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Abstract. The main scope of this article is to carry out a mathematical framework and its corresponding
finite element discretization for the solution of pollutant transport in partially saturated soils. A multi-
phase system with the interstitial voids in the grain matrix filled with water (liquid phase), water vapour
and dry air (gas phase) and with pollutant substances, is assumed. The ensuing mathematical model
involves equations of momentum balance, energy balance and mass balance of the whole multiphase
system. Encouraging outcomes were achieved in several different examples.
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1 INTRODUCTION

Environmental geomechanics span a wide number of engineering problems where the ge-
omaterials mechanical equations are usually coupled with flux and mass transport equations.
This area generally deals with pollutant transport problems through aquifers especially when
partially saturated media is involved, because, under these circumstances, the solid phase usu-
ally undergoes large deformation and displacement due to the proper soil nature or due to the
capillary pressure effect. Another relevant aspect of the environmental geomechanics science
Is to design safe containers for toxic wastes, nuclear wastes or pollutant leftovers, for this is a
matter of prior importance in industrial societies.

Different authors have taken over this issue from several standpoints regarding different as-
pects or hypothesis. An early view of the problem may be fourld and Zienkiewicz(1992.

In this work, the fluid transport through porous media is simultaneously presented in one or two
phases separated by an interface. No chemical reactions or components interchange between
the phases are regarded and the capillary pressure is given in serieanenanl977).
Schrefler(200]), a mathematical framework assuming a multiphase porous system with voids
filled with water, water vapour, dry air and pollutant along with a finite element discretization,

is presented. Here, the pollutants may be mixed with the fluid phase or they may not, in which
case, a new phase wherein this pollutants flamn{iscible phaseis considered. Similarly to

the previous work, no chemical reaction between pollutant and the other phases is allowed.

Sheng and Smitf2002 present a two-dimensional finite element solution for various con-
taminants considering advection-dispersion transport based on previous $foekg)@@nd Smith
2000. Juncosa et a(2002), asserts the basic postulated for a mathematical framework for non
isothermal multiphase flux with reactive transport and the solution for the former is undertaken.
The media constituent mass balance (water, air and solute), the energy conservation principle
and the equilibrium equations, describe a partial derivative system of equation that may be in-
tegrated using various approaches.Klnbertanz et al(2003, the mathematical framework
for the analysis of the miscible and immiscible flux trough porous media based on continuum
mechanics was presented.

Finally, Schrefle(2001) and later orSchrefler and Pesaver{2004), relying on Hassanizadeh
and Gray averaging theoriebldssanizadehl 9860 Hassanizadeh and Gra¥979ab, 198Q
1990, the analysis of isothermal flux transport is further extended to non isothermal flux bear-
ing in mind the thermodynamics properties of the interface between the different porous media
constituents l(ewis and Schreflerl998 Schrefley 1995. In fact, it is the interface surface
tension what holds the immiscibility between porous fluids. A null value of the surface tension
conveys a null value of the capillary pressure as well, bringing on a constant fluid pressure.

In the present work, the analysis of immiscible pollutant transport through partially satu-
rated soils coupled with the mechanical behaviour is undertaken. A mathematical framework
assuming a multiphase porous media wherein the interstitial voids of the solid matrix are filled
with water, dry air and pollutant is addressed as well as the solution of the arisen partial differ-
ence equation system using the finite element methods. The attained numerical model involves
momentum, energy and mass balance equations.

2 REPRESENTATIVE ELEMENTAL VOLUME

In the classical mechanic, a continuum distribution of whatever particles exists (fluid or
solids) for which the balance laws and constitutive relationships are valid, is taken for granted.
The herein studied phenomena, occurs in domains occupied by different phases. There is an om-
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nipresent phase, i.e., the solid one or solid skeleton, whose voids are taken to be filled with fluid
(gas of liquid) separated by a membrane called interface. The difference between constituents
and phases should be emphasised here: the phases are chemically homogeneous portions of the
multiphase system which mechanical behaviour is assumed to be uniform. On the other hand,
the constituents are the individual parts that yield the phases but acting each one independently,
being the case in point the gaseous phase which may be constituted by a gas mix wherein each
gas is a constituent.

Solid Phase

Pollutant Phase

Gas Phase

Liquid Phase

Figure 1: Representative elemental volume

There are two possible levels for describing the multiphase media intergranular configura-
tion: The macroscopic and the microscopic level. At the microscopic level, the real porous
media structure is regarded (see figlije The govern equations are established considering
each constituent separately, giving rise to a complicated solution. Furthermore, the microscopic
properties are usually awkward to assess. Considering the aforementioned reasons and adding
that a microscopic description is far beyond the civil engineering géalR#dq 2009, for the
present work, a macroscopic description is adopted. One noteworthy feature of the macroscopic
description is the fact that at each material point all the phases are assumed to be simultaneously
present. In a volume fraction, the following elements may be fo@®ehéytq 2003:

e Solid Phasen® = 1 — n, beingn = (dv* + dv? + dv™) /dv the porosity andiv the
differential volume of the constituent.

e Liquid Phase:n” = nS,, beingS, = dv"/(dv* + dv? + dv™) the water saturation
degree.

e Gaseous Phaseg? = nS,, beingS, = dv?/ (dv" + dv? + dv™) the air saturation degree.

e Pollutant phasey™ = nS,, beingS, = dv™/ (dv* + dv? 4+ dv™) the pollutant saturation
degree.

From the aforesaid equations yields:

Sw+ Sy +5=1 (2)
and the multiphase media density is

P = ps+ pw+tpg+ pr=(1—=n)p* +nSup” +nSyp? + nSyzp" (2)
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Within this condition and provided that the medium is constituted by different phases, any of
them may be described relatively to any other previously defined, i.e., the solid one. Thereby,
relative velocities of the liquid, gaseous and pollutant may be addressed:

v =" —v® , =09 =0, =0T —° 3)

3 GOVERN EQUATION
3.1 Microscopic balance equations

The classical continuum mechanic balance equations will be taken into account in order to
obtain the microscopic behaviour of an individual phasd-or any thermodynamic attribute,
1, the general conservation equation for a single phase may be witedugrn, 1969 Oliver,
2000:
9] . L
aif+duv(pw)—dm—pb:pc; (4)
wherer is the phase local velocity in a fix spatial poiptis the densityb is the external supply,
¢ Is the associated flux vector agglis the internal net production of.
To set up balance equations for a certain thermodynamic attribute, the state varialaled
G must been alternatively modified. Being a case in point, the mass balance equation is given

by:

vb=1: i=0 ; b=0 ; G=0 ()
introducing these values id), the microscopic mass balance equation is given by:
dp .
Fd ) = 6
5 AV (o) =0 (6)

3.2 Macroscopic balance equations

The macroscopic balance equations are obtained by the systematic application of the pio-
neer work ofHassanizadeh and Gr&i©80 to the microscopic balance equatiod} {n which
for each constituent, the thermodynamic variable is substituted by the appropriate microscopic
property (ewis and Schreflerl998. The pollutant behaviour may be depicted in two differ-
ent forms depending on its mixing capability with the fluid or with the gaseous phase. The
most general situation, i.e. with immiscible pollutants, the behaviour may be described as an-
other fluid phase, whereas with soluble pollutant, three possible transport processes must be
considered: advection, diffusion and dispersion.

3.2.1 Solid Phase

From Eq. 6) and recalling the material time derivative of a spatial magnitidel{ern
1969 the mass balance expression for the solid phase is obtained:

0ps
ot
wherev? is the solid skeleton velocity.

+ podiv et = 0 )

div (psv°) = psdiv v° + grad ps - v° (8)
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Since @) and taking into accoungy, it is obtained:

(1-n)dp® On B .
T 0t+<1 n)div v’ =0 9

3.2.2 Liquid Phase

The microscopic mass balance equation for the liquid phase is tantamount to the correspond-
ing one for the solid phasd) being the identity different form zer&d # 0) due to the water
possibility of transforming into vapour and the other way around.

%Ltw + pudivo? = —m (20)
wherev™ is the liquid phase mass velocity andn is the water amount per unit volume of
transformed into vapour. Taking into accougy, (it leads us to:

9 (nSwp®)
ot
Working with the above formula and after some algebra as well as considering th8)Eq. (
and @) and adding the result t®), the subsequent expression is yielded:

4 nS,ptdiv ot = —1i (11)

(1—=n)op® .
VMO v o 9P GO
o ot TNVt o T o TS

w 1 ) .
nopt 1 05, div (nSyp" - %) = — ”; (12)

3.2.3 Gaseous Phase

The here considered gaseous phase is composed by two constituents: gy ad water
vapour gw). Since both elements are miscible and their physical behaviour is similar, they may
be treated as a single phase occupying the same differential voluspe Regardless of the
internal mass production due to self-chemical reactions, the microscopic balance equation for
this phase is once more given I8) (Hassanizadel19863.

% (nSyp?®) + div (nSyp?*v9%) = 0 (13)
Likewise, making use of thew superscript, the vapour balance equation is obtained:

0 ,

57 (nSp™) + div (nS,p"v") = (14)

Clearly, given expression4 ) and (L4), the mass balance equation for the dry air and water
vapour mixture will be:

% (nSgp?) + div (nS,p?v?) = (15)

with p9 = p9* + p y 09 = 1/p9 (p9*09* + pv9")
Working with eq. (5), an expression tantamount to efj1)is obtained:
9 (nSyp?)

5 + nSypldivv? =1 (16)
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Once more, after some algebraic manipulation of the above with inclusion of expres®ions (
and @) and adding the remainder to equati®j the subsequent relationship is yielded:
n 0S, n %

1 - # .
(L —n)op +divo' + ———= +

1 . m
— I 9% = 17
PERY S, ot 9 Ot +Sgpgd|V(nSgp v?%) (17)

Sgp?

3.2.4 Immiscible Pollutant

When the pollutant existing in the porous media has no miscible property with any of the
non solids phases, it is clearly taking part of a new phaseQne way of coping with this
phenomenon is to consider the pollutant behaviour similar to the liquid phase&sohesfley
2001, whereby it is possible to yield the conservation equations for the pollutant as well as it
was done for the liquid phase. Therefore, the mass balance equation for immiscible pollutants
will be likewise Eq. (2) but without the internal production term (source),= 0.

(1—-n)op® . m0p" n 0S; | N
ot +divo +p7r T +57r ot + Sﬂpwdlv(n&rp v™) =0 (18)

3.3 Constitutive and state relationships

To provide a complete description of the mechanical behaviour, the constitutive equations are
required. The balance equations developed in the previous section take into account elaborate
constitutive theories, especially when these equations are valid at the inteHasssufizadeh
and Gray 1980.

3.3.1 Fluid phase stress tensor

By the application of the second law of thermodynamics to the porous nitédssénizadeh
and Gray 197901, the stress tensor for the fluid phase may be written as

t"=—n'p'1 (19)
being I the unit tensorp” is the phase  pressure ang” is the phase volume fraction. It may
be clearly noticed that no deviatoric stresses are present in the fluid phase stress tensor.
3.3.2 Solid phase stress tensor

As well as in the previous section, by means of the use of the second law of thermodynamics
for the porous mediaHassanizadeh and Gray980, the stress tensor for the solid phase is
conveyed:

£ = (1—n) (& - Ip') (20)

while the solid phase pressure is

p* = Sup" + Sgp? + Szp” (21)

and the effective stress tensor is

o'=(1-n)t; (22)
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Introducing @1) in (20)

t°=(1-n) [ti — I (Sup” + Sgp? + Srp")] (23)

The volume fractior{l — n) points out that® stands for is the stress per unit of area exerted
over the solid phase. In order to obtain the total stresshe expressions derived for the liquid
and the gaseous phas@8)(must be added tdl), giving:

o=t =
(1 —n) [t — I (Sup®” + Syp° + Szp™)] — nSup”I — nS,p?I — nS,p™I =
(1 —n)t; — I (Sup” + Sep’ + Szp™) (24)

The precedent equation may be arranged following the most well known form in soil me-
chanics Fredlund and Rahardja993 Lambe and Whitmamnl979:
o=0+1I(pS,+p’S,+p"Sx) (25)

3.3.3 Solid mass density

Considering a compressible solid mass, an expression for the time derivative of the solid
mass density may be obtained from the mass conservation differential equation:

d(p°V*)
ot
Assuming that the solid mass density is functiorpd{21), of the temperature and of the
first effective stress tensor invariant, it is obatined:

=0 (26)

1 9p® 1 0V 1 op® or 1 d (tro’)

— - = —— — (y— — (27)

ps Ot V, ot K, ot ot 3(n—-1)K, ot

wherein the following expressions were regarded:

19p° 1
il S 28
ps aps Ks ( )
1 9p®
il - _ 2
ps aT ﬂS ( 9)
1 Op _ 1 (30)

p*0(tre’)  3(n—1)K,

in the previous,K is the grain compressibility coefficient, is the grain thermal expansion
and to’ is the first invariant of the stress tensor. Bearing in mind the constitutive relationship
for the first invariant of the effective stress tensdia(vern, 1969:

otro’
ot

o1 op? or
—3KT (d|V’U —{—Z ot —655) (31)
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where, K, is the skeleton bulk modulus. Considering the Biot constant definiBaot @nd
Willis, 1957):

Kr
(1-a)=% (32)
and expressions3() and @7), it is obtained::
Lop> 1 1 op* or L
P T — (v —n) X ot Bs (v — n) T (1 —-a)divo (33)

The incompressible grain condition, i.e/K; = 0, « = 1, whatsoever indicates a rigid or
incompressible skeleton, since under load application, an interstitial voids re-arrangements is
undertaken.

3.3.4 State equation for the liquid phase

The water solid state equation was developeébésnandef1972 and it is given by:

p’ = pexp[—F,T + Cy (p* — p*°)] (34)

where the superscriptstands for the initial state},, is the thermal expansion coefficient and
C', 1s the compressibility coefficient. Taking the series expansioi9fgnd disregarding the
higher order terms, it is obtained

being the time derivative:
L 0p® 1 Op”
Wﬁ'?ﬁ‘% (36)

whereK,, = 1/C,, is the water bulk modulus. The previous formula may be also obtained from
the mass balance differential equatite\is and Schrefle1999.

3.3.5 State equation for the gaseous phase

The gaseous phase may be considered as a mixture of perfect ideal gases, dry air and water
vapour. Therefore, it is possible to apply the ideal gas laws by relating the constituent partial
pressure, the constituent mass concentration in the gaseous phaséthe~ component, and
the absolute temperatufe The perfect gas state equations applied to dry @i, (to water
vapour gw) and to the air ), are Eredlund and Rahardjda993:

' = p""OR/M, (37)

p? = p"OR/ M, (38)

p’ = p £ 7" (39)

p? =p* +p™ (40)
Pl e 1\

M, =P — + 41

g(mm+mm (“41)

wherel/, is the constituent molar mass afds the universal gas constant.
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4 GENERAL FIELD EQUATIONS

Macroscopic balance laws are currently transformed by the introduction of the constitutive
relationships previously defined in sectid:3.

4.1 Solid phase

The solid phase behaviour may be conveniently depicted using the lineal momentum balance
equation, which is obtained from edl) by appropriately setting the state variabied andG
(Lewis and Schrefler1998.

Lo +pg=0 (42)

being the differential operator:

d/0x 0 0 09/dy 0 0/0z
L"=| 0 09/oy 0 0/ox 0/0z 0 (43)
0 0 9/0z 0 9/0y 0/ox

4.2 Liquid phase

Taking the Derivative of the degree saturation of the different phd3esgth respect to time
and clearing)S,/0t, it is obtained:

9S, 0SS, 0Sx
ot ot ot

Introducing the liquid phase state equati@6)( the solid phase pressure definiti@i)and
the solid phase densitg8) in the macroscopic balance of the liquid phad€),(and constrain-

ing the problem to an isothermal condition,

(44)

[splecn)  ns) O floong o0 flan)g o]0

ot K ot K ot
ou (v —mn) (v —n) Sy (v —mn) 0Sy
TrY™ UUNE g —_—v L—
+aS,m Lat+|: o Sup AR B vl s ol Lt i b v
1 kk™
+ p—va [ P (=Vp* +Pw9)] =0 (45)

Terms likeoS,, /0t y 0S5, /0t may be written as
nasw B 85 o7’ apgw _c, op?  op®
T T TR ot ot

0S, _ 08y op™ L o, (00" "
or " "apm ot " ot

(46)

ot ot

wherends,,/op?” = C, is the derivative of the water saturation with respect to the suction
which may be obtained with the aid of the soil characteristic cusye-< p*) (Fredlund and
Xing, 1994 Beneyto et a].2009. Since ther phase behaves like a fluid, an equivalent anal-
ysis may be achieved by the mere implementation of a Sew p9™ curve which allows the
assessment of the derivative S, /0p?™ = C, as well as it was done for the watd?go and
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Lewis, 2002. One possibility is the adoption of a hyperbolic functi@o(zon et al, 1996 for
the abovementionefl, — p9™ curve.

op¥ op? op™ ou 1 kkmv
Q92 §t +Oé23apt +a248pt +Q21La+p_WVT{ (=Vp“ +p“g)| =0 (47)
with
g1 = o Spym
oa—n Cyu Cyw 1Sy
0422—( KS )Sw <Sw—pwn —|—pg—) K—w—c
(a - n) wOw g w T g Cﬂ' (48)
O = Su | Sy +p == —p n+(p p)n + Cy
a—n T
Qa4 = ( >Sw (Sw - (107r pg) >

4.3 Gaseous phase

From the gaseous phase balance equation for isothermal procégsasd regarding the
state equation for the gaseous pha&b,(the relative velocity definition3), the solid phase
density33and the expressiond4) and @6), the following mathematical statement is obtained:

(o0 (5 ) )

(a—n) Co  w o, Crin nSyM, | Op?
b, (5,4 S0 -+ S ) - ok P
(v —n) Cr ap”
+{ I Sy | Sx - (" —=p?) | +Cx

ot
0 kk™d
+ S, mTLa—zZ VT [ " (—Vp? +p9g)} =0 (49)

which may be written similarly to the equatioh?

op” op* op” du T | kK" _
Q325" +ags—— BT + gy —— BN +0431L§+EV 19 (=Vp?+p%9)| =0  (50)

with

(O_/—TL) Cw w
Q3g = e Sy Sw—l—F(pg—p) +Cy
(a—n) C’w w nS, M, (51)
s = g (S =m0 =) = 07 =) ) = Cu = G R
(Oé-?”b) Cﬂ s
34 = KS Sg SW+7(pg—p) +C7r
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4.4 Immiscible pollutant phase

Whenever the pollutant is unable to mix with the liquid phase and accordingly to what was
settled herein, it is clearly forming a new phase, The mathematical framework may be
stated likewise the liquid phas&¢hrefley 2001). From the immiscible pollutant mass balance
equation for isothermal processéds) and regarding expression33), (36), (44) and @6) it is
obtained:

2o ns] %

+ {(a};n)&r {Sﬁ(pw—pg)%ﬂp“—p ) C } +C7r}

(v —mn) N nSy op™
w [ s 0r - ] 4 5 - B

op?
ot

+a Sy mTL% VT {kk
ot ur

(=Vp" +p g)]ZO (52)

which may be expressed likewise the equatibr) (

op¥ op? op™ ou kk™™
Qg0 gt +Oé43((§t + Quyy a]; +a41La + p VT|: ,LL ( Vp +p g)] 0 (53)
with
g = a S;m
(O{ - TL) [ w g Cw
Oy = K. Sr _Sw (p p ) n
(Oé - n) [ wW q Ow T g Oﬂ’ (54)
Qg = = Sﬂ_Sng(p P) =+ " =) |+ O
a—n I Cr nSy
Qg = ( K. )Sn -Sﬂ'_ (p" —p?) 7} + K. —Cx

5 DISCREET MATHEMATICAL MODEL

By the application of Galerkin method to the differential system of equations described by
equations 42), (47), (50) and 63), and dicretizing using the finite element meth@hihe
1996, the following algebraic system is furnished:

KE%—? +Ch 8§t +C,, %ptg +C, 851 i 8;; - (55)
waaa% +Cuy a;: + Clon a;; + Cls %;" Houp" = (56)
ng%i? +P,, %p: +C,n ag; +C, %t v H, 5 = f (57)
Cmaai: +Chy aég P, ag; +Ch %"Z’ Y H = f" (58)
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Re arranging the terms and using a matrix description, it is obtained

K, C,, C, C. u 0 0 0 0 @ fu
Cus Puw Cug Cun | | 0" | |0 Huw 0 0 ol
C,. Cy P, Cy P 0 0 H, 0 P 19
Crs Cry Cry Pry P 0 0 0 Hg || fr
(59)

All the matrices and vectors are presented in the appendix 1.

6 NUMERICAL EXAMPLES
6.1 Unidimentional soil column problem

The following example consists in a non saturated soil column with liquid and gaseous sub-
stances as well as another immiscible substance gathered in the solid skeleton voids. The sample
may be treated as a unidimensional model.

The physical and geometric data of the problem are given as follows: Wide 0.10m;
height H = 1.00m; loadg = 10.0Kpa; Young’s modulust = 1000.0K pa; Poisson’s ratio
w1 = 0.3; internal friction¢ = 30° = 0, 5236rad; cohesion: = 50.0K pa; initial void ratio ey =
2.0; vertical permeability coefficient, = 0.00864m/dia; water and pollutant compressibility
coefficient K; = K, = 1000000.0Kpa; initial water saturation degre§, = 0.50; initial
pollutant saturation degreg. = 0.40. The pore pressures on the top surface are set to zero
(atmospheric pressure), whereas the boundary conditions for displacements are indicated in
figure 2.

Z

s S S-S

R R R R R R R R R R R

B

Figure 2: FEM Mesh and boundary condition

In figure 3a, 3b, 3c and3d, plots standing for displacements vs. time (settlement evolution),
the pollutant saturation vs. time as well as the pore water and pore pollutant values vs. time,
were respectively presented.

A further discussion on the results shown in figBadlows pointing out that the pore pressure
evolution is indeed in agreement with the solid phase deformation as well as with the saturation
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degree decrease due to the reduction of the interstitial voids with the load process evolution.

a) Uy vs. t b)S_vs. t
. 0.50030
wn
T 000 g 0.50025
g 5 050020
g -0.02 o
g a 050015
S 04 g 050010
= E=
= S 050005
[72]
= -0.06 = ~
= < 050000
wn
-0.08 ; : , ; ; 0.49995 1 , ; ; , ;
001 01 1 10 100 1000 10000 001 01 1 10 100 1000 10000
Time (days) Time (days)
w T
p vs.t b) p~ vs. t
E 300.0 = 0012
Z 2500 2 0010
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o 200.0 k. 0.008
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2 1000 2 0.004
3] )
s 500 & 0.002
00 £ 0.000
(=} =}
A 500 : , : ; : A ; ; ; ; : ;
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Figure 3: Unidimentional soil column. Numerical result: a) Displacement vs. Time ; b) Pollutant saturation degree
vs. Time ; c) Water pore pressure vs. Time ; d) Pollutant pore pressure vs. Time

6.2 Aquifer exploitation

The next example consists in an aquifer exploitation trough a typical soil profile found in
the Northeast region of the Argentine Republic (NEA in spanish). The superficial layer is
constituted by a low saturation sargb{l 1), the following layer is constituted by a saturated
clay-type soil with a considerably low permeability coefficiesui( 2) and the last and deepest
layer, is constituted by an almost saturated sand with the presence of an immiscible pollutant
(soil 3) in its voids.

The problem data is given as follows: Height= 2.00m; wide B = 2.00m; diameter of
the welld = 0.20m. The physical characteristics of the different soil layers are given in fable

The finite element mesh used for this example, is constituted by 286 serendipity rectangular
eight nodes elements. In figufe the displacement boundary conditions as well as the men-
tioned finite element mesh, is presented.

Likewise the previous example, the pore pressure for the nodes in contact with the atmo-
sphere was set to zero. Finally, figuand5 shows respectively the pollutant and water pore
pressure evolution.
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Soils properties Soil 1 Soil 2 Soil 3
Young’'s modulusE[K pa] 3000.0 1500.0 2500.0
Poisson’s ratioy 0.3 0.3 0.3
Specific gravity,y[tn/m?] 2.0 2.0 2.5
Internal friction,¢[rad| 0,5236 0,5236 0,5236
Cohesiong[K pal 0.0 50.0 50.0
initial void ratio, e 1.0 2.0 1.0
Grains compressibilityl;[ K pal 1000000.0 1000000.0, 1000000.0
Horizontal permeability coefficient,[m /dia] 1.728 0.001728| 0.01728
Vertical permeability coefficient, [m /dia] 0.864 | 0.000864 | 0.00864
Water initial water saturation degreg, 0.40 0.50 0.40
Pollutant initial water saturation degree, 0.00 0.50 0.50

Table 1: Physical properties of a NEA characteristic ground profile

Nongaturdtedsoil
o—O
Saturpted ¢lay]
o—O
N O 9
b—0
4 D o—CQ
o Non|saturated soil|H Pollutant
b—a
b—o0
O——0 o—-¢

B

Figure 4: FEM Mesh and boundary conditions (286 elements)
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' -0.018439
-0.03699

- -0.05548
- -0.07398

H -0.09247
- -0.11097
-0.12947
-0.14797
-0.16646

Figure 5: Pore water pressure at 30 hs

 0.000006
l -0.000161
-0.000328

- -0.000495
- -0.000663
H -0.000830

- -0.000997
-0.001165
-0.001332

-0.001500

Figure 6: Pollutant pressure at 30 hs

7 CONCLUSIONS

A coupled mathematical framework for the solution of pore pressures and displacements of
a non saturated porous media with three fluid phases in isothermal conditions was presented.
Furthermore, the solution of the aforementioned problem using the finite element method was
carried out. Encouraging outcomes were obtained based on the general compatibility between
the different variables values.
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APPENDIX 1

Kg= / B'DpB df B=LN,
Q

Cow = / BTa;yN,dQY  C, = / NTay B d
Q Q

C,, = / B'aN,dQ  C, = / NTaz B df
Q Q

Cor = / BTa N, dQ  C,, = / NTay B df
Q Q

Cuy = / N3N, dQY Cg, = / NN, d
Q Q

Cur = / NlayN,dQ) Cr, = / N apN, dQ
Q Q

Cyr = / NlayN,dQY Cgr,= / N7 a;sN, dQ
Q Q

P, = / NlanN,d) Py, = / N} asN, dQ
Q Q

P..= / NTauN, dQ
Q

1 7 kK™
H,, = / VN VN, dQ
Su;pw Q ( p) ,Uw p
1 7 kk"
Hy= 55 /Q (VN =5V N, d2
1 kk'™
How =5 /Q (VN,)" VN, d0
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fu= / NT((1=n)p* 4+ nSyup” + nSyp? + nS.p") g d + / NTtare
Q F%

1 T kv qu
fv = /VN p“’ng—/N—dF
Swp® Q( 2 e rg, U pY

1 T k9 G
g g _ =
19 = Sgpg/ﬂ(vz\rp) 1’9 40 /F Ny dr

1 T kk’r‘ﬂ' TqTI'
Fm— /VN p”ng—/N—dF
Sep™ Jo (VN,) pu rg P T
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