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Abstract.  Hyperthermia is a type of cancer treatment in which cancer cells are exposed to high 
temperatures (up to 44-45°C). Research has shown that high temperatures can damage and kill 
cancer cells, by a localized and concentrated heating source. By killing cancer cells and 
damaging proteins and structures within cells, hyperthermia may shrink tumors, with minimal 
injury to normal tissues. 
In addition to in vitro and in vivo studies, computer simulation can be used to understand 
transport phenomena inside a tumor. In this study a spherical region containing a magnetic 
particle embedded in a tissue is modeled using the bioheat equation with the Penne’s model for 
the thermal interaction between the tissue and the perfused blood. Analytical techniques are used 
to solve the bioheat equation with a point heat source of constant density power located as the 
center of a spherical domain. The point heat source model the heat generated by magnetic 
particles under the effect of an alternating magnetic field, used in studies of local magnetic 
hypertermia. Parametric studies of the temperature profiles are carried out to study the effect of 
different parameters like the heat generation rate, perfusion rate and diameter of the point 
source on the maximum temperature and on the temperature profile. Some discussion about 
important parameters research issues in cancer hypertermia are also addressed.  
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NOMENCLATURA   
 

, , ,pC kρ α : density, specific heat, thermal conductivity and thermal diffusivity of the tissue 

,b pbCρ : density and specific heat of the blood 
.

mq : metabolic heat generation 

 
.

pq : perfusion heat source 
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:ω  perfusion rate (m3/s of volumetric blood flow per m3 of tissue) 
T∞  arterial temperature 

*,T T : local tissue temperature and dimensionless local tissue temperature 
.

( )Q r : point source heat generation 
*,r r : radial coordinate and dimensionless radial coordinate 

1, or R : radius of the internal heat source, maximum radius of the domain 
*,t t : time and dimensionless time 

1/ 2 1/2,I K : modified Bessel functions of order ½ 

 
 
1 – INTRODUCTION 
 
Bioheat transfer processes in living tissues are often influenced by the influence of blood 
perfusion through the vascular network on the local temperature distribution. When there is a 
significant difference between the temperature of the blood and the tissue through which it flows, 
convective heat transport will occur, altering the temperatures of both the blood and the tissue. 
Perfusion based heat transfer interaction is critical to a number of physiological processes such 
as thermoregulation and inflammation. 
 
The blood/tissue thermal interaction is a function of several parameters including the rate of 
perfusion and the vascular anatomy, which vary widely among the different tissues, organs of the 
body, and pathology. The literature contains an extensive compilation of perfusion rate data for 
many tissues and organs. The rate of perfusion of blood through different tissues and organs 
varies depending on factors such as physical activity, physiological stimulus and environmental 
conditions. Further, many disease processes are characterized by alterations in blood perfusion, 
and some therapeutic interventions result in either an increase or decrease in blood flow in a 
target tissue. A good reference for the study of bioheat transfer can be found in the CRC 
Handbook of Thermal Engineering, chapter 4.4(Ed. Frank Kreith, 2000). 
 
Bagaria, and Johnson (Bagaria, and Johnson, 2003, 2005) studied the the bioheat equation 
numerically and analytically for hyperthermia applications of cancer treatments. The model 
studies the proper distribution of magnetic particles throughout the tumor could minimize the 
damage to the surrounding healthy tissue while still maintaining a therapeutic temperature in the 
tumor. However, this distribution is defined mathematically but is not feasible to control in 
practical applications. And the analytical solution is complicate and obscure. Rosensweig, 
(Rosensweig, 2002) present a model for heating magnetic fluid with alternating magnetic field.  
 
In this paper an analytical study is curried out to solve the bioheat equation with a heat source of 
constant density power located as the center of a spherical domain. The point heat source model 
the heat generated by magnetic particles under the effect of an alternating magnetic field, used in 
studies of local magnetic hypertermia. Parametric studies of the temperature profiles are carried 
out to study the effect of different parameters like the heat generation rate, perfusion rate and 
diameter of the point source on the maximum temperature and on the temperature profile. Some 
discussion about important parameters research issues in cancer hypertermia are addressed.  
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2 - MATHEMATICAL FORMULATION 
 
Pennes model (Pennes, 1948) describes the effects of metabolism and blood perfusion on the 
energy balance within tissue. Basically, these two effects are incorporated into the standard 
thermal diffusion equation and the equation is called the bioheat equation. Here, the domain of 
study will be a spherical domain with a heat source of radius r1 at the center of the spherical 
domain of radius R0 as is shown schematically in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bioheat equation in spherical coordinates with an internal heat generation at the center of the 
sphere can be written as: 
 

 

. .
.

2
2

1 ( )p m
p

C qT T Q r
r q

k t r r r k k

ρ ∂ ∂ ∂ = + + + ∂ ∂ ∂ 
      (1) 

 

Where , ,pC kρ  are the density, specific heat and thermal conductivity of the tissue,  ,b pbCρ  are 

density and specific heat of the blood, 
.

mq  is the metabolic heat generation. Pennes’s model for 

the perfusion heat source is 
.

pq = ( )b pbC
T T

k

ωρ
∞ − , where :ω  is the perfusion rate (m3/s of 

volumetric blood flow per m3 of tissue), T∞  is the arterial temperature and T  is the local tissue 

temperature. Then, by incorporating the Pennes’s model into the diffusion equation (1) yields:  
 

( )
. .

2
2

1 ( )p b pb m
C C qT T Q r

r T T
k t r r r k k k

ρ ωρ
∞

∂ ∂ ∂ = + − + + ∂ ∂ ∂ 
    (2) 

Defining the following dimensionless parameters: *

o

r
r

R
= , *

2
o

t
t

R

α= and * T T
T

T
∞

∞

−= . Writing 

equation (2) in terms of these dimensionless parameters, a dimensionless equation is obtained: 
 

2

2

. .
2 2 2* *

* *
* * **

1 o b pb o m o
R C Q R q RT T

r T
r r t k kT kTr

ωρ

∞ ∞

 ∂ ∂ ∂− − = − − ∂ ∂ ∂ 
    (3) 

Figure 1 – Schematic of the spherical domain with an internal heat source 

r1 

of a healthy tissue 
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By defining the following constants, 
2o
o

kT
Q

R
∞=  and 

2o
o

k
C

R
=  that dimensionalize  

. .

, mQ q  and 

b pbCωρ as:  

..

* m

o o

qQ
Q

Q Q
= + , * b pb

o

C
c

C

ωρ
= , the bioheat equation in dimensionless form can be 

written as: 

2

2

* *
* * * * *

* * **

1
( )

T T
r c T Q r

r r tr

 ∂ ∂ ∂− − = − ∂ ∂ ∂ 
      (4) 

With the following initial condition, * *( , 0) 0T r t = = and the following boundary conditions: the 

temperature must remain finite at the center * *(0, )T t finite= and the temperature at the external 

spherical surface is maintained at T∞ , so the dimensionless temperature * *( 1, ) 0T r t= =  

 

3 – ANALYTICAL SOLUTION  
 
To obtain an analytical solution, let split the dimensionless heat generation term * ( )Q r into a 

constant heat generation due to metabolism *
mq and a constant heat source of radius r1 at the 

center * ( )c
pq r  

 
* * *
( ) ( )c
r m pQ q q r= +  

 
Then  
 

2

2

* *
* * * *

* * **

1
( )c

m p

T T
r cT q q r

r r tr

 ∂ ∂ ∂− − = − − ∂ ∂ ∂ 
      (5) 

 

Now, let *
1 2( , ) ( )T T r t T r= + and for convenience let drop the superscript *  

 

2 1 1
1 ( )2

1 c
p r

T T
r cT q

r r r t

∂ ∂∂  − − = − ∂ ∂ ∂ 
       (6) 

 

2 2
22

1
m

T
r cT q

r r r

∂∂   − = − ∂ ∂ 
        (7) 

 
Subject to the following boundary conditions: 
 

1( 1, ) 0T r t= =   and  1( 0, )T r t finite= =       (8) 

 

2( 1) 0T r = =  and 2( 0)T r finite= =       (9) 
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And the following initial condition: 
 

1 2( ,0) ( )T r T r= −   since  *
1 2( ,0) ( ,0) ( ) 0T r T r T r= + =     (10) 

 
Now, let 1( , ) ( , )ctT r t e U r t−= and substitute into equation (6) 

 

2
2

1
( ) ( , )c ct

p

U U
r q r e g r t

r r r t

∂ ∂ ∂  − = − = ∂ ∂ ∂ 
      (11) 

 
Where the source term is now a function of r and t, ( , ) ( )c ct

pg r t q r e= − . Then, the boundary 

conditions in terms of U yields: 
 

( 1, ) 0U r t= =  and  ( 0, )U r t finite= =       (12) 
 

And the initial condition becomes: 
 

2( , 0) ( )U r t T r= = −          (13) 
 

Then, equation (7) has to be solved subject to boundary conditions (9) and equation (11) subject 
to boundary conditions (12) and initial condition (13). With the following change of variables for 

2

( )
( )

H r
T r

r
= , equation (7) becomes a modified Bessel equation in terms of H and the solution is 

obtained in terms of modified Bessel functions (see Appendix A) 
 

( )
( )

1/ 2

2

1/ 2

( ) 1m
I r cq

T r
c r I c

 
 = −
 
 

        (14) 

 

The solution equation (11) for U is obtained using Green functions with an initial condition 
given by 

( )
( )

1/2

2

1/ 2

( ,0) ( ) 1m
I r cq

U r T r
c r I c

 
 = − = − −
 
 

      (15) 

 

A spherical heat source of radius r1 placed at the center of the spherical domain of integration 

12

1
( , ) ( )

4
c ct
pg r t g e r r

r
δ

π
= −   

 

( ) ( )( )

( ) ( )

2

2 2

1

2
01

1
1 01

2
( , ) sin 'sin ' ( ') '

1
sin sin

2

m

m m

t
m m

m

t
t c c

m m p

m

U r t e r r r T r dr
r

e r r e g e d
r r

β

β β τ τ

τ

β β

β β τ
π

∞

−

=

∞

−

==

= − +

+

∑ ∫

∑ ∫
   (16) 
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The integral ( )2

0

m
t c c

pe g d
β τ

τ
τ+

=∫  can be integrated analytically for a constant intensity heat 

generation c
pg  

( )
( ) ( )2 2

2

2 2
0

0

1
m m

m

t
c c tt c

c pc c
p p

m m

e g e
e g d g

c c

β τ β
β τ

τ

τ
β β

+ +
+

=

  − = =
 + +
 

∫  

 

Going back to 1
ctT Ue−=  with m mβ π= , 1( , )T r t  takes the form 

 

( ) ( ) ( )( ) ( ) ( )
( )2

2
1

1 2( ') 1 2
101 1

2 1
( , ) sin 'sin ' ' sin sin

2

m

m

c tc
c t p

m m r m m
m

m m

g e
T r t e r r r T dr r r

r r r c

β
β β β β β

π β

∞ ∞ +
− +

= =

 −
 = − +

+ 
 

∑ ∑∫  (17) 

 

The integral ( )( )1

20
'sin ' ( ') 'mr r T r drβ −∫  can be evaluated numerically. The final solution for T* 

is T*=T1(r,t)+T2(r)  
 

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )

2

2
2

1

1/2 1/2*

1/2 1/201

1

1

1
1 2

2
( , ) sin 'sin ' 1 ' 1

sin sin 1

2 1

m

m
m

c tm m
m m

m

c
t

c
p m m

m m
m

m

I r c I r cq q
T r t e r r r dr

r c cr I c r I c

g r r e
cr r

β

β
β

β β

β β
π β β

β

∞

− +

=

 
− +∞   

 

=

   ′
   = − + − +
   ′
   

 
 −
 
 +
  

∑ ∫

∑
    (18) 

 

Where m mβ π= ,  1,2,3,.............m = ∞  
 

And from the definition of the dimensionless temperature, * T T
T

T
∞

∞

−= , the temperature T  is 

obtained as *T T T T∞ ∞= +  

 
5 - RESULTS AND DISCUSSION 
 
Here, some typical values are assumed for the tissue thermal properties, the metabolic heat 
generation, the perfusion rate and a radius of a spherical domain under study.  

 
.

3 3

1
0.5 ; 1000 ; 3600 ; 37 ; 700 , 0.0005 ; 0.01b p om

W kg J W
k C T C q w R m

m C m kg C m s
ρ ∞= = = = ° = = =

° °
 

 

The radius of the internal heat source is r1= 0.00001 m. With these values, 
2o
o

kT
Q

R
∞=  and 

2
0oC k R= are calculated to dimensionalize mqɺ  and b pbc w Cρ=   
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( )
3

* 3 *
22 3 3

2
0

0.5 37 700 /
185000 ; 3.78.10 ; 0.36

185000 /0.01

b pbm
o m

o o o

W
C w CqkT W W m cm CQ q c

kR m Q W m Cm
R

ρ−∞
× °

°= = = = = = = =
ɺ

 The parameter 
2
0

t

R

α
dimensionalize the time t    

( )
* 3

2 2 2
0

3

0.5 1
1.39.10

1000 3600 0.01p o

W
t k m Ct t t

kg JR C R sm
m kg C

α
ρ

−°= = =
× ×

°

 

 
To evaluate equation (18), an analysis of order of magnitude is performed first. The first term of 
equation (18) goes to zero when time goes to infinity. Thus, 2( )T r represents the steady state 

temperature profile due to a constant metabolic heat generation. Assuming only metabolic heat 
generation, the maximum temperature will occur at the center of the spherical domain at the 
steady state. The temperature rise due to typical values of metabolic heat generation is negligible 
compared with the temperature rise due to the heat source that have to be generated by the 
magnetic particles, in hyperthermia applications. Then, neglecting the first two terms in equation 
(18), the temperature profile generated by the heat source of radius r1 at the center of the 
spherical domain of radius R0 will be discussed now.   
   
Figure 2 shows the temperature profiles generated by an internal heat source at the center of the 
sphere of 31000 /c

pg W m= . The maximum temperature occurs at the center and is approximately 

55ºC. The steady state temperature distribution is shown and it can be seen the temperature 
gradients at the center are very steep to be able to diffuse the heat generated. Since the 
conductivity of the tissue is low and the cross sectional area in the region close to the heat source 
is also small, from Fourier law of conduction the temperature gradients have to be high. As the 
radius is increasing, the heat fluxes are reducing and heat can be diffusive with lower gradients. 
This implies that in the region next to the heat source, a very steep temperature profile can be 
maintained for a long time generating higher temperature in a very small region and lower 
temperatures at a relatively short distance from the heat source, without affecting healthy cells. 
This is very important in hyperthermia treatments, since is desirable to minimize secondary 
effects. From parametric studies, the steady state profile is reached in a very short time (much 
less than one second). At a distant of 0.1 mm the temperature is less than 39 °C.  As can be seen, 
the higher temperatures are concentrated to a short distance from the heat source.  
 
Figure 3 shows the temperature profile for a radius of the internal heat source of r1=0.0001 m. 
For the same volumetric heat generation 31000 /c

pg W m= the heat power is much higher since 

the volume increase as the cubic of the radius but the temperatures generated are lower because 
heat can diffuse easier in this case..  
 
Figure 4 shows the temperature profiles for a radius of the internal heat source of r1=0.0001 m. 
as in Figure 3 but a volumetric heat generation of 37000 /c

pg W m= . It can be seen that the 

temperature penetrates further into the domain.  
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Figure 2 – Steady state temperature profile for r1=0.00001 m 
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Figure 3 – Steady state temperature profile for r1=0.0001 m 
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Finally, from the analytical solution (18), the effect of the perfusion rate is quantified by the term 

2
m

c

β . For typical values of c in the order of 0.36, c/π2 is small and the effect of perfusion can be 

neglected for hyperthermia applications.     
 
 
6 - CONCLUSIONS 
 
An analytical study of the bioheat equation has been carried out. An analytical solution was 
obtained for the case of metabolic heat generation in a spherical domain and a concentrated heat 
source at the center of the sphere. From parametric studies, metabolic heat generation can be 
neglected because the temperature raise that will generate is small compared with the typical 
temperature increase generated in hyperthermia applications of cancer treatments. Also, the 
effect of the perfusion rate is not significant. For very concentrated heat sources, the 
temperatures gradients are very high and higher temperatures are generated in a small region 
close to the heat source. A short distance from the source, temperatures can be maintained 
practically at a tissue temperature without affecting healthy cells. If the size of the heat source 
increases, the heat diffuses easier and the temperature profile penetrate farther into the healthy 
cells.  
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Figure 4 – Steady state temperature profile for r1=0.0001 m and c
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APENDIX A 

To solve equation (A1), given below 
 

2 2
22

1
m

T
r cT q

r r r

∂∂   − = − ∂ ∂ 
        (A1) 

The following change of variable ( )
2

rH
T

r
= is made. Then, equation (A1) transforms to 

1/ 2 3/ 22 1
'

2

dT
r H Hr

dr
− −= −  
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2 1/ 2 3/ 2 1/ 2
2

1 1
'

2 m

d
r r H Hr cr H q

r dr
− − −  − − = −  

  
 

Multiplying by r2 and doing 0mq =  we obtained the corresponding homogeneous equation. 

3/ 2 1/ 2 3/ 21
' 0

2

d
r H Hr cr H

dr
 − − = 
 

 

By expanding  

1/2 3/ 2 1/ 2 1/ 2 3/ 23 1 1
' '' ' 0

2 4 2
r H r H Hr H r cr H−+ − − − =  

Multiplying by r1/2 

2
2 2 1

'' ' 0
2

r H rH cr H
  + − − =  

   
   

This is the modified Bessel equation of order ½. The solution is obtained in terms of the 

modified Bessel functions 1/ 2 1/2,I K  

1 1/ 2 2 1/ 2H B I B K= +  

To satisfy the condition that H has to be finite B2=0. Then 

1/ 2
2 1

( )
( )

I r c
T r B

r
= + Particular solution 

If mq  is constant, then the particular solution is 

m
p

q
T

c
=  

Then 

1/ 2
2 1

( )
( ) mI r c q

T r B
cr

= +  

B1 is found from the condition 

2 1
( ) 0

r
T r

=
= , which imply that 1

1/ 2( )
mq

B
cI c

= −  and the solution for 2T  is 

( )
( )

1/ 2

2

1/ 2

( ) 1m
I r cq

T r
c r I c

 
 = −
 
 
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