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Abstract. Hyperthermia is a type of cancer treatment in whaahcer cells are exposed to high

temperatures (up to 44-45°C). Research has shoathigh temperatures can damage and Kill
cancer cells, by a localized and concentrated Imgatsource. By killing cancer cells and

damaging proteins and structures within cells, mjfpermia may shrink tumors, with minimal

injury to normal tissues.

In addition to in vitro and in vivo studies, com@utsimulation can be used to understand
transport phenomena inside a tumor. In this studgpherical region containing a magnetic

particle embedded in a tissue is modeled usingibleeat equation with the Penne’s model for
the thermal interaction between the tissue andpiréused blood. Analytical techniques are used
to solve the bioheat equation with a point heatreewf constant density power located as the
center of a spherical domain. The point heat souraedel the heat generated by magnetic
particles under the effect of an alternating magnéield, used in studies of local magnetic
hypertermia. Parametric studies of the temperapndiles are carried out to study the effect of
different parameters like the heat generation rgierfusion rate and diameter of the point

source on the maximum temperature and on the texper profile. Some discussion about
important parameters research issues in cancer tigpaia are also addressed.
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NOMENCLATURA

p,C,,k,a : density, specific heat, thermal conductivity ahermal diffusivity of the tissue
P,,Cp: density and specific heat of the blood

g, : metabolic heat generation

g, : perfusion heat source
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w: perfusion rate (s of volumetric blood flow per frof tissue)
T, arterial temperature

T,T : local tissue temperature and dimensionless ligsle temperature

Q(r) . point source heat generation
r,r’ : radial coordinate and dimensionless radial codi
r,R,: radius of the internal heat source, maximum mdifuthe domain

t,t": time and dimensionless time
l,,,,K,,,: modified Bessel functions of order %2

1 - INTRODUCTION

Bioheat transfer processes in living tissues atenofnfluenced by the influence of blood
perfusion through the vascular network on the Idealperature distribution. When there is a
significant difference between the temperaturéheflilood and the tissue through which it flows,
convective heat transport will occur, altering teenperatures of both the blood and the tissue.
Perfusion based heat transfer interaction is afitic a number of physiological processes such
as thermoregulation and inflammation.

The blood/tissue thermal interaction is a functafnseveral parameters including the rate of
perfusion and the vascular anatomy, which vary lyidenong the different tissues, organs of the
body, and pathology. The literature contains aemsive compilation of perfusion rate data for
many tissues and organs. The rate of perfusionladdbthrough different tissues and organs
varies depending on factors such as physical agtiphysiological stimulus and environmental
conditions. Further, many disease processes araatbazed by alterations in blood perfusion,
and some therapeutic interventions result in eitireiincrease or decrease in blood flow in a
target tissue. A good reference for the study aheéat transfer can be found in tGHRC
Handbook of Thermal Engineering, chapter(&d. Frank Kreith, 2000)

Bagaria, and Johnson (Bagaria, and Johnson, 20WK) tudied the the bioheat equation
numerically and analytically for hyperthermia applions of cancer treatments. The model
studies the proper distribution of magnetic pagscthroughout the tumor could minimize the
damage to the surrounding healthy tissue whileraglintaining a therapeutic temperature in the
tumor. However, this distribution is defined matlaitally but is not feasible to control in
practical applications. And the analytical solutie complicate and obscure. Rosensweig,
(Rosensweig, 2002) present a model for heating etagfiuid with alternating magnetic field.

In this paper an analytical study is curried ousdtve the bioheat equation with a heat source of
constant density power located as the center phargal domain. The point heat source model
the heat generated by magnetic particles undegftaet of an alternating magnetic field, used in

studies of local magnetic hypertermia. Parametudiss of the temperature profiles are carried
out to study the effect of different parameter ltke heat generation rate, perfusion rate and
diameter of the point source on the maximum tentpe¥aand on the temperature profile. Some
discussion about important parameters researchgsalcancer hypertermia are addressed.
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2 - MATHEMATICAL FORMULATION

Pennes model (Pennes, 1948) describes the effattstabolism and blood perfusion on the
energy balance within tissue. Basically, these é¥fects are incorporated into the standard
thermal diffusion equation and the equation isechthe bioheat equation. Here, the domain of
study will be a spherical domain with a heat sowfceadius f at the center of the spherical
domain of radius Ras is shown schematically in Figure 1.
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Figure 1 — Schematic of the spherical domain withrainternal heat source

The bioheat equation in spherical coordinates wa#ittinternal heat generation at the center of the
sphere can be written as:

PC, T _10( ,0T . r
( jqpq+() o
“k at rfor or k

Where p,C ,k are the density, specific heat and thermal comdticof the tissue, p,,C, are

density and specific heat of the blocqjv is the metabolic heat generation. Pennes’s madel f
a’pbcpb
k
volumetric blood flow per rhof tissue), T, is the arterial temperature afidis the local tissue
temperature. Then, by incorporating the Pennes@eiiato the diffusion equation (1) yields:

the perfusion heat sourcqu = (Tm —T) , wherew: is the perfusion rate (s of

(2)

Defining the following dimensionless parametears= I ov= % andT™ = -1, Writing

T rZor or k

,OC 6T 10 (rza—T)+WbCpb(Tw—T)+%+Q(r)
Tk at rfor k k

00

equation (2) in terms of these dimensionless patensiea dimensionless equation is obtained:

. ; T=—7-—"T— 3)
*oor or o k KT, KT,

00

10 (r*zaT*j_aT*_Riwapb .__QR _q.R
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By defining the following constant$), = k;‘” andC, :% that dimensionalizeQ, q11 and

2

wp,C ,as: Q :Qg+%, c = U~ b , the bioheat equation in dimensionless form can be
written as:

1 a *2 aT* aT* * *

——|r = |-—=—-cT =-Q(r 4

r*ar( GrJat Q(r) (4)

With the following initial condition,T" (r",t = 0) = Oand the following boundary conditions: the
temperature must remain finite at the cerite0,t ) = finiteand the temperature at the external

spherical surface is maintainedTgt, so the dimensionless temperatlirér =1,t)=0

3 — ANALYTICAL SOLUTION

To obtain an analytical solution, let split the dimsionless heat generation te@n(r) into a

constant heat generation due to metaboligrand a constant heat source of radiuat the
C*

centerq (1)

er):dn+cfp(r)

Then

1 0( ..0T ) 0T . \

— | — |~ ~¢T =-q,- r S
r*zar( GrJat q, — o, (1) (5)

Now, let T" =T,(r,t)+ T,(r)and for convenience let drop the superscript *

19(,dT) aT ]

2 or (rz arlj_ g Ch= %o ©)
19(,0T,

= —|r?=2|-cT,=- 7

Subject to the following boundary conditions:

T(r=1t)=0 and T/(r=0,t)= finite (8)

T,(r=1)=0 and T,(r=0)= finite 9)
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And the following initial condition:
T,(r,0)=-T,(r) since T (r,0)=T,(r,0)+T,(r)=0 (10)
Now, let T,(r,t) =e“U(r,t)and substitute into equation (6)

ii(rza_u

aU — _NC ct:
e R j——— q,(r)e” =g(rt) (11)

a

Where the source term is now a functiom ehdt, g(r,t) = —q‘;(r)e“. Then, the boundary
conditions in terms df yields:

U(r=1t)=0and U (= 0t ) finite (12)

And the initial condition becomes:

U(r,t=0)=-T,() (13)

Then, equation (7) has to be solved subject to taynconditions (9) and equation (11) subject
to boundary conditions (12) and initial conditidr8)]. With the following change of variables for

T,(r) =¥, equation (7) becomes a modified Bessel equatiderms ofH and the solution is
r
obtained in terms of modified Bessel functions (ppendix A)
I, (rvc
q.[. lua(rve)
Trn="1-———F= (14)
o ( mm(%)J

The solution equation (11) for U is obtained usBrgen functions with an initial condition

given by
U(r,0)=-T,(r)=-m —M (15)
OO L)

A spherical heat source of radiyptaced at the center of the spherical domain tefgiration

C AC l
g(r,t)=gpe‘4mz5(f-ﬁ)

U(r,t)=%Z:e‘/3f2“t sin(ﬂmr)j r'sin(B,y )(-T, ¢ )dr +

0

e t (16)
+ 27:r1r ;e”ﬁ‘ sin(B,r) sin(ﬂmrl)J::Oeﬂ"Z*’ & o
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. t 2 + . . .
The integral Loe(ﬁ e gidr can be integrated analytically for a constant risty heat

generationg;
2ic)r ' 2 4
t (ﬁ%w)r oL e(ﬁm ) gp _ e(ﬁm )t 1
€ gpdr" 2 - 2 q
=0 le +C ﬁm +C

0

Going back toT, =Ue™*" with B, =mr, T,(r,t) takes the form

© g 1 c il _ (ﬂ§|+c)t
'I'l(r,t):?ZZe(Bm ) sin(ﬂmr)j r'sin( B,r )(—Tz(r,))dr #Z?Tsr Z si(B.r) silﬁﬂﬁrl)[l ﬂez o } (17)

The integraljolr 'sin(B,r )(-T, ¢ ))dr ' can be evaluated numerically. The final solution T
is T =Ta(r,t)+Ta(r)

T*(I’,t) =$% Ze‘(lﬁw)t sin(,Bm r) r ‘sir(,er )[M - %dr -l-% 1
i T (18)

9% < sin(B,r) sinBr) |1~ ' A
21T — B.r B.n 1+.C

Where 8, =mmr, m=1,2,3,........... ®

And from the definition of the dimensionless tengtare, T = - , the temperatur@ is
obtained asT =T T+ T,
5 - RESULTS AND DISCUSSION

Here, some typical values are assumed for theetidgrmal properties, the metabolic heat
generation, the perfusion rate and a radius oharsgal domain under study.

w 9 : 3= 7ol }
k=05—;p,=1000— ;C = 3606— T.= 37C g, = 7 w= 0.0065R= 0.0
e P m P kg cT Hh M sR

The radius of the internal heat source;#@.00001 m. With these valued, = I, and

2

C, = k/ R are calculated to dimensionalizig, and c = wp, Coo
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0.5 x3PC

o . _ 6 . wpo,C

Q, = kT;o - mC . 185000 ., On o _700W/mM __ 3.78.10 ¢ =—C=—':Zb = 0.3

R (0.01m) '’ Q 185000W /m ¢ /R?
The parametelﬁz dimensionalize the time

w
0.5

r=9o K 4o - s 1.39.10% 1

R PGR 10009 3600 2 x( 0.08) s

m’ ke C

To evaluate equation (18), an analysis of ordenagnitude is performed first. The first term of
equation (18) goes to zero when time goes to iyfinfhus, T,(r) represents the steady state

temperature profile due to a constant metaboli¢ geaeration. Assuming only metabolic heat
generation, the maximum temperature will occurhat ¢enter of the spherical domain at the
steady state. The temperature rise due to typadakg of metabolic heat generation is negligible
compared with the temperature rise due to the bkeatce that have to be generated by the
magnetic particles, in hyperthermia applicationisef, neglecting the first two terms in equation
(18), the temperature profile generated by the Isearce of radius;rat the center of the
spherical domain of radiussRvill be discussed now.

Figure 2 shows the temperature profiles generayeghtinternal heat source at the center of the
sphere ofg; =1000W /. The maximum temperature occurs at the centeisaagiproximately

55°C. The steady state temperature distributioshmwvn and it can be seen the temperature
gradients at the center are very steep to be abldiffuse the heat generated. Since the
conductivity of the tissue is low and the crosdiseal area in the region close to the heat source
is also small, from Fourier law of conduction tleenperature gradients have to be high. As the
radius is increasing, the heat fluxes are reduamdheat can be diffusive with lower gradients.
This implies that in the region next to the heairse, a very steep temperature profile can be
maintained for a long time generating higher terapee in a very small region and lower
temperatures at a relatively short distance froehteat source, without affecting healthy cells.
This is very important in hyperthermia treatmerssice is desirable to minimize secondary
effects. From parametric studies, the steady gtaiile is reached in a very short time (much
less than one second). At a distant of 0.1 mmehwerature is less than 39. As can be seen,
the higher temperatures are concentrated to a distance from the heat source.

Figure 3 shows the temperature profile for a radiuthe internal heat source aE£6.0001 m.
For the same volumetric heat generatigh=21000W /nithe heat power is much higher since

the volume increase as the cubic of the radiughimitemperatures generated are lower because
heat can diffuse easier in this case..

Figure 4 shows the temperature profiles for a mdiuthe internal heat source @£0.0001 m.
as in Figure 3 but a volumetric heat generatiog cf 7000W /ni. It can be seen that the

temperature penetrates further into the domain.
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Figure 2 — Steady state temperature profile for #=0.00001 m
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Figure 3 — Steady state temperature profile for #=0.0001 m
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Figure 4 — Steady state temperature profile for 7=0.0001 m andg; =7000 win?

Finally, from the analytical solution (18), the et of the perfusion rate is quantified by the term
Fcf . For typical values of in the order of 0.36, of is small and the effect of perfusion can be
neglected for hyperthermia applications.

6 - CONCLUSIONS

An analytical study of the bioheat equation hasnbearied out. An analytical solution was
obtained for the case of metabolic heat generati@nspherical domain and a concentrated heat
source at the center of the sphere. From param&trdies, metabolic heat generation can be
neglected because the temperature raise that ankrate is small compared with the typical
temperature increase generated in hyperthermiaicagiphs of cancer treatments. Also, the
effect of the perfusion rate is not significant.r Feery concentrated heat sources, the
temperatures gradients are very high and highepeestures are generated in a small region
close to the heat source. A short distance fromsth&ce, temperatures can be maintained
practically at a tissue temperature without affegthealthy cells. If the size of the heat source

increases, the heat diffuses easier and the tempenarofile penetrate farther into the healthy
cells.
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APENDIX A

To solve equation (Al), given below

19( ,0T,
=9 2%z T, = Al
rzar( arj 2= "G (A1)

H
The following change of variablg, =—U js made. Then, equation (A1) transforms to

N3

ﬂ = r—1/2H l_lHr—3/2
dr 2
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1 d —l/2|_| —3/2) -1/
Hr -cr "H =
r2 dr{ ( 2 m

Multiplying by r* and doingg,, =0 we obtained the corresponding homogeneous equation

i(r:i/ZH I_EH l/2j —cr 3/1_| O
dr 2

By expanding
§r1/2H l+r3/2‘_| ll_l‘Hr—l/Z__lH r 1/2_(.:’r 3/|2_| :O
2 4 2

Multiplying by r'/?

2
r’H "+rH '—licrz—(%j }H =0

This is themodified Bessel equation of order ¥he solution is obtained in terms of the

modified Bessel functions,,,, K, ,
H=Bl,,+BK,,
To satisfy the condition th&t has to be finite B=0. Then

T,(r) = BAx2NC) 1’2\(;#‘;)

If g, is constant, then the particular solution is

+ Particular solution

_ 9,
T, =2
Then
T(r) B 1/2(r\/_) qm
N

B, is found from the condition

T2(r)|r_l =0, which imply thatB, = e On and the solution foT, is
] cly,(ve)

T,(r) = 1——|”2(r\/6)

e Jry(\e)
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