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Abstract. An Arbitrary Lagrangian-Eulerian (ALE) level-set method to solve incompressible
two-dimensional two-fluid flows is presented. The Navier-Stokes equations are discretized by a
Galerkin Finite Element method. A projection method based on approximated LU decomposi-
tion is employed to decouple the system of non-linear equations. The interface between fluids
is represented by a discrete Heaviside function plus additional marker points and edges of the
computational mesh. Our method employs a technique which moves the nodes of the Finite
Element mesh with arbitrary velocity. The quality of the mesh is controlled by a remeshing
procedure, avoiding bad triangles by flipping edges, inserting or removing vertices from the
triangulation. The relative velocity in the ALE approach is designed to allow for a continuous
improvement of the mesh, thus reducing the amount of remeshing required to control the quality
of the mesh. Results of numerical simulations are presented, illustrating the improvements in
computational cost, mass conservation, and accuracy of this new methodology.
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1 INTRODUCTION

Simulations of multi-fluid flows are known to be difficult to perform due to discontinuities
at the fronts separating the different fluids. A number of methods have been developed to
approximate the fronts, and they can be classified in two main groups: Front-tracking and Front-
capturing methods.1 In Front-tracking methods, the fronts are represented by computational
elements like marker particles, that move through the domain with the fluid velocity field. A
number of papers dealing with Front-tracking methods can be found in the literature.2–4 The
Front-tracking methodology is more accurate than Front-capturing, introducing very small mass
variation of the fluids involved in the simulation. However, its implementation is more difficult,
in particular when the flows undergo topological changes, like either coalescence or splitting
of the interfaces. On the other hand, Front-capturing methods represent the interfaces by a
region of high gradient variation, where the fronts are reconstructed at each time-step. Among
these, the level-set method, introduced by Osher and Sethian,5 has acquired popularity because
of its algorithmic simplicity. In this method, the fronts are represented by the zero level set of
a function, that is advected by solving φt + u · ∇φ = 0 where u is the velocity field. Most
numerical procedures designed to solve this equation will introduce artificial diffusion leading
to pronounced mass conservation errors.

The above described methods can be applied to both structured and unstructured grids. Meth-
ods employing unstructured grids can produce more accurate and efficient methods by selec-
tively refining regions of the domain where the interface and other important small scale features
of the flow occur. For instance, Chen, Minev and Nandakumar6 present a finite element method
for incompressible multiphase flows with capillary interfaces on a fixed Eulerian grid, in which
the fluid phases are identified and advected using a level set function, and the grid is temporarily
adapted around the interfaces. The resulting technique can be considered as a compromise be-
tween the arbitrary-Lagrangean-Eulerian (ALE) approach and the fixed grid, Eulerian approach.
Perot and Nallapati7 developed a front tracking method for free-surface flows that employs an
unstructured mesh that dynamically adjusts to the free surface. The points in the interior of the
domain do not move in a Lagrangian fashion to avoid strong distortion of the mesh. Instead,
each edge of the mesh is treated as a linear spring, requiring the solution of an equilibrium equa-
tion at each step. The flow field is then updated using an Arbitrary Lagrangian Eulerian (ALE)
formulation. The proposed method, however, does not deal with splitting or reconnections of
the free surface.

In order to minimize mass conservation errors and improve accuracy of the level-set tech-
nique for incompressible two-phase flows, a new approach was proposed by Sousa and Man-
giavacchi8 which can be classified as a Lagrangian level-set method. It uses the level-set of a
pseudo-concentration function to represent the fronts, but its advection is performed by moving
the nodes of the mesh, where the values of this function are stored. The method thus has fea-
tures of both front tracking and front capturing methods, and can take advantage of them. In
this work, the Lagrangian method employed by Sousa and Mangiavacchi is extended to allow
for the relative movement between fluid particles and mesh points, in an ALE apporach. The
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relative velocity is designed to improve the quality of the mesh, thus reducing the amount of
insertions and deletions of nodes required to mantain the quality of the mesh. In the following
sections, the formulation, discretization and underlying numerical method employed in the pro-
posed unstructured mesh ALE approach for the simulation of multiphase and free surface flows
will be shortly described. Some implementation issues regarding the interface discretization
will be discussed.

2 FORMULATION

The conservation equations modeling incompressible multi-fluid flows are the equation of mo-
tion in a moving computational mesh

∂(ρu)

∂t
+ ((u − û) · ∇)ρu = −∇p +

1

Re
∇ ·

[

µ
(

∇u + ∇uT
)]

+
1

Fr2
ρg +

1

We
f , (1)

and the continuity equation ∇·u = 0, where u is the velocity field, p is the pressure field, µ and
ρ are the discontinuous viscosity and density, g represents the gravitational acceleration field
and f is a source term representing the surface tension. In this equation, Re, Fr and We are
the non-dimensional Reynolds, Froude and Weber numbers. Using the CSF model,9 the source
term can be written as f = σκ∇H , where σ is the surface tension coefficient, κ is the curvature
and H is a Heaviside function which is 1 inside one fluid and 0 outside. Here, û is the mesh
velocity which is computed as a combination between fluid velocity and an elastic velocity,
more specifically

û = β1u + β2ue (2)

where ue is an elastic velocity computed based on a Laplacian filter applied to the node po-
sitions, in order to improve the quality of the elements. In eq. (2), parameters β1 and β2 are
chosen between 0 and 1 to control the final velocity. Notice that β1 = 1 for the interface nodes,
where they move in a Lagrangian fashion.

3 DISCRETIZATION

The domain is discretized by an unstructured triangular mesh which is initially a Delaunay tri-
angulation. The element used in this approximation is the mini-element (P1+ − P1), with 4
velocity nodes (one in each vertex plus one in the centroid of the triangle) and 3 pressure nodes
(one in each vertex). The shape functions interpolating the discrete approximations are assumed
to be linear plus a bubble function in the centroid for the velocity, and linear for pressure, both
continous. Considering V = H1(Ω)m = {v = (v1, . . . , vm) : vi ∈ H1(Ω), ∀ i = 1, . . . , m},
where H1(Ω) is a Sobolev space, and the sub-spaces VuΓ

= {v ∈ V : v = uΓ em Γ1}, PpΓ
=

{q ∈ L2(Ω) : q = pΓ em Γ2}, the weak formulation of the problem can be written as: find

Fabricio S. Sousa�and Norberto Mangiavacchiy

67



u(x, t) ∈ VuΓ
and p(x, t) ∈ PpΓ

such that

m(
∂(ρu)

∂t
, w) + a(u − û, ρu, w) − g(p, w) +

1

Re
k(µ, u, w)

−
1

Fr2
m(ρg, w) −

1

We
m(f, w) = 0 (3)

d(q, u) = 0, (4)

for all w ∈ V0 and q ∈ P0, where the functionals in (3)-(4) are given by

m(v, w) =

∫

Ω

v · w dΩ (5)

a(u, v, w) =

∫

Ω

(u · ∇)v · w dΩ (6)

k(µ, v, w) =

∫

Ω

µ
[

(∇v + ∇vT ) : ∇wT
]

dΩ (7)

g(p, w) =

∫

Ω

∇p · w dΩ (8)

d(p, w) =

∫

Ω

(∇ · w)p dΩ (9)

The discretization of (3)-(4) using the shape functions for the mini-element and Galerkin
weighting, results in the following ODE system

Mρu̇ + Au + 1

Re
Ku − Gp − 1

Fr2 Mρg − 1

We
Mf = 0

Du = 0 , (10)

In 10, the quantities u, v, p, g, and f are vectors of dimension s, where s is the total number
of nodes in the discretized domain. The ODE’s are discretized in time using a semi-implicit
time integration technique, where the non-linear terms are kept explicit. Thus, the matrices to
be solved are symmetric positive definite and fast linear system solvers can be applied, e.g. the
conjugate gradient method. Using a semi-implicit time integration, eq. (10) becomes

Mρ

(

un+1
−un

∆t

)

+ Aun + 1

Re
Kun+1 − Gpn+1 − 1

Fr2 Mρg − 1

We
Mf = 0

Dun+1 = 0 . (11)

4 NUMERICAL METHOD

The numerical procedure employed to solve the Navier-Stokes equations is a projection method
based in approximated block LU decomposition.10–12 The system of discrete equations (11) can
be rewriten as

[

B −∆tG
D 0

] [

un+1

pn+1

]

=

[

rn

0

]

+

[

bc1

bc2

]

(12)
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where un+1 = [un+1
1 , . . . , un+1

Nu , vn+1
1 , . . . , vn+1

Nv ]T , pn+1 = [pn+1
1 , . . . , pn+1

Np ]T , with Nu, Nv and
Np being the number of free-nodes for the velocity (x and y direction) and pressure. The matrix
B is given by

B = Mρ +
∆t

Re
K (13)

and the right hand side are the known values at time n,

rn = −∆t

(

Aun −
1

Fr2
Mρg −

1

We
Mf

)

+ Mρun , (14)

plus the contribution of the known values from the boundary conditions. Applying a canonical
block LU decomposition12 to the matrix of the system (12) results

[

B 0
D ∆tDB−1G

] [

I −∆tB−1G
0 I

] [

un+1

pn+1

]

=

[

rn

0

]

+

[

bc1

bc2

]

(15)

According to Chang et al.,11 the method originating from eq. (15) is called Uzawa method.
However this method is computationally expensive due to the inversion of matrix B. To avoid
this operation, we substitute B−1 by an approximation M−1

L,ρ, which is a diagonal matrix, com-
puted from the lumping of the mass matrix apearing in eq. (13), that can be easily inverted.
This results in the following procedure

1. Solve ũ from Bũ = rn + bc1 ;

2. Solve pn+1 from ∆tDM−1

L,ρGpn+1 = −Dũ + bc2 ;

3. Compute the final velocity from un+1 = ũ + ∆tM−1

L,ρGpn+1 .

As we used the same approximation for B−1 in steps 2 and 3, the computed final velocity is
divergence-free at discrete level.

5 INTERFACE REPRESENTATION

The interface between fluids is represented by vertices and edges belonging to the triangulation
(see fig. 1), and is moved by the fluid velocity. Additionally, a discrete Heaviside function
is also used to represent the interface, and its gradient is computed to distribute the interface
tension force to the free-nodes where velocity is evaluated, as it was done in a work due to
Sousa et al.13 for structured grids. Since in this work the level-set function is transported in a
Laplacian manner, with no artificial diffusion, the function does not need to be smooth as in the
standard Eulerian level-set methods.

Hence, the discrete Heaviside function is defined as

Hλ,j =







1, if vertex j belongs to phase λ
1

2
, if vertex j belongs to the interface of phase λ

0, if vertex j does not belong to phase λ
(16)
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Figure 1: Representation of the interface using vertices and edges from the triangulation.

such that the interface is identified as the level-set 1

2
of Hλ,j. Thus, the gradient of this function

is used to distribute the interfacial force. In practice, it is not necessary to compute ∇H in the
whole domain, but only in the neighborhood of the interface.

Discretizing f in a variational fashion, and applying the Galerking weighting, results

MfD = ΣGhλ , (17)

where Σ is a diagonal matrix with elements given by σκ1, . . . , σκNV , that are approxima-
tions for the intensity of the capilary pressure in the velocity nodes. Additionally, hλ =
[Hλ,1, . . . , Hλ,NP ]T is the discrete Heaviside function computed in the pressure nodes. No-
tice that formally, κ is not defined away from the interface. We define κ in the velocity nodes
adjacent to the interface as the weighted average from the known values at the interface nodes
in the star of the velocity nodes. Finally, eq. (17) becomes

fD = M−1(ΣGhλ) (18)

that can replace f in eq. (14).

6 MESH CONTROL

As the mesh is moved, elements can become distorted, resulting in bad elements to the finite
element approximation. To avoid bad elements to appear in the mesh, a mesh control procedure
is employed. Insertions and deletions of nodes are periodically made in the mesh, in order to
remove elements considered bad from the triangulation.

A bad triangle can be classified in two types: a cap triangle, possesses a large circumscribing
circle radius comparing to its edges. It can be removed by flipping the largest edge, inserting
a new point in the middle of the largest edge or deleting the vertex which possesses the largest
angle; a thin triangle, possesses a very small edge comparing to the other edges and to the
circumscribing circle radius. It can be removed from the triangulation by deleting the shortest
edge or inserting a point in the largest edge.

To garantee the quality of the resulting mesh, the vertices and edges are inserted into and
removed from the mesh such that the resulting triangulation is Delaunay in the vicinity of the
changed region. Although the entire mesh is not Delaunay, this ensures that the local triangula-
tion is optimal.
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Figure 2: Pressure profiles in the static bubble simulation: flat profiles were obtained using the proposed force
distribution.

Additionally, the elastic velocity ue computed by a Laplacian filter tends to centralize the
position of the vertices in relation to its neighbors. This movement minimizes the amount of
insertions and deletions depending on the parameters β1 and β2 from eq. (2).

7 NUMERICAL RESULTS

In this section, results for the static bubble and oscillating drop computations are presented
in order to validate the proposed method. Additionally, results for rising bubble and bubble
coalescence are presented, and they are compared with other techniques, demonstrating the
advantages of this method.

7.1 Static bubble

A static bubble immersed into another fluid is simulated to verify the surface tension calculation
and measure the influence of parasitic currents in the flow. This problem was simulated in a 2×2
domain discretized by four different unstructured meshes with constant grid spacing, h = 0.2,
h = 0.1, h = 0.05 and h = 0.025. The validation is performed comparing the pressure jump at
the interace with known analytical value, given by the Laplace formula9 as

∆p = pb − pf = σκ =
σ

R
(19)

where pb is the internal bubble pressure, pf is the external pressure and R is the radius of the
bubble. Figure 2 shows the pressure profiles in a horizontal line in the middle of the domain.
The profiles obtained are flat, which illustrate the precision and the sharpness of the interface
representation. Table 1 shows the number of elements, pressure jump, relative error and the
magnitude of the parasitic currents for the several grid spacings.
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Grid spacing Ne ∆p E max{|u|, |v|}

h = 0.2 248 1.97847 1.088% 1.638 × 10−4

h = 0.1 946 1.99485 0.258% 2.015 × 10−5

h = 0.05 3782 1.99872 0.064% 4.535 × 10−6

h = 0.025 14972 1.99969 0.015% 4.252 × 10−6

Table 1: Comparison between pressure jumps and relative errors for several grid spacings. In this table, Ne is the
number of elements, ∆p is the pressure jump at the interface and E is the percentage of the approximation error.
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Figure 3: Oscillation of the bubble diameter, showing the decay due to viscosity. The error found in frequency of
oscillation is about 9%.

The results are in good agreement with analytical values. From the results reported in table 1,
it can be concluded that the method shows a second order convergence for the interface tension
computation.

7.2 Oscillating drop

To verify that the transfer between the surface energy and kinetic energy is correctly accounted
for, which is important when the flow is dominated by surface tension effects, we validated
the method on an eliptic oscillating drop, for which an analytical solution for the oscillation
frequency exists. This problem consists of simulating an elliptic drop immersed in a continuous
lighter and less viscous phase without a gravity field. The drop has a small initial perturbation
with respect to its equilibrium circular form and, driven by the interfacial forces, it tends to
oscillate. The non-dimensional parameters chosen for the simulation are diameter D = 0.4,
density ρd = 1 e viscosity µd = 0.01, with the initial horizontal diameter 5% greater than
the vertical diameter. The density ratio between drop and external fluid is ρd/ρf = 20 and
viscosity ratio µd/µf = 10. This validation was simulated in an unitary domain discretized by
a non-uniform mesh with hmin = 0.02 on the interface and hmax = 0.05 on the boundaries.
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(a) (b) (c) (d) (e)

Figure 4: Initial mesh (a) and comparison between the meshes at t = 12.5 for the parameters: (b) β2 = 0, (c)
β2 = 0.1, (d) β2 = 0.5, (e) β2 = 1.0.

The results obtained using the Lagrangian approach to move the grid points showed an error
about 9% in the frequency of oscillation, which in comparable to other results in literature for
equivalent resolution and domain.2

7.3 Rising bubble

In order to compare the influence of the elastic velocity on the results, a rising bubble test case
was simulated for several parameter β2, which determines the amount of elastic velocity present
in the mesh velocity. The nondimensional parameters, taken from,14 are M = 0.1, Eo = 10,
ρf/ρb = 100, µf/µb = 2 and R = 0.5, where ρb, µb are the density and viscosity for the
bubble, and ρf , µf are density and viscoty for the fluid. The mesh is initially discretized by
1306 elements with hmin = 0.08, in a 2 × 6 domain. The parameters for the computation of
the mesh velocity are β1 = 1 for all cases, and each case simulated with a different β2: β2 = 0,
β2 = 0.1, β2 = 0.5 and β2 = 1. Figure 4 displays the meshes obtained in each simulation.

Figure 5 shows a comparison of the Reynolds number and mass conservation between the
simulated cases. In these figures we can observe an oscillation in the rising velocity of the
bubble when increasing the parameter β2, while the rising velocity for β2 = 0 is smooth. This
oscilation can be explained by the amount of mesh changes done at once in these simulations.
The higher the parameter β2, the harder the mesh is to move, and as the front is moving freely
across the domain, the mesh has to adapt killing and creating many cells at once, which gener-
ates the rising velocity oscillations.

On the other hand, the mass conservation reported on figure 5 clearly shows that the higher
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Figure 5: Bubble Reynolds number and mass conservation for the simulated cases.

(a) t = 0.0 (b) t = 0.6 (c) t = 1.2 (d) t = 1.9 (e) t = 2.5 (f) t = 3.1

Figure 6: Colaescence of two bubbles of the same fluid rising in an quiescent fluid.

β2, the better the mass conservation. While in a ALE fashion, higher values of β2 results in
insertions and deletions of many vertices at once, the number of mesh changes is far less than
in a Lagrangian fashion. In simulations with β2 = 0, the mesh has to be adapted more often,
mainly over the interface, which causes the higher loss of mass.

7.4 Bubble coalescence

To show that the method can easily deal with topological changes at the interface, we simulated
the coalescence of two rising bubbles. The parameters for this problem are the same as the
previous simulation, with two bubbles of the same fluid and same size R = 0.5 being released
at a distance of 0.1D. As the two interfaces get closer to each other, at a distance of one element,
coalescence takes place. We simply check for the existence of elements in the surrounding fluid
that have three interface vertices, and change the material of this element if this will not result
in a singularity. Reflagging of vertices that no longer belong to the interface is also performed
to avoid singularities. Figure 6 illustrates the coalescence of two bubbles. This result shows
good qualitative agreement with other results reported in the literature.8, 13
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8 CONCLUSION

This paper presents a method to simulate incompressible multi-fluid flows in which the mesh
moves in an ALE fashion. The interface between fluids was represented by vertices and edges
of the triangulation plus a level-set of a Heaviside function, which is also used to compute the
interfacial force distribution. The discussion focuses the computation of the mesh velocity, as
well as implementations on moving finite element unstructured meshes, using remeshing pro-
cedures to avoid bad elements. The conservation equations are solved by a projection method
based on approximated block LU decomposition of the system of equations, to decouple the
acceleration and pressure.

Validations were performed for the approximation of the interfacial force, by the simulation
of static bubble and oscillating drop. The static bubble simulation showed that the parasitic
currents are very small, as expected, and a convergence study reveals second order convergence
for the curvature calculation. The oscillating drop simulation also showed good agreement for
the oscillation frequency, with error comparable to other works in literature.

Results for the rising bubble are compared for several mesh velocities, showing the better
mass conservation properties obtained with the introduction of an elastic velocity, computed by
a Laplacian filter. On the other hand, if this smoothing is too strong, oscillations in the bubble
velocity can appear, effect that can be easily controlled by the parameter β2. Additionally, a
bubble coalescence simulation was performed in order to demonstrate the capabilities of the
proposed method to deal with topologic changes at the interface.
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