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Abstract. The non isothermal melt spinning process at low take up velocities is composed of three 
distinctive zones of major interest for research. One is associated with the 1-D flow in the extrusion 
capillary. The second one starting at the capillary end is designated swelling zone, and presents a 2-D 
flow where the filament relaxes before entering the 2-D spinning flow (the third zone). Here, 
elongational deformations predominate before the solidified filament is taken at the spinneret end. The 
purpose of the present work is to analyze numerically within the structure of the classical melt 
spinning model the relevance of the unknown axial position after the swelling zone, where initial 
conditions of the non isothermal spinning flow are imposed. This aspect constitutes an ill-posed 
problem that must be analyzed carefully in relation to the useful numerical results obtained along the 
spinning length relatively far from the swelling zone. In this context of analysis, our results provide a 
new insight of this problem and also show that an additional physical constraint may lead one to place 
appropriate initial conditions for computational purposes. This constraint is based on the consideration 
of the rheometric and process elongational viscosity curves. The Phan-Thien and Tanner viscoelastic 
constitutive equation is used here to illustrate main results and conclusions of the present work. 
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1 INTRODUCTION 
 

The classical non-isothermal melt spinning flow at low take up velocities is modeled in the 
literature by considering a filament of polymer melt that is continuously drawn and 
simultaneously cooled with air. This process finally yields a solidified yarn. All the filaments 
of the spinneret are assumed to achieve, in principle, the same properties during the spinning 
process, and they compose the synthetic fiber in a bobbin. For these purposes a model 
describing the velocity, stress and temperature fields in one filament may be useful to control 
the quality of the final product (Denn, 1980). More recently, we provided a computational 
algorithm based on finite differences to obtain the axial velocity profile and the thermal and 
stress fields in the 2-D domain of the filament (Ottone and Deiber, 2002). In this work, the 
perturbation analysis of the full spinning model reported by Henson et al., (1998) was 
considered. This model was formulated for the low speed range (flow induced crystallization 
was not considered) through a regular perturbation analysis that included the slenderness 
approximation associated with long fibers of very small diameters. From previous works, it is 
clear that the radial and axial stress and temperature fields in the melt fiber spinning process 
may be estimated within a consistent theoretical framework. Also, we have available a robust 
numerical algorithm computing the resulting momentum and energy balances coupled to 
typical viscoelastic constitutive equations. 

Therefore, the purpose of the present work is to analyze numerically within the structure of 
the perturbed 2-D model mentioned above, the relevance of the unknown axial position 
around the swelling, where initial conditions of the classical model (initial velocity, stresses 
and temperature) are imposed. This aspect constitutes an ill-posed problem that must be 
analyzed carefully in relation to the useful numerical results obtained along the spinning 
length relatively far from the swelling zone. It is also necessary to discuss in detail, how the 
types (instantaneous or retarded responses) of constitutive models affect numerical procedures 
and results, in order to choose the appropriate axial position for initial conditions. For this 
task, our iterative numerical algorithm is used, and results are obtained for a typical take up 
velocity (3000 m/min). The discrete non-isothermal melt spinning model is expressed in finite 
differences, which involve the implicit tri-diagonal algorithm for the temperature field, and 
explicit-implicit backward differences for the stresses. Fine meshes can be generated to obtain 
the required precision. Therefore, in this context of analysis, our results provide a new insight 
of this ill-posed problem involving non-isothermal melt spinning flows, and also show that an 
additional physical constraint may lead one to appropriate initial conditions. This constraint is 
based on the consideration of the rheometric and process elongational viscosity curves, 
defined below. Here the Phan-Thien and Tanner viscoelastic constitutive equation, which is 
appropriate to describe extensional flows, is used to illustrate our conclusions. The study is 
carried out for polyethylene terephthalate (PET), which is a typical synthetic polymer used in 
the commercial production of fibers. 
 

2 CLASSICAL MELT SPINNING MODEL 
 

The melt spinning model considered here was formulated in the steady state regime by 
Ottone and Deiber (2002). Therefore, in this section, we present a brief description of this 
model in order to carry out then the study concerning the ill-posed nature of the initial 
conditions invoked above. Thus, the polymer is considered incompressible and hence the 
mass balance implies,  
 

( ) 0=⋅∇ v                  (1) 
 

where v is the velocity vector. Also the momentum balance in the filament is expressed, 
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gpvv ρτρ +⋅∇+∇−=∇⋅               (2) 
 

In Eq. (2), ρ is the polymer density, p is the pressure field, g  is the gravity vector and τ is the 

extra stress tensor. The energy balance in the filament is, 
 

τρ :DqTvcv +⋅∇−=∇⋅                (3) 
 

where bTacv +=  is the polymer thermal capacity, a and b are thermo-physical constants  

and T is the temperature field. In addition Tkq s ∇⋅−=  is the heat flux vector, where sk  is 

the thermal conductivity, and τ:D  is the mechanical power. In this term the rate of 

deformation tensor 2/)( TvvD ∇+∇=  is a function of the fluid kinematics 

rrzz evevzrv +=),( , where zv  and rv  are the axial and radial components of the velocity 

vector, respectively, in the cylindrical coordinate system. 
Boundary conditions to solve Eqs. (1) to (3) are the same as those reported by Ottone and 

Deiber (2002). Here the Phan-Thien and Tanner viscoelastic model (PTTM), which is 
appropriate to describe extensional flows, is used (see below). This model includes the 

retarded elastic response Dss
ητ 2=  and hence initial values for zz

sτ  and rr
sτ  are needed at 

z=0, apart from the stress zz
pτ  and the relation zz

p
rr

pR ττ /=  already discussed in the 

literature (Denn, 1983). This requirement is equivalent to assign a value to the axial velocity 
derivative at 0=z . Thus the additional initial condition needed and expressed zvf z ∂∂= /  is 
basically an ill-posed problem in the spinning literature because its specific value is unknown. 
It must be determined with a physical criterion (for instance, the null velocity derivative at the 
maximum filament swelling may be a choice). In fact, it was found with the PTTM that when 

→f 0, numerical solutions obtained for the average temperature and axial velocity of the 
filament, far from the initial position, were not dependent on the different small values 
assigned to this derivative (Ottone and Deiber, 2002). On the other hand, when the 
rheological model with instantaneous elastic response was used (the term 

s
τ  was not 

included) the condition ≈f 0 is not satisfied for any assumed initial filament radius, and 
hence, the position 0=z  is not well determined in relation to the capillary exit. Usually, in 
this case authors suggest placing it around two to four capillary diameters below the capillary 
exit (Keunings et al., 1983). 

In the sense discussed above, the origin of the coordinate system may be placed either at 
the maximum swelling of the polymer melt or at a higher distance depending on the value 

0=f  or 0>f , respectively, where the filament enters a monotonic stretching flow at given 
distance from the exit of the extrusion capillary. At the position of the initial conditions, 
where 0=z , the mechanical and thermal fields are assumed uniform in the radial direction. 
Therefore throughout this work the initial conditions (essentially the spatial-initial conditions) 
for any value r are, 

osz TTvv == ,  

zz

rr
zz
o

zz
so Rrr

τ
τττ === ,,)0(              (4) 

In Eq. (4), )(zro  is the fiber radius as a function of the axial direction z, sv  is the melt 

velocity at the onset of the spinning flow with radius sr , and oT  is the extrusion melt 
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temperature. Thus, 22 / sccs rrvv =  where cv  is the melt averaged velocity in the extrusion 

capillary of radius cr . It has been discussed in the literature that the condition 0≈R  is a good 

approximation (Denn, 1983; Gagon and Denn, 1981; Denn et al., 1975). At the end of the 
spinneret ( Lzz L == ) the take up velocity is Lz vv = ; hence the drawratio is sL vvDR /= . 

The symmetry of mechanical and thermal fields is imposed at the centerline 0=r  for any 
position z. Thus,  
 

0=
r

vz

∂
∂

, 0=
r

T

∂
∂

,  ,0=
r

zz

∂
τ∂

 0=
r

rr

∂
τ∂

           (5) 

 

In addition at the filament free surface for ( )zrr o=  and any position z, dynamics and 

kinematics constraints are, 
 

( ) ( ) tnTtnT
a

⋅⋅=⋅⋅                (6) 
 

   ( ) ( ) nnTnnT
a

⋅⋅+ℵ−=⋅⋅ σ              (7) 
 

0=⋅ nv                   (8) 
 

tvtv a ⋅=⋅                  (9) 

for the mechanical variables and,  
   Thnq e∆=⋅               (10) 

 

for the temperature field. In these equations, n  and t  are the unit vectors normal and 

tangential to the free surface, respectively. ℵ is the curvature of the free surface and σ is the 
polymer-air surface tension. In addition, the stress tensor τδ +−= pT  involves the extra 

stress tensor τ  and the pressure p, where δ  is the unit tensor. In Eq. (10), aTTT −=∆  is the 

thermal jump between the average air temperature aT  used to cool the fiber and the polymer 

temperature T evaluated at the free surface. Also the external coefficient of heat transfer eh  

may be evaluated through correlations reported by Denn (1996). We designate L the length 
from the initial condition to the position where the melt reaches the glassy temperature gT  to 

become solidified. In Eqs. (6) to (8), 
a

T  is the stress tensor and av  is the velocity vector, 

both of the cooling air (see Ottone and Deiber, 2002, for more details). 
To complete the formulation of the spinning model, the viscoelastic stress 

p
τ  is required, 

which is a part of the total extra stress tensor 
sp

τττ += , where 
s

τ  is associated with 

retardation effects, as indicated above. In this sense, the PTTM is expressed, 
 

DG
t pp

λτ
δ
δλτ 2=+              (11) 

where, 

Dt

TD
LL

Dt

D

t p
T

pppp

lnτττττ
δ
δ −⋅−⋅−=          (12) 
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is the non-affine convective time derivative; here the effect of the thermal history is added 
through the term DtTD /ln . Also DvL χ−∇=  is the effective velocity gradient tensor and 

( ) ααηη /1−= ps  with Gp λη = . Therefore, the instantaneous elastic response of the PTTM 

is obtained for 1=α . 
Since rheological models get the linear viscoelastic response at the asymptotic limit of 

small shear rates, the basic relaxation time oλ  is expressed 

( )}273/68029755.11{016.0 ++−= Texpoλ  as reported by Gregory and Watson (1970). In 

particular, the PTTM considers an effective relaxation time that is a function of the stress 
tensor expressed ( ) ),(/ τλλ trTKTo=  where )/( GtrxpeK τξ= . In this context of analysis the 

relaxation modulus is also allowed to change with temperature according to )( ro T/TG =G  

where rT  is the reference temperature. 
Rheometric characterizations of the PTTM were carried out by following the same 

procedure described by Ottone and Deiber (2000) to evaluate the rheological parameters of 
the PET melt with experimental data reported by Gregory and Watson (1970) involving the 
shear rate flow of a sample that had the same intrinsic viscosity as the PET used by George 
(1982) (zero shear rate viscosity ≈oη  104.9 Pa s). The results obtained are α ≈ 0.85, χ ≈ 4 

10-5 and ξ ≈ 9.25 10-5.  
To facilitate the discussion of results in Section 4, throughout this work the extensional 

viscosity is expressed, 

( ) ( )
ε

ττεη
&

&

rrzz

e T
−=,              (13) 

where ( )zvz ∂∂= /ε&  is constant under rheometric conditions. In a similar framework, the 
process extensional viscosity is defined as follows, 

( ) ( )
p

prrzz
pp

e T
ε

ττεη
&

&
−=,              (14) 

where the process extensional rate is obtained from ( )p
z

p zv ∂∂= /ε&  by using the spinning 
axial velocity. Once the interplay between process and extensional rheometric variables has 
been defined, master curves of both viscosities are carried out by using the thermal shift factor 

Ta , expressed, 
 

( )
( )

( )
( )}273

1.6802
9755.11exp{=

+
+−==

T

T

T

T
a

oo

o

ro

o
T λ

λ
λ
λ

        (15) 

 

for the PET under consideration. 
 

3 FRAMEWORK OF THE NUMERICAL METHOD 
 

 The numerical method solving the model equations (Eqs.(1) to (15)) has been described in 
detail in Ottone and Deiber (2002). Basically, we use the regular perturbation scheme 
proposed by Henson et al. (1998) to obtain the perturbed 2-D model. This scheme allows one 
to neglect rigorously terms of small orders from the balance and constitutive equations and 
the boundary conditions of the complete model. Then the perturbed 2-D model is averaged in 
the radial direction of the filament, without any approximation, to yield an appropriate version 
of the perturbed average model. 
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It is relevant to indicate that the complete model described by Eqs (1) to (15) is quite 
difficult to solve due to the presence of the free interface, the highly non linear terms in the 
constitutive equation as well as to the ill-pose nature of the initial condition after the extrusion 
capillary. The perturbed model obtained is able to preserve the most relevant physical 
phenomena of the non isothermal spinning. 

The perturbation analysis is carried out on the complete model by expressing any 
dependent variable, designated P in the generalized sense, through the series 

( ) ( ) ( )ΛϑΛ +== ∑
∞

=

o

n

nn PPP
0

. Here Λ  is the ratio between the capillary radius and the 

stretching length of the filament. Then, terms of order Λ  and greater orders are neglected to 
introduce the slenderness hypothesis. The result is the “perturbed 2-D model”. In this 
framework, a coordinate transformation is introduced to consider the axial variation of the 
filament radius )(zro . Thus, new coordinates zZ =  and )(/)(/ Zrrzrr oo ==ζ  are defined 

to obtain a rectangular computational domain (Deiber and Schowalter, 1979). As indicated 
above, the numerical algorithm proposed in this work requires a rigorous averaging in the 
radial direction of the perturbed equations. This radial average is defined as follows, 
 

ζζζ dZPP ∫=〉〈
1

0

),(2              (16) 

 

to obtain a set of equations that conforms the “perturbed average model”. Consequently the 
basic strategy of the numerical algorithm is to solve the coupled perturbed 2-D and average 
models through an iteration process. In order to compute simultaneously these models, they 
are written in finite differences. Therefore the perturbed averaged model can be expressed in 

the matrix form bxAx ⋅= − )(1
&  where },,,,{

Z

T

ZZZ

f

Z

v
x

rr
p

zz
pz

∂
∂

∂
τ∂

∂
τ∂

∂
∂

∂
∂ ><><><

=&  and 

Zvf z ∂∂= /  (see Ottone and Deiber, 2002). It is clear that these equations require the stress 

fields ),( ζτ Zzz  and ),( ζτ Zrr  and the temperature field ),( ζZT  to evaluate the non-linear 

averages indicated with >⋅<  and involved in the matrix )(1 xA− . Equation bxAx ⋅= − )(1
&  is 

written in finite differences by using the fourth order Runge-Kutta method to get the discrete 
vector x . Therefore, from the perturbed 2-D model, we calculate the temperature field from 
the perturbed energy balance written in finite differences. The resulting tri-diagonal matrix for 
the unknown values of temperatures at the grid points requires the discrete temperature values 
at the free surface evaluated from the perturbed version of Eq. (10). In addition, the stress 
fields are obtained from the PTTM written in finite differences (an explicit-implicit scheme is 
used) for each axial position Z and any ζ  to obtain their average values. Therefore, the 
structure of the numerical algorithm consists in solving at each axial step the temperature and 
stress fields to calculate the non-linear averages and internal heat transfer coefficient required 
in the perturbed average model. These calculations are carried out iteratively at each axial 
step, where convergence criteria must be satisfied for the resulting average temperature and 
stress fields from the perturbed 2-D and average models, thus indicating consistency of these 
models with the averages process. The iterative process also requires two additional 
convergence criteria associated with the determination of the length L, where the glass 
temperature is reached and the filament starts to move at the take-up velocity. 
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4 RESULTS AND DISCUSSION 
 

 Figure 1 shows curves of the rheometric and process elongational viscosities (see Eqs. (13) 
to (15)) for the PET under study. One observes in this figure that the spinning curve is 
obtained for different values of Zvf z ∂∂= /  at =Z 0, when Lv = 3000 m/min, DR=165, sv = 

0.303 m/s, sr = 2 cr  and α = 0.85. Thus by increasing f, the values of the process elongational 

viscosity at the spinning onset (Z=0) decrease, crossing the rheometric elongational viscosity 
until a minimum value is obtained for around 19≈f . In this figure, one can also read at the 
abscissa coordinate the process elongational rate for Z=0 at each value f , which becomes 
higher as f  increases. Afterward, at a fixed value of f , as the process elongational rate is 
higher for Z>0, the corresponding process elongational viscosity follows a similar shape as 
that of the rheometric one. From the physical point of view, it is clear that both viscosities 
should be monotonic increasing functions of the process and rheometric elongational rates, 
respectively, at the starting zone of the onset of the spinning flow (a condition of the initial 
stretching flow). This physical aspect places a clear mathematical constraint that allows the 
algorithm to determine the unknown derivative Zvf z ∂∂= /  at 0=Z , and hence to show that 
the stretching spinning flow does not necessarily start from the maximum swelling with 

=f 0. Thus, for the particular case illustrated in this figure, f =19 is appropriate as long as 
the PTTM with a retarded elastic response applies (α = 0.85). 
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Figure 1: Rheometric and process elongational viscosities as a function of rheometric and process elongational 
rates for PET. The variation of derivative f  at Z = 0 for α = 0.85 is illustrated on the process elongational 

viscosity curve through small cutting lines. 
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Figure 2: Process elongational viscosity as a function of axial distance. Variation of derivative f  at Z = 0 for  

α = 0.85. 
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Figure 3: Rheometric and process elongational viscosities as a function of rheometric and process elongational 
rates. The variation of derivative f  at Z = 0 for α = 0.99 is illustrated on the process elongational viscosity 

curve through small cutting lines. 
 

Figure 2 shows clearly that different values of f  at Z = 0 affect the spinning solution only 
along a small distance of the order of 10-3 m. The solution expected for =f 19 is also 
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illustrated here. This figure also shows numerical results for >f 19 to observe an unexpected 
physical result again. Thus the process elongational viscosity from the physical point of view 
is a constant function of the axial coordinate at the onset of the spinning process.  

Finally, Figures 3 and 4 show the effect of f at =Z  0 on the process elongational viscosity, 
when one considers the PET with an almost instantaneous elastic response ( 1→α ). Thus 
retardation effects are asymptotically small. These figures show that the zone where solutions 
are sensitive to variations of f is substantially smaller than that of Figures 1 and 2; thus in 
Figure 4 this zone is of the order of 9 10-5 m. For this asymptotic material response the 
appropriate physical value is ≈f  28. 
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Figure 4: Process elongational viscosity as a function of axial distance. Variation of parameter f  at Z = 0 for  

α = 0.99. 
 

5 CONCLUSIONS 
 

Numerical results indicate that the initial slope of the axial velocity is appropriately 
defined and has a unique value as long as the process elongational viscosity satisfies the 
constraint of being a monotonic increasing function of the process elongational rate at the 
onset of the spinning flow. Also non unique solutions generated by the ill-posed problem, 
associated with the spinning initial conditions, are confined along a negligible zone at the 
beginning of the spinneret, which becomes smaller when the melt approaches the 
instantaneous elastic response. 
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