entropy
rate times the nodal vector of temperature ṠX . Θ recovers the corresponding power integrated

in the system. Thus, the product Ṡ
(Γ)
Q

T
. Θ recovers the power due to heat flux, while ṠQ

T
. Θ

is a power term that vanishes, because
∑nS

l=1 wS l = 1. Multiplying (37) by Θ, it can be easily
shown that the integral entropy balance equation is satisfied, this is:

ρ0

∫

Ω

θ
Dŝ

Dt
dΩ = −

∫

Γ

q . n̆ dΓ + ρ0

∫

Ω

Φ dΩ +

∫

Ω

(∇V : τ
)
dΩ (45)

7 DISSIPATION COUPLING MATRIX

The dissipation coupling matrix represents the power coupling (appearing in the balance equa-
tions per unit volume shown in Section 4) to a discretized level. This matrix relates generalized
variables whose product gives rise to the dissipation power term, appearing in the velocity and
entropy ports as:

ΘT . ṠV = F V
T .V =

∫

Ω

(∇V : τ
)

dΩ (46)

From (35) and (41) we have:

ṠV =
(
Θ−1.MSV

)
.V ; F V =

(
Θ−1.MSV

)T

. Θ (47)

where MSV is a rectangular matrix , with nS rows and nV columns, defined as:
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(MSV )l m =

∫

Ω

wS l

(
τ .∇ϕV m

)
dΩ (48)

Equation (47) defines a multibond transformer modulated by the state variables, as shown in
Fig. 5, in which Θ−1.MSV is the dissipation coupling matrix. Besides satisfying conservation
of energy through the transformer, namely (46), it will be seen in Section 11 that the resulting
causality also satisfies the Second Principle of Thermodynamics.

 

MTF
 V  

Θ  

VS�  

( )T

SV.M1−Θ

 
VF  

Figure 5: Modulated multibond transformer connecting the velocity and entropy ports.

8 PRESSURE AND INTEGRAL INCOMPRESSIBILITY CONSTRAINT

Making the product of (28) times V and taking into account (8), we obtain:

∫

Ω

Dt∗v
Dt

dΩ =

∫

Γ

[(−P I + τ
)
.V

]
. n̆ dΓ + ρ0

∫

Ω

G .V dΩ−
∫

Ω

(∇V : τ
)

dΩ + F P
T .V

(49)

Comparing (10) with (49), the velocity balance equation (conservation of mechanical energy)
integrated over the domain Ω is satisfied if F P

T .V = 0. This power term can be expressed as:

F P
T .V =

∫

Ω

P (∇.V ) dΩ = P T . Q (50)

where the nodal vector of volumetric flows Q results:

Q =

∫

Ω

ϕP (∇.V ) dΩ (51)

As a consequence, the integral incompressibility condition that must satisfy the discretized
velocity field is:

Q = 0 (52)

The system of equations (28) and (52) is coincident with the one obtained by using the
weak formulation of the problem in the Finite Element Method,11 in which general boundary
conditions are possible through the superficial forces F

(Γ)
V and F

(Γ)
P . Adding the components

of vector Q, it can be verified that the integral continuity equation is satisfied, this is:
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∫

Ω

(∇.V ) dΩ =

∫

Γ

V . n̆ dΓ = 0 (53)

The power conserving transformation between the force and pressure ports is represented by
a multibond transformer, as shown in Fig. 6, with relations given by:

F P = MPV . P ; Q = MPV
T . V (54)

where MPV is a rectangular matrix, with nV rows and nP columns, defined as:

(MPV )m k =

∫

Ω

∇ϕV m ϕP k dΩ (55)

 

TF  
V  

P

 
0=Q  

 

PVM  
PF  

Figure 6: Multibond transformer representing the integral incompressibility constraint.

Concerning the bond corresponding to the superficial pressure force F
(Γ)
P , the power term

can be written as:

F
(Γ)
P

T
.V = −

∫

Γ

P V . n̆ dΓ = P T . Q(Γ) (56)

where the nodal vector of superficial volumetric flows Q(Γ) is defined as:

Q(Γ) = −
∫

Γ

ϕP V . n̆ dΓ (57)

The power conserving transformation between the superficial force and pressure is repre-
sented by a multibond transformer, as shown in Fig. 7, with relations given by:

F
(Γ)
P = M

(Γ)
PV . P ; Q(Γ) = M

(Γ)
PV

T
. V (58)

where M
(Γ)
PV is a rectangular matrix, with nV rows and nP columns, defined as:(

M
(Γ)
PV

)
m k

= −
∫

Γ

ϕV m ϕP k n̆ dΓ (59)
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( )Γ
PVM  

Figure 7: Multibond transformer representing the superficial pressure force.

9 SYSTEM BOND GRAPH

The system Bond Graph is shown in Fig. 8. Energy storage (kinetic and internal) are rep-
resented correspondingly by an inertial (I) and a capacitive (C) field. At the 1-junction with
common V we add all the nodal vector forces; in this way, the effort balance represents the
linear momentum conservation equation for the nodal velocity values. At the 0-junction with
common Θ we add all the nodal entropy changes per unit time; in this way, the flow balance
represents the thermal energy conservation equation for the nodal entropy values.

The modulated transformer connecting the 1 and 0 junctions represents the power transfer
between the velocity and entropy ports, due to dissipation.

The sources S (the ones connected to the bonds with F
(Γ)
V , Ṡ

(Γ)
Q and Q(Γ)) represent different

source terms related to the boundary conditions; as it will be shown in Section 10, in each single
port these sources behave as effort or flow sources, depending on the boundary conditions.

The rest of the sources, effort Se or flow Sf (the ones connected to the bonds with Q, F G,
F R, F K , ṠQ, ṠF and ṠC) represent volumetric power terms; the determination of causality
for these sources and for the bonds connected to the modulated transformer MTF results from
the causality extension procedure detailed in Section 11. The power input in any bond corre-
sponding to the multibond with Q is zero, according to the integral incompressibility constraint,
(52); as a consequence the causality is such that, in any of these bonds, flow is imposed to the
ports connected to the transformer and the modulated source becomes a flow source Sf . The
net power input (sum over the bonds) corresponding to the multibond with the rotational force
F R is zero, because of (8). As we saw before, the net power input (sum over the bonds) corre-
sponding to the multibond with the entropy rate ṠQ is also zero.

10 INITIAL AND BOUNDARY CONDITIONS

Initial conditions, satisfying the integral incompressibility constraint detailed in Section 8, can
be written as:

V (t = 0) = V 0 ; S(t = 0) = S0 (60)

The boundary conditions establish relationships among the variables corresponding to the
nodes located at the system surface and can be regarded (in the Bond Graph methodology) as

Jorge L. Baliño
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Figure 8: System Bond Graph for an incompressible fluid.
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the input variables. It is necessary, for the model being mathematically well defined, that the
boundary conditions allow to determine univoquely the causality for all the elements in the
resulting Bond Graph.

In the following, some examples corresponding to typical boundary conditions appearing in
incompressible problems and the corresponding causality extensions are discussed.

10.1 Imposed stress

The stress boundary condition can be stated as:
[
τ (rΓT

, t) . n̆
]
. ŭk= (τΓT

)k (61)

where rΓT
is the position of a point belonging to the surface ΓT , in which the stress is

imposed, n̆ is the unit vector normal to ΓT and ŭk is a unit vector in the k-component direction.
Then, for the node m,

(
F

(Γ)
V m

)
k

is imposed to the 1-junction and the corresponding source
behaves as an effort source. After the causality assignment procedure of Section 11 is applied,
the rest of the bonds (except the one of (Fm)k) impose effort to the 1-junction, as show in Fig.
9 (a), and the inertial port results with its preferred integral causality.

10.2 Imposed velocity field

The velocity boundary condition can be stated as:

V (rΓV
, t) . ŭk = [VΓV

(rΓV
, t)]k (62)

where rΓV
is the position of a point belonging to the surface ΓV ⊆ Γ, in which the velocity

is imposed. Condition (62) is approximated by a set of nΓV
nodes located at the positions rm

(rm ∈ ΓV , m = 1, ..., nΓV
) in which velocity is imposed. For these positions it can be written:

(Vm)k = [VΓV
(rm, t)]k (63)

As a consequence, the source element connected to the bond with
(
F

(Γ)
V m

)
k

behaves as a
flow source. When causality is extended to the bonds connected to the 1-junction, as show in
Fig. 9 (b), the rest of the bonds must impose force. After the causality assignment procedure is
applied, it results a derivative causality in the corresponding inertial port.

10.3 Imposed pressure

The pressure boundary condition can be stated as:

P (rΓP
, t) = PΓP

(64)

where rΓP
is the position of a point belonging to the surface ΓP , in which the pressure is

imposed. Condition (64) is approximated by a set of nΓP
pressure nodes located at the positions

rk (rk ∈ ΓP , k = 1, ..., nΓP
) in which pressure is imposed. For these positions we can write:

Pk(t) = P (rk, t) (65)
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Figure 9: Causality extensions at a I-field port, integral (a) and derivative (b).

As a consequence, the sources connected to the bonds with imposed pressure behave as effort
sources. Since the solution for an incompressible flow depends on pressure differences, in the
case in which there are no pressure boundary conditions a source must be chosen and defined
as effort source, assigning as effort the pressure reference value.

10.4 Imposed heat flux or convection

The heat flux boundary condition can be stated as:

q (rΓN
, t) . n̆ = qΓN

(66)

where rΓN
is the position of a point belonging to the surface ΓN , in which the heat flux is

imposed. Then, for the node l, Ṡ
(Γ)
Q l is imposed to the 0-junction and the corresponding source

behaves as a flow source. After the causality assignment procedure is applied, the rest of the
bonds (except the one of Ṡl) impose flow to the 0-junction, as show in Fig. 10 (a), and the
capacitive port results with its preferred integral causality.

The considerations above are valid also for the convection boundary condition, that can be
stated as:

q (rΓN
, t) . n̆ = H (θΓN

− θΓ∞) (67)

where H is the heat transfer coefficient, θΓN
is the surface temperature and θΓ∞ is a reference

local surface temperature.

10.5 Imposed temperature

The temperature boundary condition can be stated as:
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θ (rΓD
, t) = θΓD

(68)

where rΓD
is the position of a point belonging to the surface ΓD, in which the temperature is

imposed. Since θ = θ (sv), (68) can be transformed to:

sv (rΓD
, t) = sv ΓD

(69)

Taking into account (16), condition (69) is approximated by a set of nΓD
entropy nodes

located at the positions rl (rl ∈ ΓD, l = 1, ..., nΓD
) in which now entropy per unit volume is

imposed. For these positions we can write:

sv l(t) = sv l (rl, t) ; Ṡl(t) = ΩS l ṡv l(t) (70)

As a consequence, Ṡl is an input to the 0-junction, resulting a derivative causality for the
corresponding port of the C-field; to accomplish this, the sources connected to the bonds with
imposed temperature behave as effort sources, resulting the causality extension shown in Fig.
10 (b).
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Figure 10: Causality extensions at a C-field port, integral (a) and derivative (b).

11 PROCEDURE FOR CAUSALITY ASSIGNMENT

A sequencial causal assignment procedure exists in Bond Graphs.1 Sources are chosen first, the
required causality is assigned and the causal implications are extended through the graph as far
as possible, using the constraint elements (in this case 0-junctions, 1-junctions and transform-
ers). Then, the ports corresponding to the storage elements (in this case I-field and C-field) are
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chosen, integral causality is assigned and, again, the causal implications are extended through
the graph as far as possible.

Regarding causality extension through the MTF and TF elements, the constitutive laws are
sets of linear relationships among the variables involved. Thus, causality can be extended for a
bond with a variable only when the bonds corresponding to the rest of the variables in the linear
relationship have assigned causalities.

It is worth noting that, since the interpolation and weight functions are zero at the surface Γ,
causality is assigned by definition at the bonds corresponding to inner nodes. Thus, a zero-effort
source is connected to an inner F

(Γ)
V m or F

(Γ)
P m and a zero-flow source is connected to an inner

Q
(Γ)
k or Ṡ

(Γ)
Q l .

Since there are only energy storing and conserving elements, all bonds should have causality
assigned after the procedure detailed above. The order of the system is the number of bonds
connected to the energy storing elements, resulting with integral causality. This causality pro-
cedure can be implemented automatically, knowing the connectivity of the computational grid,
as a way of checking the correctness of the boundary conditions in the problem. As a conse-
quence of the causality extension, the sources connected to the bonds with F G, F R and F K

always behave as effort sources, and the sources connected to the bonds with ṠQ, ṠF and ṠC

always behave as flow sources. Besides, causality for the bonds connected to the modulated
transformer (the ones with F V and ṠV ) is also defined, always resulting V an input to the
transformer and ṠV an output; this indicates that fluid motion generates the irreversible entropy
rate, in agreement with the Second Principle of Thermodynamics. Besides, Θ always results an
input to the transformer and F V an output, indicating that temperature influences the viscous
force through the temperature dependence of viscosity.

12 CONCLUSIONS

In this paper, a Bond Graph methodology was used to model incompressible fluid flows with
viscosity and heat transfer. The resulting representation shows the role of pressure as external
function acting to satisfy the incompressibility condition and the coupling between the inertial
and thermal ports through the power dissipation term. The system of equations for the momen-
tum equation and for the incompressibility constraint is coincident with the one obtained by
using the Galerkin formulation of the problem in the Finite Element Method, in which general
boundary conditions are possible through superficial forces. The integral incompressibility con-
straint is derived based on the integral conservation of mechanical energy. All kind of boundary
conditions are handled consistently and can be represented as generalized effort or flow sources
for the velocity and entropy balance equations. A procedure for causality assignment is derived
for the resulting graph, satisfying the Second principle of Thermodynamics. This causality pro-
cedure can be implemented automatically, knowing the connectivity of the computational grid,
as a way of checking the correctness of the boundary conditions in the problem.

MECOM 2005 – VIII Congreso Argentino de Mecánica Computacional



ACKNOWLEDGMENTS
The author wishes to thank ”Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico”
(CNPq, Brazil) for the financial support as Scientific Productivity (PQ) Scholar and Visiting
Researcher (2001-2003) at Instituto de Pesquisas Energéticas e Nucleares (São Paulo, Brazil),
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