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Abstract. The non isothermal melt spinning process at ldve tap velocities is composed of three
distinctive zones of major interest for researche @ associated with the 1-D flow in the extrusion
capillary. The second one starting at the capilerg is designated swelling zone, and presentB a 2-
flow where the filament relaxes before entering th® spinning flow (the third zone). Here,
elongational deformations predominate before tlieifed filament is taken at the spinneret endeTh
purpose of the present work is to analyze numdyiocaithin the structure of the classical melt
spinning model the relevance of the unknown ax@diton after the swelling zone, where initial
conditions of the non isothermal spinning flow amgosed. This aspect constitutes an ill-posed
problem that must be analyzed carefully in relatonhe useful numerical results obtained along the
spinning length relatively far from the swellingreo In this context of analysis, our results previd
new insight of this problem and also show that ddaiteonal physical constraint may lead one to place
appropriate initial conditions for computationakpases. This constraint is based on the considerati
of the rheometric and process elongational visgagitves. The Phan-Thien and Tanner viscoelastic
constitutive equation is used here to illustraténmasults and conclusions of the present work.
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1 INTRODUCTION

The classical non-isothermal melt spinning flowoat take up velocities is modeled in the
literature by considering a filament of polymer tméhat is continuously drawn and
simultaneously cooled with air. This process finalields a solidified yarn. All the filaments
of the spinneret are assumed to achieve, in piacipe same properties during the spinning
process, and they compose the synthetic fiber bolabin. For these purposes a model
describing the velocity, stress and temperatutddia one filament may be useful to control
the quality of the final product (Denn, 1980). Maexently, we provided a computational
algorithm based on finite differences to obtain éixél velocity profile and the thermal and
stress fields in the 2-D domain of the filamentt¢@e and Deiber, 2002). In this work, the
perturbation analysis of the full spinning modepaded by Henson et al., (1998) was
considered. This model was formulated for the Ipeesl range (flow induced crystallization
was not considered) through a regular perturbasioalysis that included the slenderness
approximation associated with long fibers of vemali diameters. From previous works, it is
clear that the radial and axial stress and temypexdields in the melt fiber spinning process
may be estimated within a consistent theoreti@h&work. Also, we have available a robust
numerical algorithm computing the resulting momemtand energy balances coupled to
typical viscoelastic constitutive equations.

Therefore, the purpose of the present work is tdyae numerically within the structure of
the perturbed 2-D model mentioned above, the ralvaof the unknown axial position
around the swelling, where initial conditions oétblassical model (initial velocity, stresses
and temperature) are imposed. This aspect comstitam ill-posed problem that must be
analyzed carefully in relation to the useful nuroakiresults obtained along the spinning
length relatively far from the swelling zone. Itatso necessary to discuss in detail, how the
types (instantaneous or retarded responses) ofictive models affect numerical procedures
and results, in order to choose the appropriatel geasition for initial conditions. For this
task, our iterative numerical algorithm is used] agsults are obtained for a typical take up
velocity (3000 m/min). The discrete non-isothermm&llt spinning model is expressed in finite
differences, which involve the implicit tri-diagdnalgorithm for the temperature field, and
explicit-implicit backward differences for the stees. Fine meshes can be generated to obtain
the required precision. Therefore, in this conteh@nalysis, our results provide a new insight
of this ill-posed problem involving non-isothermmaklt spinning flows, and also show that an
additional physical constraint may lead one to appate initial conditions. This constraint is
based on the consideration of the rheometric amtess elongational viscosity curves,
defined below. Here the Phan-Thien and Tanner glastic constitutive equation, which is
appropriate to describe extensional flows, is usetlustrate our conclusions. The study is
carried out for polyethylene terephthalate (PEThich is a typical synthetic polymer used in
the commercial production of fibers.

2 CLASSICAL MELT SPINNING MODEL

The melt spinning model considered here was fortedlan the steady state regime by
Ottone and Deiber (2002). Therefore, in this segtiwe present a brief description of this
model in order to carry out then the study concegnthe ill-posed nature of the initial
conditions invoked above. Thus, the polymer is mered incompressible and hence the
mass balance implies,

(0m)=0 1)

whereyv is the velocity vector. Also the momentum balaimcthe filament is expressed,
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pviv=-0Op+0M +pg 2)

In Eqg. (2),pis the polymer density is the pressure fieldy is the gravity vector and is the
extra stress tensor. The energy balance in theditd is,

pc, vl =-0g+D:1 )

where ¢, =a+DbT is the polymer thermal capacitg, andb are thermo-physical constants
andT is the temperature field. In additian=—k [IUT is the heat flux vector, wherl; is
the thermal conductivity, andD:z is the mechanical power. In this term the rate of

deformation tensor 2=(Qy+g\_/T)/2 is a function of the fluid kinematics

v(r,z)=v,e, +v, e, wherev, and v, are the axial and radial components of the vefocit
vector, respectively, in the cylindrical coordinatestem.

Boundary conditions to solve Egs. (1) to (3) are shme as those reported by Ottone and
Deiber (2002). Here the Phan-Thien and Tanner eisstic model (PTTM), which is
appropriate to describe extensional flows, is ugsk below). This model includes the

retarded elastic respongg =27,D and hence initial values fars” and 7¢ are needed at

z z

z=0, apart from the stress,** and the relationR=7," /7, already discussed in the

literature (Denn, 1983). This requirement is eql@mato assign a value to the axial velocity
derivative atz=0. Thus the additional initial condition needed @xgressedf =dv,/0z is
basically an ill-posed problem in the spinningrkiteire because its specific value is unknown.
It must be determined with a physical criteriorr (ftstance, the null velocity derivative at the
maximum filament swelling may be a choice). In faictvas found with the PTTM that when

f - 0, numerical solutions obtained for the averagepwnature and axial velocity of the
filament, far from the initial position, were noemendent on the different small values
assigned to this derivative (Ottone and Deiber, 220@n the other hand, when the
rheological model with instantaneous elastic respowas used (the term_ was not

included) the conditionf =0 is not satisfied for any assumed initial filameatlius, and
hence, the positiorz =0 is not well determined in relation to the capilaxit. Usually, in
this case authors suggest placing it around twioup capillary diameters below the capillary
exit (Keunings et al., 1983).
In the sense discussed above, the origin of thedowie system may be placed either at
the maximum swelling of the polymer melt or at ghar distance depending on the value
f =0 or f >0, respectively, where the filament enters a moriotstretching flow at given
distance from the exit of the extrusion capillaAt. the position of the initial conditions,
where z=0, the mechanical and thermal fields are assumedramiin the radial direction.
Therefore throughout this work the initial condit#o(essentially the spatial-initial conditions)
for any value are,
V, =V, T=T,
Z.l’l’
LhO=r, 17=15" R=— (4)
4
In Eq. (4), ry(z) is the fiber radius as a function of the axialedtionz, vg is the melt

velocity at the onset of the spinning flow with na&l rg, and T, is the extrusion melt
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temperature. Thusyg :vcrczlrsz where v, is the melt averaged velocity in the extrusion
capillary of radiusr, . It has been discussed in the literature thattimelition R= 0 is a good
approximation (Denn, 1983; Gagon and Denn, 198nD&t al., 1975). At the end of the
spinneret ¢ =z, =L) the take up velocity i, =V, ; hence the drawratio BR=v| /vg.

The symmetry of mechanical and thermal fields ipased at the centerline=0 for any
positionz. Thus,

7z rr
dVZ:O, ﬂ:o, ot :O, or =0 (5)
or or or or

In addition at the filament free surface for= ro(z) and any positiorgz, dynamics and
kinematics constraints are,

(rm)E=(r, m)s (6)
[ m)m=-00+(T, m)m (7)
vih=0 (8)
v =V, i 9)
for the mechanical variables and,
qth=hAT (10)

for the temperature field. In these equations,and t are the unit vectors normal and

tangential to the free surface, respectivelys the curvature of the free surface ans the
polymer-air surface tension. In addition, the strésnsorT =-pd+1 involves the extra

stress tensor and the pressuig whered is the unit tensor. In Eq. (104T =T T, is the
thermal jump between the average air temperafyrased to cool the fiber and the polymer

temperaturel evaluated at the free surface. Also the exteroafficient of heat transfeh,

may be evaluated through correlations reported egr)(1996). We designatethe length
from the initial condition to the position whereetmelt reaches the glassy temperaflyeto

become solidified. In Egs. (6) to (SLa is the stress tensor and is the velocity vector,

both of the cooling air (see Ottone and Deiber, 2206 more details).
To complete the formulation of the spinning modeg viscoelastic stres=zsp IS required,

which is a part of the total extra stress tenscr L tT, where T, is associated with

retardation effects, as indicated above. In thisegthe PTTM is expressed,

r +1%7 =21GD (11)
where,
Or =P g ¢ @ PInT (12)
5t=p Dt=p ==p =p= =p Dt
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is the non-affine convective time derivative; héne effect of the thermal history is added
through the termDInT /Dt. Also L =0v- xD is the effective velocity gradient tensor and

Ns :np(l—a)/a with 77, = AG. Therefore, the instantaneous elastic responsieeoPTTM
IS obtained fora = 1

Since rheological models get the linear viscoatagtsponse at the asymptotic limit of
small  shear rates, the Dbasic relaxation timeA, IS expressed

A, =0.016exd-11.9755+6802/(T + 273} as reported by Gregory and Watson (1970). In
particular, the PTTM considers an effective relattime that is a function of the stress
tensor expressed =A0(T)/ K(T,trr) whereK =exp(étrz/G). In this context of analysis the

relaxation modulus is also allowed to change wemgerature according t6 =G, (T/T, )

whereT, is the reference temperature.

Rheometric characterizations of the PTTM were edrrout by following the same
procedure described by Ottone and Deiber (200@v&duate the rheological parameters of
the PET melt with experimental data reported byg@rg and Watson (1970) involving the
shear rate flow of a sample that had the samensitriviscosity as the PET used by George

(1982) (zero shear rate viscosify = 104.9 Pa s). The results obtained are 0.85, y = 4

10° and&=9.25 10°.
To facilitate the discussion of results in Sectignthroughout this work the extensional
viscosity is expressed,

76T, &)=L (13)

where £ =(dv, /0 z) is constant under rheometric conditions. In alsinframework, the
process extensional viscosity is defined as follows

zz_ i |P
p = p - 4 -7

Tle (T,f ) o (14)

where the process extensional rate is obtained f#&ns (dv,/d2z)P by using the spinning
axial velocity. Once the interplay between procasd extensional rheometric variables has
been defined, master curves of both viscositiecaneéed out by using the thermal shift factor

ar, expressed,

_ (1) _A(T) 68021

= = exp{-11.9755+

") oo T+273 (19)

for the PET under consideration.
3 FRAMEWORK OF THE NUMERICAL METHOD

The numerical method solving the model equations.(E}jto (15)) has been described in
detail in Ottone and Deiber (2002). Basically, wee uhe regular perturbation scheme
proposed by Henson et al. (1998) to obtain theupgeetl 2-D model. This scheme allows one
to neglect rigorously terms of small orders frore ttalance and constitutive equations and
the boundary conditions of the complete model. Tinenperturbed 2-D model is averaged in
the radial direction of the filament, without argpaoximation, to yield an appropriate version
of the perturbed average model.
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It is relevant to indicate that the complete modes$cribed by Egs (1) to (15) is quite
difficult to solve due to the presence of the freterface, the highly non linear terms in the
constitutive equation as well as to the ill-postureaof the initial condition after the extrusion
capillary. The perturbed model obtained is ablepteserve the most relevant physical
phenomena of the non isothermal spinning.

The perturbation analysis is carried out on the mlete model by expressing any
dependent variable, designate® in the generalized sense, through the series

P:Z/I”P(”):P(O)+z9(/l). Here 4 is the ratio between the capillary radius and the
n=0

stretching length of the filament. Then, terms afes A and greater orders are neglected to
introduce the slenderness hypothesis. The resuthes“perturbed 2-D model”. In this
framework, a coordinate transformation is introdl¢e consider the axial variation of the
filament radiusry(z ) Thus, new coordinateZ =z and { =r/ry,(z) =r/r,(Z ) are defined

to obtain a rectangular computational domain (Dedoed Schowalter, 1979). As indicated
above, the numerical algorithm proposed in thiskm@qguires a rigorous averaging in the
radial direction of the perturbed equations. Thdial average is defined as follows,

1
(P)=2[P(2,{)¢d¢ (16)
0

to obtain a set of equations that conforms thettpbed average model”. Consequently the
basic strategy of the numerical algorithm is tovedhe coupled perturbed 2-D and average
models through an iteration process. In order topae simultaneously these models, they

are written in finite differences. Therefore thetpebed averaged model can be expressed in
Y44 r

dVZ’df’d<Tp>d<Tp >,d<T>} and

L L V7/A V7/A V7/4

f =ov,/0Z (see Ottone and Deiber, 200R)is clear that these equations require the stress

the matrix form i(zé'l(l()[@ where x={

fields 7%%(z,¢) and " (Z,) and the temperature fielfl(Z,{) to evaluate the non-linear
averages indicated witk[> and involved in the matri@_l(g). Equationxzé_l(g)[@ is

written in finite differences by using the fourthder Runge-Kutta method to get the discrete
vector xX. Therefore, from the perturbed 2-D model, we daleuthe temperature field from

the perturbed energy balance written in finiteet#nces. The resulting tri-diagonal matrix for
the unknown values of temperatures at the gridtpagquires the discrete temperature values
at the free surface evaluated from the perturbediae of Eq. (10). In addition, the stress
fields are obtained from the PTTM written in finddéferences (an explicit-implicit scheme is
used) for each axial positiod and any{ to obtain their average values. Therefore, the

structure of the numerical algorithm consists ilvieg at each axial step the temperature and
stress fields to calculate the non-linear averagesinternal heat transfer coefficient required
in the perturbed average model. These calculatwascarried out iteratively at each axial
step, where convergence criteria must be satiséiedhe resulting average temperature and
stress fields from the perturbed 2-D and averagdetspthus indicating consistency of these
models with the averages process. The iterativecgs® also requires two additional
convergence criteria associated with the determonadf the lengthL, where the glass
temperature is reached and the filament startsotenat the take-up velocity.
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4 RESULTSAND DISCUSSION

Figure 1 shows curves of the rheometric and poebkmgational viscosities (see Egs. (13)
to (15)) for the PET under study. One observeshia figure that the spinning curve is
obtained for different values of =dv,/dZ at Z =0, whenv_ = 3000 m/min DR=165, v¢=
0.303 m/s,rs= 2r, anda = 0.85. Thus by increasirfgthe values of the process elongational
viscosity at the spinning onset50) decrease, crossing the rheometric elongatizisabsity
until a minimum value is obtained for arourfd=19. In this figure, one can also read at the
abscissa coordinate the process elongational caté=0 at each valuef , which becomes
higher asf increases. Afterward, at a fixed value bf as the process elongational rate is
higher forZ>0, the corresponding process elongational viscdsitgws a similar shape as
that of the rheometric one. From the physical poinview, it is clear that both viscosities
should be monotonic increasing functions of thecpss and rheometric elongational rates,
respectively, at the starting zone of the onsdthefspinning flow (a condition of the initial
stretching flow). This physical aspect places arclaathematical constraint that allows the
algorithm to determine the unknown derivatife=dv, /0Z at Z =0, and hence to show that
the stretching spinning flow does not necessatitytsfrom the maximum swelling with
f =0. Thus, for the particular case illustrated irsthgure, f =19 is appropriate as long as
the PTTM with a retarded elastic response apples (.85).
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Figure 1: Rheometric and process elongational viscositiesfaaction of rheometric and process elongational
rates for PET. The variation of derivativie at Z = 0 for a = 0.85 is illustrated on the process elongational

viscosity curve through small cutting lines.
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Figure 2: Process elongational viscosity as a function ddladistance. Variation of derivativé at Z= 0 for

a =0.85.
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Figure 3: Rheometric and process elongational viscosites function of rheometric and process elongational
rates. The variation of derivativé at Z= 0 for a = 0.99 is illustrated on the process elongatioisdosity

curve through small cutting lines.

Figure 2 shows clearly that different valuesfofat Z = 0 affect the spinning solution only
along a small distance of the order of*1. The solution expected fof =19 is also
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illustrated here. This figure also shows numereallts for f >19 to observe an unexpected
physical result again. Thus the process elongdtvseosity from the physical point of view
is a constant function of the axial coordinatehat@nset of the spinning process.

Finally, Figures 3 and 4 show the effecfat Z = 0 on the process elongational viscosity,
when one considers the PET with an almost instaotas elastic response (- 1). Thus
retardation effects are asymptotically small. Thiggeres show that the zone where solutions
are sensitive to variations 6fis substantially smaller than that of Figures @ @n thus in
Figure 4 this zone is of the order of 9°Léh. For this asymptotic material response the
appropriate physical value it = 28.

104
< ] f=0
f= 10
O 1 r
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SD 14
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Figure 4: Process elongational viscosity as a functionxidladistance. Variation of parametdr at Z = 0 for
a =0.99.

5 CONCLUSIONS

Numerical results indicate that the initial slopk tbe axial velocity is appropriately
defined and has a unique value as long as the ggoglengational viscosity satisfies the
constraint of being a monotonic increasing functadrthe process elongational rate at the
onset of the spinning flow. Also non unique solofogenerated by the ill-posed problem,
associated with the spinning initial conditionse @onfined along a negligible zone at the
beginning of the spinneret, which becomes smalldrerw the melt approaches the
instantaneous elastic response.

Acknowledgments
Authors wish to thank the financial aid receivednir Universidad Nacional del Litoral,
Santa Fe, Argentina (CAI+D 2006) and CONICET (PR&).

REFERENCES

Deiber, J. A. and Schowalter, W. R. Flow througlb&si with Sinusoidal Axial Variations in
Diameter AIChE J, 25: 638-645, 1979.

Denn, M. M., Petrie C. J. S. and Avenas P. MeclsaafcSteady Spinning of a Viscoelastic
Liquid. AIChE J, 21: 791-799, 1975.

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



168 M.L. OTTONE, M.B. PEIROTTI, J.A. DEIBER

Denn, M. M.Computational Analysis of Polymer ProcessiRgarson, J. R. A., Richardson,
S. M. Eds.; Applied Science Publishers. New Yo883

Denn, M. M. Continuous Drawing of Liquids to fornbErs.Ann. Rev. Fluid Mech12: 365-
387, 1980.

Denn, M. M. Correlations for Transport Coefficients Textile Fiber Spinningind. Eng.
Chem. Res35: 2842-2843, 1996.

Gagon, D. K. and Denn, M. M. Computer SimulationSieady Polymer Melt Spinning.
Polym. Eng. Sci21: 844-853, 1981.

George, H. H. Model of Steady-State Melt Spinnib¢gngermediate Take-Up Speed®lym.
Eng. Sci, 22: 292-299, 1982.

Gregory, D. R. and Watson, M. T. Steady State Piepef Poly(Ethylene Terephthalate) Melts.
J. Polym. Scj 30: 399-406, 1970.

Henson, G. M., Cao, D., Bechtel, S. E., and Fomdst. A. Thin-Filament Melt Spinning
Model with Radial Resolution of Temperature ance&tiJ. Rheol.42: 329-360, 1998.

Keunings, R., Crochet, M. J. and Denn, M. M. Peofilevelopment in Continuous Drawing
of Viscoelastic Liquidsind. Eng. Chem. Fundan®2: 347-3551983.

Ottone, M. L. and Deiber, J. A. Modeling the Mefiirhing of Polyethylene Terephthalatk.
Elast. Plast, 322 119-139, 2000.

Ottone, M. L and Deiber, J. A. A Numerical Methaat fthe Viscoelastic Melt Spinning
Model with Radial Resolutions of Temperature ancest Field.Ind. Eng. Chem. Res.
41:6345-6353, 2002.

Copyright © 2008 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



