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Abstract.

In this paper we describe and evaluate a geometric mass-preservirtgmeitig procedure for the
level set function on general structured grids. The proposed algoigtadapted from a recent finite-
element-based method and preserves the mass by means of a localizedrneatisicoA salient feature
of the scheme is the absence of adjustable parameters. The algorithm isirigstedand three spa-
tial dimensions and compared with a state-of-the-art PDE-based redligtanethod using structured
Cartesian grids. Through the use of quantitative error measures @shietievel set methods, we show
that the overall performance of the proposed geometric procedurdtés bean state-of-the-art PDE-
based reinitialization schemes. We also show that the algorithm is well-suitduefbighly—streched
curvilinear grids used in CFD simulations.
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1 INTRODUCTION

The level set method, introduced Bsher and Sethiafi988, has been extensively used in
the past few years to treat problems involving free surfabasically due to its simplicity to
deal with the complex topological changes that interfacgghtrundergo along their transport
in a general situation. Additionally, quantities such aes ¢rvature of the interface and other
related information can be in principle extracted from téeel set function making it a very
attractive tool for problems in two and three spatial dimemns.

As is well known, one of the main drawbacks of this method feefsurface problems
involving incompressible flows is the lack of mass conséoveand excessive diffusion, which
leads to unphysical motions of the interface that severetgribrate the accuracy and stability
of the results. These difficulties have been addressed iodligshree different ways:

e by improving the numerical algorithms used to transporti¢hel set function;
e by combining the level set method with other computatioeehhiques;

e by trying to keep the level set function as regular as possilding the so called reinitial-
ization or redistancing procedures.

Regarding the first alternative, there are many methods ve sio¢ level set equation, such as
finite volume and finite difference methods which combinaltgariation diminishing (TVD)
schemes in time, introduced I8hu and Oshef1988 1989, and essentially non-oscillatory
(ENO) schemes in space, based on the ideas firstly proposétatign and Oshef1987);
Harten et al. (1987 to solve Hamilton-Jacobi type equations. In this area, Ti®-Runge-
Kutta and Hamilton-Jacobi Weighted-ENO scheme developétiang and Pen@000 is con-
sidered to be state-of-the-art for solving the level seatign within the framework of eulerian
methods lCosasso et al.2006. In this case, curvilinear coordinates can be used to deal w
complex geometries (see for instandee et al.(2003 andCarrica et al(2006). It should be
mentioned that TVD schemes can also be used in space as fliserlmmethods, as done for
instance byOlsson and Kreis$2005. Stabilized finite elements and discontinuous Galerkin
methods are used as well for treating the level set equaliothis case, unstructured meshes
can be employed and local grid refinement becomes an easyAtasknparison of such meth-
ods is done iDi Pietro et al.(2009. In Marchandise et al200§ a discontinuous Galerkin
method is proposed and compared with several other metholdsling the ENO/RK(3) scheme
presented irBussman et a(1999 and the HJ-WENO(5)/RK(3) scheme usedanright et al.
(2005 2002. Finally, semi-Lagrangian schemes, which can be impleatkim very simple and
efficient ways, are also used in level set methods $esn(1999ab); Enright et al.(2005).

With respect to the second alternative in the bulleted bsia, hybrid methods that combine
the level set method either with Lagrangian particles ohwhe VOF (volume of fluid) method
have been developed. The first option consists in moving lessparticles forward in time in
order to redefine the level set function by means of some proeeat the end of each time step
or with a predefined frequency. See for instaieeight et al.(2005 2002 andZhaorui et al.
(2007. The other option uses the VOF method (see édgt and Nichols(1981), another
surface capturing method for free surface flows, to corteetdvel set function so as to locally
enforce mass conservation as done3ussman(2003 and Sussman and Puckg2000 for
example.

In this article we focus on the redistancing procedure. ltppse is to ensure that the level
set function remains smooth close to the interface. Thishéeaed by periodically redefining
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it, while trying to maintain the interface intact. It is nobwous whether the periodic reini-
tialization of the level set function is convenient or notcomputations. It strongly depends,
among other things, on the particular case considered, ¢tlead used to transport the level set
function, the level of discretization used and of courselmnreinitialization algorithm itself.
However, most level set methods assume thaas to be reinitialized periodically for robust-
on howto perform it economically and accurately on general meshes

A natural choice to reinitialize the level set function isthigned distance function to
the interface. Several PDE-based methods have been dduis#ds purpose, which solve
the so-called reinitialization equation as originally posed bySussman and Faterit999;
Sussman et a{1994 1999.

It should be pointed out that, in general, it is not possibleeinitialize the level set function
maintaining the interface intact in a discrete problem. dctfthe space of level set functions
that share the same given interface is extremely reduced énd Buscaglia2008 and it is
likely that none of its elements provides a reasonable apiation to the distance function.
The consequence of this is that each reinitialization disthe interface to some extent, imply-
ing a local numerical creation/destruction of fluid masswieer, this distortion is not explicit
in PDE-based methods but embedded in the discretizatigoi@didor the reinitialization equa-
tion. The use of high-order schemes, together with ad-hoection terms, are needed to
minimize the interface distortion during reinitializatiowhich otherwise completely destroys
the accuracy of the computationiso§asso et a1.2006. Though suitable implementations of
PDE-based reinitialization methods exist for Cartesiadgyrihey are not well-suited for the
highly—streched curvilinear grids used in turbulent flomsiations.

In this article we adapt the finite-element-based reinz@ion scheme dflut et al.(2006 to
the case of structured, curvilinear finite difference gritlse scheme was originally developed
for unstructured meshes of linear finite elements, and alsisybdivision of each quadrilateral
(or of each hexahedron in 3D) is used to build a mesh suitablagplying it. The advantages
of the proposed reinitialization scheme are its simpljcity flexibility to handle arbitrarily
distorted meshes, and the absence of adjustable parameters

In Section 2 we describe the proposed method, together heti'VD Runge-Kutta third-
order ENO scheme that is used to evolve the level set equédionwhich we use a finite volume
implementation very similar to that presentedYue et al.(2003. Since the proposed method
is based on a piecewise-linear representation of the letéliaction, concerns may arise as to
its accuracy. This section also contains a brief summaryveitialy used PDE-based method,
the HIWENO-RK scheme diang and Pen(R000), that will be used for comparison.

In section 3, numerical experiments are shown in two ancttipatial dimensions, including
the rigid rotation of Zalesak’s disk and the deformation dfal under a swirling flow vortex,
which are classical benchmark cases in level set metho@sifffpmeasures of error of interest
in free surface problems are used to evaluate the resutiall¥ito illustrate the versatility of the
proposed geometric redistancing scheme, we couple it whthita difference upwind method
in curvilinear coodinates that uses a second order TVD védnadd scheme as flux limiter for
the transport of the level set function, similar to the onedum CFDShip-lowaCarrica et al.
2009. We present a numerical example using curvilinear gridsiiave appreciable distortion
in order to be able to test the mass-preserving scheme warglsituations that might appear
in real CFD computations. We draw some conclusions in sedtion
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2 NUMERICAL FORMULATION
2.1 Level Set Method

We adopt the conservation form of the level set equation thvergence-free velocity field;
le.,

09 .

E—FV-(UQZS)—O, (2)
where ¢ is the level set function whose zero isocontour represdmsiriterface and; =
(us, uy, uy) is the velocity field. Both, the level set function and the eélpfield are func-
tions of (7, ), 7 € Q,t > 0.

We use a finite volume method similar to that adoptedua et al.(2003, in which the level
set equation is convected by means of a TVD Runge-Kutta schEngevalue ot at time level
n + 1 is obtained as follows

oM = ¢" — 6t L(o™,t"),
o0 — %w N }l¢<1> _ i(st LD, "+ 5t), (2)

1 2 2 1
¢ 70"+ 387 — 0 L(P7, 1" + S6t),

where¢" is the value ofp at the time leveln, dt is the time step and (¢, ) is the spatial
operator in equatiorly, i.e.

L(g,t) =V - (uo). ®3)

Now, in order to obtain a fully discrete method, that for th&esof simplicity is presented here
in two spatial dimensions, we subdivide the computatiowahain2 = [0, L,| x [0, L,] into

I andJ uniform cells in ther andy directions respectively, such that the grid spacing will be
given byédx anddy. Then, the discrete form o8] for the control volumdy, j) will be simply
given by

(u:c¢)i+1/2,j - (uac¢)ifl/2,j i (Uy¢)i,j+1/2 - (Uy(b)z',jq/z
ox oy '

L(o) = 4)
The extension to three spatial dimensions is straightfoiwia this schemey, andu,, are com-
puted at the cell faces, butis given at the cell centre of the control volume, from whitite
cell face values ob (¢;11/2,5, @i j+1/2, -..) @re built by using a third-order accurate ENO interpo-
lation. Details for the construction of the corresponditemsils can be found i8hu and Osher
(1989 or Yue et al.(2003.

2.2 Geometric mass-preserving redistancing scheme

The geometric mass-preserving reinitialization algonithroposed here was originally de-
vised to be used within the finite element framewavkuf et al, 2006, in which the level set
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function is linearly interpolated over each simplex of abitaary triangulationZ;, (triangles in
2D and tetrahedra in 3D).

To adapt it to finite volume structured meshes we thus defimata &lement partitior;, of (2
and assign the values ¢f computed at the center of gravity of the finite volume celtspodal
values ortZ,. In 2D, the triangulatiory,, is obtained by dividing each cell into two triangles as
shown in Figurel, whereas in 3D each hexahedral cell is divided into six ettaa. Therefore,
the number of simplices in this partition will be two (respeely, six) times the number of cells
used for the finite volume discretization in the 2D (respetyi 3D) case.

Computed values af
Zero-level set

/] &

I I I
| | |
I I I
I I I
| | | 2 |
- Triangulation used
Finite Volume cells use

; for redistancing algorithm
for transport algorithm galg

Figure 1: Schematic showing the finite volume discretizatiells and the corresponding triangulatifnfor the
redistancing algorithm.

We now proceed to describe the geometric redistancing itigor Let V), be the space of
continuous functions that are linear inside each simple¥,ofLet ¢, € V} be a function,
and letS;, be its zero-level set. Our aim is to find a functiém € V}, which approximates the
signed distance functionto S, defined by

(@) = sign(en (@) min | 7= 7], ©

noting that, in generald does notbelong toV}. As an example, consider the problem of
computing the distance to a square as sketched in f@uie this simple case, we can clearly
see that the exact distan€¢o the interface, for any point such @g¢see figure?), will not be a
function that belongs td, as indicated by the contours @fcontinuous red lines).

The algorithm is divided into two different stages
1. Reinitialization of nodes that belong to interface sirogdi(First Neighbors ofS},).

2. Reinitialization of nodes not belonging to interface diogs (Rest of the mesh)

2.2.1 Reinitialization of First Neighbors

Let P be the set of nodal points that are adjacent to the zero$eteife;,, in the sense that
they are vertices of simplices inside whigl changes sign.
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Contours of the distance function

=N\

Square interface),

— 2

Figure 2: Contours of the distance functi@to a square. Example showing that the distance to the iceeffam
outside the square region (contours drawn with continueddines) does not belong to the spage

Step 1:: We begin by computing
¢r(X) = d(X) VX € P, (6)

so that the nodal values of the intermediate functipeoincide with the exact (signed) distance
d. This computation is also divided into two different sulpste

Substep 1-A:: Let us definelC as the set of simplices in whialy, changes sign, so that
S, C K. Notice that the nodes i® are the vertices of the simplices /6. We start by
computingd, such that, for nodé we compute its distance only considering those part$,of
that are inside simplices of which nodes a vertex.

Substep 1-B:: The simplices inK are swept untiti no longer changes. For each simplex,
and for each nodé (coordinates denoted bif}) of the simplex,d is interpolated linearly on
the opposite facé’, using the current values at the nodes. Then, a tentativevalgr; of d
at node/ is calculated as

= min |d(#) + | X, - 7| (7)
reFr

and(i()_(}) is updated to the valug if the current value is greater thagy. When this process
is finished ¢} (X /) is updated to the valugX;) which at this point is in fact the exact distance
d t0 §;,. The procedure is illustrated in figuBeand Tablel.

Equation 7) is the key operation in the computation of the distances tiomputedxactly
This is not difficult sinced is here a linear function and the minimum is calculated aver
which is a simplex (a segment in 2D, a triangle or a quadridia 3D). The possibilities of the
minimum being attained in the interior &% or at its boundary have of course to be considered
(in 3D, this latter case decomposes in turn into attainirgniinimum either inside an edge or
at a vertex).

Once¢;, is known, we must introduce a correction, since the volunwosed by its zero-
level set is different from that enclosed 8y, leading to a mass loss (or gain) that is unaccept-
able for practical purposes.

We now describe how to compute the correction functigrsuch that the final function

On = & + Ui, (8)

is the desiredeinitialized level-set functionThe zero—level set af,, in particular, encloses
the same volume as that of.
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® First Neighbors ofS),

Second Neighbors df;,
N X # — Intersection with¥

\ — ), — Zero-level set o},

— 7;, — Finite element partition of?

63(X1) = minge p, [07(7) + 1 X, - 7]

Figure 3: Schematic ddubstep 1-Bfor the reinitialization of the nodes that are first neiglofS;,.
It is easy to check that the difference in the volumes defiryeg,and¢; is given by

AV (6 07) = [ [Hl0n(a) — @) d ©
K
whereH is the Heaviside functionH(s) = 1if s > 0, H(s) = 0 otherwise). So that our
objective is to determing;, such thatAV (¢y, ¢5 + ¢) = 0.

For this purpose, we first notice thal/ is the sum of contributions of the simplicés € I,
namely,

AW%WZZNM%W=ZAWMWFMWWﬁZ (10)

KeKk Kek

leading us to the second step:
Step 2:: Determine thepiecewise constarfunction n;,, with constant value)x inside each
K € K such that

AV (én, &1, + 1x) = 0. (11)

Notice that Eq.11is a nonlinear equation fofx, which is solved independently for ea¢h
using a simple Regula Falsi procedure that converges in egrytérations.

The piecewise-constant functiepp computed in this way contains the information of how
much volume loss or gain is contributed by each simpleXint is not possible, however, to
defineg, as¢; + nn, becausey, is a discontinuous function and is thus multiply valued at th
nodes inP.

Step 3:: We now compute a continuous functigp as an orthogonal projection @f, onto
the space of piecewise continuous function&inThis is implemented in practice by simply
computing the nodal values @f averaging over the simplices that share a node. /Lla¢ a
node inP, and let/N; be the number of simplices id that contain/, then we define

SN =— 3 . (12)
K e K
I ¢ K
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Table 1:Substeps 1-Aand1-B for the Reinitialization ofirst Neighbors ofS;,. NomenclatureN” .- number
of nodes inpP, NQ: number of elements (simplices) k0, V,,,,.: number of nodes per single element (three for a

triangle, four for a tetrahedron).
Substep 1-A::

e Setd(X,) = +ooforn=1,2,....N”
do (iel = 1, N§
e Find S;.;, the reconstruction af;, inside elementel
do(I =1, Nype)
e Setd, as the distance from node&o S,;
if (d(X) > dy)
o Setd(X,) = d,
end do
end do

Substep 1-B::

e Setchanges = 1
do while(changes == 1)
e Setchanges = 0
do (iel = 1, N&
do(f =1, Nype)
e Find F}, the opposite face of nodein iel
e Find 7, s.t.n; = minge g, |d(Z) + | X; — 7
if (d(X;) > n;) then
° Setd()?[) =Nr
e Setchanges = 1
end if
end do
end do
end do while
e Set¢r(X,) =d(X,)forn=1,2,...,N”

nod

Step 4:: Finally, the correction), is computed orP as

¢h - th! (13)
where(' is the constant that globally preserves volume; Cesatisfies
AV (¢n, op, + C&n) = 0. (14)

This nonlinear equation fat' is again solved by a simple Regula Falsi method and converges
in very few iterations. From the description above it is evilthat there are no adjustable
parameters in the scheme, except for the numerical toleremthe Regula Falsi algorithms,
which does not play any significant role since convergenamdohine precision takes place
quickly. Steps 2,3 and 4 are also explained in T&ble
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The main advantage of the algorithm, as compared to prewnes, is that, localizes the
correction in those regions where the mass loss/gain pestlbg¢; is largest; correcting;
by a constant, as done by other auth@babadi and Tezduyar2000, corresponds to taking
&, = 1 and unphysically distributes the correction uniformly otree interface simplices.

Table 2:Steps 2,3and4 for the Reinitialization ofirst neighbors ofS;,, computation of the mass correctiaNy
is the number of simplices ik that contain nodé.

Step 2:: Find ), a piecewise constant function

do(K =1,N¥
o SetoVi = AV (on, ¢5)
do while(|6Vy| > 1071)
e Find Sk, the reconstruction af), in K using¢;, + 1y
o Setnx = —dVik /size(Sk)
o SetdVx = AV (én, ¢, + nk)
end do while
end do

Step 3:: Find ¢, the orthogonal projection of,

do(I =1,N",
o Sets, (X)) =0
do(K =1, Ny)
o Set&, (X)) « &u(Xr) +nx/Ni
end do
end do

Step 4:: Findyy, = ¢; + C &,

e Initialize 5V, C® fori = 1,2
e Seti =3
do while (|0V@] > 1071%)
o Setm() = (C6-1) — C(-2)) /(g1 (=1 — §1/(-2))
e SetC(® = C(=2) — ) §y(=2)
o SetsV ) = AV (¢p,, ¢} + CE,)
eSet; «—1+1
end do while
e SetC = (C®

2.2.2 Reinitialization of the rest of the mesh

As discussed bZarrica et al(2007), the most critical part of the reinitialization procedise
the reinitialization of first neighbors. Onegg is known onP, these values are used as boundary
conditions for the reinitialization of the rest of the meshirpps. This can be done using a

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



22 R.F. AUSAS, E.A. DARI, G.C. BUSCAGLIA

PDE-based scheme, as the one described in the next sectiohowéver adopt the geometric
scheme introduced byut et al, 2006, for which the mesh is subdivided into simplices as in
the previous section. We briefly recall the procedure below.

We will describe the calculation @f, just on the positive side &,; i.e., for the set of nodes
R at whichgy, is positive and that do not belong 2 We assume that, is already known in
P.

Step 5 (Initialization):

Let 7 be a node iR, and letC; be the set of nodes connected/tal not included (notice
thatC; C (P UR). The initial guess we use far, is a distance-along-edges approximation,
I.e., the unique function satisfying

~ —

(K1) = min [9n(X)) +|X; - X
In the process of initializingy, with this option, the elements can be ordered so as to render
the algorithm more effective. Also, if one wants to calcel@t up to a distancé from S, one
simply initializes¢, as equal t@ overR.
Step 6 (Evaluation): This is the same procedure explainedSubstep 1-B the simplices in
the mesh, excepting those i@, are swept untity, no longer changes. For each simplex, and
for each nodeJ of the simplex (coordinates denoted Ky}) ¢y, 1s interpolated linearly on the
opposite face”;, using the current values at the nodes. Then, a tentativesakgr; of ¢, at
node/J is calculated as

m = min |6,(®) + X, | (15)

Finally, éh(fj) is updated to the valug; if the current value is greater tham;. This is also
illustrated in figured.

® First Neighbors ofS),

Second Neighbors df,
N X ¥ — Intersection withF;

\ — &), — Zero-level set ofy,

— 7, — Finite element partition of2

~ —

(%) = mingc g, [on(@) + 1%, — ] 7|
X,

Figure 4: Schematic ddtep 2for the reinitialization of the rest of mesh.
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2.3 PDE-based redistancing scheme

For the sake of completeness we briefly describe the PDEdbaskstancing method that
will be used for comparison, together with its discretiaatas proposed byliang and Peng
2000.

Let ¢° be a level set function with zero-level set denotedShyOur aim is to compute from
this initial data¢ an approximation for the distance functiod to the zero—level sef of ¢°,
defined as ing) (with ¢, replaced by)° andsS,, replaced byS)

The property|| Vd|| = 1 motivates the method firstly proposed [Sugsman and Fatendio99,
in which the following hyperbolic partial differential egtion is solved

0¢ ) ~ )
22 +signe”) (| Vol 1) =0 in g,

(16)
o(Z,0) = ¢°(2),

wherer is a fictitious time. The steady state solution of equatib®) (s an approximation of
the signed distance function to the interface implicitlyiced by ¢,.

Now, the PDE-based reinitialization method considereck fiscretizes equatiorl) by
a RK-HJWENO (weighted essentially non-oscillatory) schesee (Jiang and Peng2000)
which can be considered to be state-of-the-art for solvimgtype of equations. The approach
Is very similar to that presented in the previous sectiontlier discretization of the level set
equation 1). First, the semidiscrete form of equatidk6) for node(s, j), that for simplicity is
presented again in two spatial dimensions reads

8_7'3 = _H(xia Yjs ¢i,j7 ¢;i,j7 ¢z,i,j> ¢;—,i,j> ¢y,i,j)’ (17)
where H is the discrete form of the spatial operator $igy) (H Vo | —1). Then, for the

construction ofpt,  andg:, ., that are the WENO appr_oximations%;é(xi, m andg—‘%(:):,-, y;)
respectively, we follow exactlyiang and Pen@000. Finally, we use a fourth order Runge-
Kutta method to explicitly advance the system of ODE'’s giire(iL7), which reads

S
¢(1) — ¢n—§(5TH<¢n),
- 1. . -

o0 = ¢~ ot H(W),
0 = g —or ()

~ 1- 1~ 2 -~ 1~ 1 .

nHl o _Zon g 200 4 230 L 206) _ S5 (G

¢ 3@+ 50+ 0 4 0 — LoT H(G)
For all the numerical experiments we present, the time &tepill be taken asiz/2 and the

reinitialization will be carried out as long as the quanwyv& I —1) remains greater than a
numerical tolerance af0—>.
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3 RESULTS

To assess the behavior of the proposed reinitializatioogaore, the following two measures
of error will be used:

max V() = V(ge)], (18)

e, = m?XD(SC(t),Se(t)) = max max min |Z. — Z.ll, (19)

€m

with the subindex: denoting the computed result and the subineléxe exact one, and where
V(¢) is computed according to

W@zéHW@Mi (20)

The first measure of errar, is the classical “mass error”. The second measyrgrovides
information on the position of the computed interface weblpect to the exact one and will be
refered to as the “position error”. It should be pointed it tinear interpolation will be used
to evaluate:,,, ande,. These two measures of error are useless if the level set reagonably
resolved by the mesh. We have thus chosen cases in whicHdatate sizes of the level set are
not smaller than the grid resolution. Finally, we must mamthat the reinitialization procedure
will be applied everyl 0 time steps for all the simulations to be presented.

3.1 Numerical Experiments in 2D

Two examples will be presented in the two dimensional cdmeZalesak’s problenZ@alesak
(1979) and the stretching of a circle under a deformation vorteMeque(1996).

3.1.1 Zalesak’s disk

The initial data is a slotted disk centered @, 0.75) with a radius of0.15, a slot width of
0.075 and a slot lenght ad.25 in a unit square computational domain. The disk is conveloyed
the following velocity field

T
(21)
Uy = m(l'—05>,

which represents a rigid body rotation with respect®, 0.5). The disk completes one revo-
lution after6.28 units of time.

In figure5we compare the final stage of the Zalesak’s disk with the exaait after one turn,
for different grid resolutions. The time step for the firssed, = 1/64) is 6.28/600. For the
rest of the grids we mantain the same Courant number. As iteaedén the geometric scheme
performs similarly to the PDE-based one when the grid régslus good enoughi(= 1/256
andh = 1/512), while the former outperforms the latter when the grid heson is poor. In
Figure6 we compare the evolution of the disk for the mesh wiZi x 128 cells, when both
reinitialization algorithms are used. On the left, we shbe ttesults for the PDE-based scheme
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(thin blue line) and on the right the results for the Geom&aged algorithm (thin red line).
Finally, in Table3 we present the two measures of error for both algorithms anithé different
grids considered. It should be noted that the mass erroredPDE-based algorithm is smaller
than that of the geometric algorithm whén= 1/128,1/256 and1/512, which results from a
compensation of the mass gain near the top of the slot witmtess loss near the corners at the
bottom of the slot.

64x64 128x128

081

0.7r

0.3 0.4 0.5 0.6 0 0.3 0.4 0.5 0.6 0

256x256 512x512

0.9 1 09 .
-

0.8 1 o8 |

0.7} 107 .

0.6 / 1 06" .

0.3 0.4 0.5 0.6 0 0.3 0.4 0.5 0.6 0

Figure 5: Final stage of the Zalesak’s disk after one reumfuor different grids. The thick black line corresponds
to the exact solution, the thin blue line to the PDE-basedthediashed red line to the geometry based algorithm.

3.1.2 Swirling flow vortex

The initial data consists of a disk centred(@t, 0.75) with a radius of0.15. The compu-
tational domain is again a square of sjgel| x [0,1]. The disk of fluid is convected by the
following time dependent divergence-free velocity field
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. 128x128 — PDE-based . 128x128 — Geometry—Based
0.8r 1 0.8F 1
0.6 1 0.6F 1
0.4r 1 04r i
0.2r 1 0.2r 1

0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘

Figure 6: Evolution of the Zalesak’s disk using the PDE-blg$eft) and the Geometry-based (right) redistancing
procedures. The thick black line corresponds to the exagtign.

Table 3: Measures of error for the Zalesak’s disk after omelugion.

em| 0] ep
Mesh PDE-based GEO-based PDE-based GEO-based
64 x 64 7.790 4.564 0.0709 0.0352
128 x 128 0.940 2.065 0.0291 0.0137
256 x 256 0.210 0.470 0.0126 0.0103
512 x 512 0.014 0.266 0.0065 0.0070
u, = —sim?(mz)sin(2ry) cogwt/T),

(22)
u, = sin(2rx)sin(ry) cognt/T).

In this case, the initial disk is stretched out into a filamamd after a certain tim@’ it comes
back to its initial state. This reversal peri@ds taken equal t@, so that the size of the tale of
the filament will be reasonably well resolved for all timesthg mesh used for computations.
First, in figure7 we compare the interface at= 7'/2 (maximum deformation) antl= T
(final time) for all the grids previouly considered. Now, tirae step for the case with = 1/64
was equal t@/300 and as done before the Courant number was kept the same fahérgads.
Again, both algorithms perform quite similar by when thedgesolution is good. Actually, for
the case withh = 1/512 the difference cannot be seen with the naked eye. For ths®neas
done before, in Tablé, we present the different measures of error. In this caseaneee that
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the Geometric mass-preserving scheme has a better perfoernttaan the PDE-based scheme.

64x64 128x128
1 T T 1 T T
08" <iii:i:> 08" <iiii::> 1
06" 06" ]
045 045 1
02" 1 02f ]
O | | | | O | | | |
0 02 04 06 08 0 02 04 06 08
256x256 512x512
1 T T 1 T T
0'8 | Q | 0.8 7 Q |
06" 1 o6l ]
045 1 04l 1
02" 1 02 1
0 | | | | 0 | | | |
0 02 04 06 08 0 02 04 06 08

Figure 7: Intermediatet (= 7'/2) and final staget(= T') of the disk under a swirling flow vortex with reversal
periodT = 2 for different grid resolutions. The thick black line compesds to the exact solution, the thin blue
line to the PDE-based and the dashed red line to the geometgdialgorithm.

3.2 Numerical Experiments in 3D

For the three dimensional case, we present, on the one heswlisr using Cartesian co-
ordinates and comparing both redistancing procedures @andhe other hand, results using
curvilinear coordinates with the Geometric mass-presgrvedistancing scheme coupled with
a finite difference second order TVD van albada scheme forréimsport of the level set func-
tion, similar to the one used in CFDShip-lowa as already meet in the introduction.
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Table 4. Measures of error for the streatching of a disk uadawirling flow vortex with reversal periofl = 2.

em|[ 0] ep
Mesh PDE-based GEO-based PDE-based GEO-based
64 x 64 5.172 0.797 0.0641 0.0150
128 x 128 1.624 0.417 0.0272 0.0035
256 x 256 0.400 0.256 0.0100 0.0017
512 x 512 0.081 0.133 0.0021 0.0006

3.2.1 Deformation vortex - Cartesian coordinates

In this example, the initial data consists simply of a spheeatered at0.35, 0.35, 0.35) and
with a radius 00.15. The computational domain is the unit cube. The sphere rs¢bavected
by the following solenoidal field

u, = 2sin(rz)sin(2ry)sin(2rz) cogxt/T),
u, = -—sin(2rx)sin’(ry)sin(2rz) cogrt/T), (23)

u, = -—sin(2rx)sin(2ry)sin?(nz) cognt/T),

again, as in the D case, the velocity field is modulated by a periodic functisuch that the
sphere will recover its initial state after a tirfie= 2.

In Table5 we present the two measures of error, in this case just fordifferent grids of
64 x 64 x 64 and128 x 128 x 128 cells. The time step was taken equaltel00 and2/800
respectively. In figur® we plot the level set at different times for both algorithrosthe case
with A = 1/128. In the top (red colour) are the results for the Geometryebasdistancing and
in the bottom (blue colour) the results for the PDE-basedstadcing. From both, the figure
and the table we can see that the Geometry-based redigdrasra better performance.

Table 5: Measures of error for the deformation of a sphereuathree dimensional vortex. Cartesian coordinates.

em|%] e,

Mesh PDE-based GEO-based PDE-based GEO-based
64 x 64 x 64 66.40 2.432 0.0673 0.0261
128 x 128 x 128 11.95 1.593 0.0355 0.0049
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0dJdde
0dJDde

Figure 8: Evolution of a sphere under a three dimensionalrdeition vortex. Comparison of the Geometry-based
redistancing scheme (top-red) with the PDE-based redistgischeme (bottom-blue). Cartesian gri x 128 x
128.

3.2.2 Sphere approaching a bump - Curvilinear coordinates

For this last example, the initial condition corresponds $phere centred &+0.05, 0.4, 0.25)
of radius0.15. The computational domain is the regipr0.25, 1.25] x [0, 1] x [0, 0.5] trans-
formed under the following mapping (skeVeque(1997)

z(&n,0) = &
2(&mn,¢) = ¢,

where the functiorB is given by

Bie) = Lo -

which represents a bump centredrat= 0.5. The sphere is then transported by the following
divergence free velocity field based on the shape of the bump
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- 1

Y = 1B

L B@l-y (26)
! (1—-B(x))*’

u, = 0.

In this numerical test the grid hau@8 x 102 x 62 cells and the time step is equal t8300.

Results are shown in figu®& where a detail of the curvilinear grid can be observed. is th
case, the mass changge was4.438% and the value oé, = 0.0370. We should mention that
the error reported here (which is the maximum o)dnappens when the level set passes near
the cusp of the bump, where the maximum distortion of celfgésent, as seen in the detail of
the grid.

Figure 9: Evolution of the sphere approaching a bump usiagyéometric mass-preserving redistancing scheme.
Curvilinear grid of128 x 102 x 62 cells.

4 CONCLUSIONS

In this paper we have discussed some issues related to thigaliziation of the level set
function and we have focused on the description and evaluafiageometric mass-preserving
redistancing scheme that was originally introduced in taenework of finite elements.

The geometric mass-preserving algorithm proposed can éd s an arbitrary triangula-
tion of the computational domain, making it a very attraetivol to be used on any type of
discretized domains such as the structured curvilinedsgridely used in CFD computations.
A salient feature of the scheme is its robustness, sincekslaf adjustable parameters, which
Is an important difference as compared to other availabkhoaks.
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As a main feature, the scheme is designed to preserve the (ora®e volume) limited
by the zero level set by means of localized mass correctionse the triangulation of the
computational domain is provided. Of course, this is dornia@fprice of having to detect the
level set by means of linear interpolation which is unnegesaother methods.

In the numerical tests we have presented, using Cartesiadinates in two and three spatial
dimensions, we have observed in general a better perfomraitice geometric mass-preserving
redistancing scheme with respect to the PDE-based metleadarscomparison. This was illus-
trated qualitatively by means of plots of the level set andmjatively be means of computing
relevant measures of error for level set methods.

We have also tested the geometric mass-preserving algoti#iing curvilinear grids with
appreciable distortion and we have observed a good perfarenaf the scheme.
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