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Abstract. The classical melt spinning model is reformulatedinclude a spectral rheological
constitutive equation for an arbitrary number ofd®® composing the spectra of relaxation times and
modules. This resulting spectral spinning modeluires a closure criterion to be applied in the
iteration of the spinning initial condition of thetal stress tensor, at the onset of the stretchimg.
Thus this stress value must be distributed, at eaehof the iterations, among the stress modeseof t
spectral viscoelastic rheological model, the sunwbhfch shall be consistent with the total stress
value. For this purpose different closure critenia generated in the literature to carry out ttrisss
distribution. Without loss of generality, in thiovk we study numerically this particular problem fo
the isothermal condition only. A new closure ciitar is proposed and analyzed in relation to
previous ones. In general it is found that two zoaee clearly distinguished along the stretchiog/fl
one, where numerical results of the process el@nat viscosity are insensitive to the closure
criterion used, and the other involving the coumaet situation.
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1 INTRODUCTION

The melt spinning operation is used in the polypr@cessing industry to produce textile
fibers. In this operation the polymer melt is sebj¢o a complex non isothermal and
predominantly extensional flow. Computational maedptoviding axial velocity, stress and
temperature profiles are still under study. Onesoaaexplaining this situation is that, in
applications, different viscoelastic constitutiveaels must be considered depending on the
type of material to be processed, generating tly®ral numerical complexities. In this
context of analysis, the classical and most usell spenning model, in the low take up
velocity range, has been widely analyzed and atsased in the literature, mainly for
viscoelastic rheological models with one relaxatiome only (see, for instance, Denn, 1980,
and Ottone and Deiber, 2002). In practice, howewere needs usually a spectrum of
relaxation times to describe appropriately the nhetic functions of a given polymer melt
through the constitutive equation selected, whichy rfrequently require from two to ten
stress modes and relaxation times (Bernnat, 2d01ijs, for any spectrum size, one common
numerical problem appears when the classical nm@hngig model includes a spectral
rheological model. This problem is associated it closure criterion to be applied in the
iteration of the spinning initial condition of thetal stress tensor, at the onset of the stretching
zone. Thus this stress value must be distributeghah one of the iterations among e
stress modes of the spectral viscoelastic rheabgitodel, the sum of which shall be
consistent with the total stress value. For thigppse different closure criteria are generated
in the literature to carry out this stress disttitw starting from the lad¥l mode to the first
one (see Gagon and Denn, 1981 and Devereux and, @884, for the case of two stress
modes and relaxation times). Without loss of gditgran this work we study numerically
this particular problem for the isothermal conditionly, through our previous algorithm for
spinning flow (Ottone and Deiber, 2002) now adagt@mdspectral viscoelastic rheological
models, where different closure criteria must beased, and hence studied here. It is found
that two zones are clearly distinguished along gtretching flow: one, where numerical
results are insensitive to the closure criterioadysand the other involving the counterpart
situation.

Numerical results of the process elongational wggoas a function of the rate of
elongation are also discussed within the map otrilie elongational and shear viscosities for
three different closure criteria, indicating theygpical characteristics of the spinning flow in
relation to these two relevant non linear rheoroeturves. The basic melt spinning model is
reformulated in general for the spectMlmodes of stresses, within the framework of our
previous computational algorithm based on finitBedences to obtain, the axial velocity
profile and the thermal and stress fields in the @8emain of the filament. In this sense, it
should be observed here that this domain reducemstically to a 1-D domain under the
isothermal condition considered in this work. Thiiage our purpose here, after a coordinate
transformation to get a rectangular numerical domthe perturbation analysis of the full
spinning model reported by Henson et al. (1998) agsdied again by including specifically
the spectra of stress modes and relaxation timass This model was formulated for the low
speed range (flow induced crystallization was ratsedered) through a regular perturbation
analysis (see details in Section 4 below) thatukdetl the slenderness approximation
associated with long fibers of very small diametdtere the Phan-Thien and Tanner
viscoelastic constitutive equation with an arbiraumber of stress modes and relaxation
times, appropriate to describe extensional andrdlmes simultaneously, is used to illustrate
our conclusions for the isothermal spinning flow.
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The numerical study is carried out for a brancled density polyethylene (LDPE9) melt
rheologically characterized here through the PhiaiesT and Tanner spectral viscoelastic
constitutive equation with experimental data repaditly Bernnat (2001).

2 THE SPECTRAL TENSORIAL PHAN-THIEN AND TANNER MODEL

The spectral Phan-Thien and Tanner model (PTTMjHertotal stress tenser=7 +7

is decomposed into the spectral polymer contrllm,ltm = Zr and the term associated
m=1
with retardation effectst . = 275D (Peirotti et al., 2006). In this sense, one exgees

o
T +/]renE r =2A,G,D m=1,...,M (1)
where A7 is the effective relaxation time (see below), and
9, =D, Lo -r m' m=1...,M )
ot=m pt=m ==m =m=

is the non affine convective time derivative (Otaet al., 2006) adapted here for isothermal
spinning. Also L =0v-xD is the effective velocity gradient tensor. Furtheris the

velocity vector,D is the rate of deformation tensor anpdis the chain slip parameter. We

M

define 774 :r/'p(l—a)/a and 7, = ZA ~Gm , hence, the instantaneous elastic response of
m=1

this model may be obtained far=1 (Denn, 1990). Consistently, the zero shear rateogity

of the melt is expresseg, =77, +775. In particular, the PTTM considers effective retaan

times A, :Am/Km(trgm) that are functions of the trace invariant of theesd tensor and

m =6p[Etrz 1G] . Also {An} and{Gy} are the spectra of relaxation times and modules,

respectively, as obtained from the linear viscdelassponse.

The constitutive model expressed through Eqgs. (t) @) allows one to determine the
spectra of relaxation times and modu{és,,G,,} with experimental data of the storage
and lossG" modules as functions of frequenay, which are obtained from Bernnat (2001).

These rheometric functions in terms of the speaftralaxation times and modules are,

M A2 0f

Z ™1+ R o) ®)
M

mz (1+/12 o) )

The algorithm used to fit experimental data is cosgul of two parts. One involves a linear
least squares procedure with linear inequality traimds imposing thal{Am} must be a
positive value for physical meaning (see, for exnpPeiber et al., 1997; Peirotti et al.,
1998). The other part of the algorithm uses a meali regression analysis through the
Levenberg-Marquardt subroutine to minimize thargterror on the average, thus providing
an improved final se{/]m,Gm}. Despite that fitting procedures cannot providen&ue set
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{A\m:Gm}, which is a well known limitation in numerical calations fully described

elsewhere, results obtained in this work for thecga of relaxation times and modules of
LDPE9 are quite similar to those reported by Betit@01).

Therefore in order to determine the remaining noedr rheological parameters, Egs. (1)
and (2) are written in the cylindrical coordinatestem for both the shear and elongational
flows to fit experimental data reported by Bernif2001) for these test kinematics (see
Peirotti et al., 2006, for further details).

Thus, Egs. (1) and (2) in shear flow yield,

oty _ Kz rzv( )(j zr{ )(j
=———Tytr 1-= |+1 1-= m=1...,.M 5
ary Km ,
= M TR T Y m=1...M (6)
m
zr
—d;:“ =- ﬁmr;wrmy(l—%j—rﬁy%mmy m=1...M W
m
Ot _ K oo
=0 m=1...M 8
it A 1 8)
K, :exr{i(réhr{{] +r§f)} m=1,...M (9)
Gm
where,
1
O =y O
2y
p=1%y o (10)
= |2
0

and y =dv, /dr being the shear rate. In additiarf? =7y =7% = afdr¥ =n.y.

M

A procedure to find the shear strass 7°" = > 72 +12" and the shear viscosity function
m=1

n =rly is to solve these equations numerically from tieeption of the shear flow until

the asymptotic steady state is reached. In ordecatoulate this steady state, the time
derivatives in Eqgs. (5) to (8) are written in deter form. Then the Runge-Kutta method is
applied until stresses are constant. The time s&gal in this work is I0s. Criteria for

convergence at the steady state are expressednis t& two consecutive time steps, as

follows,
M i+1 M i M [
EORtIED
m=1 m=1 m=1

where superscripts andg refer to cylindrical coordinates (see Eqgs. (5(%0) andi indicates
the number of time steps being carried out.
For the purpose of quantifying the stresses of mhelt LDPE9 under rheometric

elongational flow, we solved Egs. (1) and (2) for,

<10°° (11)
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& 0 0
D=<0 —%é 0 (12)
0O O —lé
2

where ¢ is the elongational rate, and in this gasg =7 . In a similar situation as the one

described above for the shear rate rheometry, pt&aelsses cannot be obtained explicitly in
elongational flow from the rheological model anda tkinematics expressed by Eq. (12).

Therefore, the elongational viscosity,= (Zr Zr /&, is found here by solving
m=1 m=1

numerically the following equations for the inceptiof the elongational flow toward the

asymptotic steady state,

Y74
OTm __Km, 2242122 (1- x)é +2G & m=1...,.M (13)
o A, m
orl K , :

m =DM T (1 x)e—Gpé m=1....M (14)
Al

0
Ol _ _ Kmr99 r®P(1- x)é -Gpé m=1,...,M (15)
Al

Km = ex{Gi(réz +2r) )} m=1,...,M (16)

m

Once more, in order to calculate normal stressesyrite the time derivatives in Egs. (13)
to (15) in discrete form, and then apply the sammarical procedure as that used for the
shear flow analyzed above. Through Egs. (1) to,(16¢ spectral PTTM is used to
characterize the LDPE9 with data from shear andgalbonal rheometry reported by Bernnat
(2001). Thus, once the spectra of relaxation tirzed modules{)lm,Gm} and rheological

parametersy, ¢ and y are determined, this constitutive equation is yeadbe used in the

isothermal spinning model. Rheological parameterstifie LDPE9 characterized with the
spectral PTTM are reported in Section 5.

3 SPECTRAL ISOTHERMAL SPINNING MODEL

Although, our previous model was reformulated inagyal to include spectral constitutive
equations under non isothermal flow condition, tbe present work, we analyze the
isothermal spinning flow only, which is simpler emyh to illustrate clearly the performance
of closure criteria under analysis, as proposeskiction 1 and presented and discussed below.
The impact of these criteria on the numerical eatidun of the process elongational viscosity
is of course the target of the present researchdtfition, the isothermal melt spinning flow
has relevance to characterize rheometrically potymalts in pure elongational flow (see, for
instance, Ottone et al., 2006, for a review oftrefeships proposed in the literature for this
purpose).
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Therefore, in this section the isothermal melt spig model for the steady state regime is
described briefly through the basic general expwass Thus, the polymer is considered
incompressible and the mass balance implies,

(Ow)=0 (17)
whereyv is the velocity vector. The balance of momenturthanfilament is expressed,
pvDv=-Op+0L+ pg (18)

wherep is the polymer density is the pressure fieldy is the gravity vector and is the

stress tensor considered symmetric throughouintbik. Further, in the spinning modgJ(z )
is the fiber radius as a function of the axial dil@n z, v is the melt velocity at the beginning

of the stretching zone with radiug and after the maximun swelling. Thug, :vcrczlrsz
where v, is the melt averaged velocity in the extrusioniliay of radiusr.. At the end of
the spinneretz=z =L, the take up velocity isv, =v,; hence the draw ratio is
DR=v /vs.

The appropriate set of boundary conditions to sd&gs (17) and (18) is taken directly
from Denn (1980, 1990). For this purpose the fkirematics iS\_/(r, z):vzgZ +V, e, where
v, and v, are the axial and radial components of the vetos#ctor respectively (see also
Section 4), in the cylindrical coordinate systenitidl values forrZ* and r{ are needed at

T I
z=0, apart from the streszspZZ and the reIatiorR:ﬁ, already discussed in the literature
p

(Ottone and Deiber, 2002). At this position thepanies are assumed uniform in the radial
direction, which for any value ofare,

v, (0) =V 0(0)=rs () =15 (19)
Although the stress rati® may be varied in the rangel/2<R<0 for viscoelastic fluids,
R =0 is a good approximation (Denn, 1980 and 1983;r@tend Deiber, 2002).

It is clear from Eqg. (19) that the spectral consiie equation must distribute thd
different stress modes through appropriate stedations in order to meet a convergent value
of the total stresgZ?. Consequently a closure criterion for these catowhs is required in the
iteration process of the spinning initial conditiohthe total stress tensor, at the onset of the
stretching zone. For this purpose different crt@vere generated in the literature to carry out
this stress distribution starting from the Idtmode to the first one. Thus Gagon and Denn
(1981) recommended,

M
T =150l Y. An (20)
m=1
while Devereux and Denn (1994) later suggested,
M
Th =18 A0Gm! D AaGn, (21)
m=1

In particular we propose here the following expi@ss
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M
1 =18AnGm! D 4G (22)
m=1

Closure criteria expressed through Egs. (20) a8 4% based on the physical hypothesis
that each stress mode participates in the totasstvalue proportionally to either the fraction
of mode relaxation time or the fraction of modecesity. The mode fraction used in Eq. (21)
Is rather hybrid involving, however, the productnedde relaxation time and mode viscosity
N =Gpdm- The effects of Egs. (20) to (22) in the spinnflgyv solution subject to the

constraintry, /75 = Oatz=0, with m=1,...,M are studied and discussed below.

Boundary conditions involving the symmetry of figldre imposed at the centerline 0
for any positiorz. Thus,
Y44 Ir
OV, _ 0 or* _ 0 or
or or or
At the filament free surface for =r,(z) and any positiorz, dynamics and kinematics

constraints are,

=0 (23)

(rm)a=(, ma (24)
(r m)m=-o0+(T, m)m (25)
vh=0 (26)

vil=v, (27)

In these equationsy) andt are the unit vectors normal and tangential toftee surface,

respectivelyl] is the curvature of the free surface ands the polymer-air surface tension. In
addition, the complete melt stress tengor —pd +r involves the extra stress tensor(see

Egs. (1) and (2)) and the presspravhered is the unit tensor. Here the complete stress tenso
and the velocity of the surrounding air are desmga andv,, respectively. It is important

to visualize that in particular for the isothermspinning flow of this work the air transversal
flow is imposed at the same temperature as thtteofiber at the extrusion capillary, so that
the isothermal melt condition is kept along the ighspinneret. Therefore, by following
Peirotti et al. (2005), here we also def@g =-po+ 2/7a2a, wheres, is the air viscosity

and D, is the air shear rate tensor, which is a functérv,. Thus, Egs. (24) to (27) are

relevant for the general formulation of the spignitow, and they effectively evaluate the
isothermal interaction between the spinning fibed the surrounding air.

From the above equations one concludes that emdarusothermal conditions the full
spinning model is quite complex to be solved dlyectherefore this model is simplified
through a perturbation analysis as described inti®@ed, below. Further, in the classical
spinning flow, the Newtonian kinematics of the amund the fiber is not solved locally;
instead, well consolidated correlations are useelstablish the air shear stress in Eq. (24) as
explained below.

4 ASPECTSON THE NUMERICAL SOLUTION OF THE SPINNING MODEL

In this section, the main numerical steps followedolve the isothermal spinning model
described above are presented only. A detailedrigéisn of the algorithm used here may be
found in Ottone and Deiber (2002) for the more gainease of non isothermal spinning flow.
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Thus, first a coordinate transformation is caroed by defining a new normalized coordinate
{ =rlry(2). Then a regular perturbation analysis is apple&ds. (1) and (2) and (17) to

(27) according to the scheme proposed by Hensal. €1998). For this purpose the full
model described in Section 3 may be expressedniemionless form by using appropriate
scales (Henson et al. (1998)). On this base, apgrakent variable, represented Byn the

generalized sense, is expresded i/\”P(“) = plo) +3(A), where A is the ratio between
n=0
the capillary radius and the stretching length he# filament. Consequently, in the regular
perturbation analysis, terms of ord&r and greater are neglected to introduce the slaerdsr
hypothesis. This scheme allows one to neglect oigely terms of small orders from the
balance and constitutive equations, and the boyrmarditions of the full model, described
in Section 3. For instance, the shear stnédgsin Eqg. (24) is directly reduced &', which is
evaluated from a correlation involving the frictiooefficient and the air velocity, obtained
from Eq. (27) (see Ottone and Deiber, 2000 and 2@f2details). Further, it is also shown
that7]" is of the order ofA and hence it may be neglected in Eq. (25).

The resulting isothermal model with this procedisreather simple and the stress field is
uniform in the radial direction of the filament. kointeresting is the fact that the perturbed
model thus obtained is equivalent to the averagéeindescribed by Ottone and Deiber
(2002) for the non isothermal case. Therefore slaghermal model may be expressed in the

_ or , _
matrix form x= A™(x)b where x = %ﬂi and f =%z Equationx = A™}(x) b
= 0z 0z 0z 0z =
can be solved with the appropriate initial coneiiofor velocity and stresses as reported
above. Nevertheless, in practice one may estintevalue of the axial velocityg at the

initial position of the extrusion process only. Oritinately, the initial stresses are not known
beforehand and they must be found through a nuaiet&rative process already described in
the literature (see, for instance, Papanastasial.,e1996). In the framework of cylindrical
coordinatesr and z, the iterative process consists of initializing thiscoelastic tension

componentsr ;* and 7, at z= 0. This position is placed after the maximum $wglof the
filament by taking f =10 (see also a discussion on this aspect in OttodeDaiber, 2000

and 2002). Then the system of equations describedeais solved iteratively with the fourth
order Runge-Kutta method, until one reproducesvtiiee assigned te| at z=L, with the

following convergence criterior‘\/zk(L)—vL‘/|v|_|510"6, wherek indicates the number of

axial step size used to reath Thus a two-point-boundary value problem must dieesl. It
should be observed that only one total stress,{§Z0) at the initial condition) shall be

iterated while the other is fixed with the consteatto R = rg /TFZ,Z. Further the distribution

of mode stresses here must follows one of the rdostiteria under analysis in this work.

The numerical code is written in FORTRAN languaged the axial step size is fixed at
10° m. This value is small enough to achieve appregisiathe convergence criterion
concerning the take up velocity, . Thus numerical results of rheometric and spinning

viscosities are precise enough to test the thearider consideration below.
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Finally, once the numerical solutions for axialogity and stress fields are available, one
can calculate the process extensional viscositglksvs,

. F2Z_ g p
ﬂep(gp): D (28)
&
where the process extensional rate is obtained #&nx (0v,/d2)P by using the spinning
axial velocity. Equation (28) is useful to analyzesare criteria in Section 5. In this equation

super indexp indicates “process”.
5 RESULTSAND DISCUSSION

Figure 1 shows the process elongational viscositg unction of the process elongational
rate for LDPE9 M=7, a = 0.99, {=0.013, y= 0.1) atT = 190 °C. The three criteria have

been considered when = 0.012 m /sy,= 0.006 m /s,z, = 10 cm andR=200. In this figure

two zones are clearly distinguished along the dtieg flow. One is present at high
elongational rates where numerical results areeratisensitive to closure criteria, while the
other involves the counterpart situation at lownglational rates.

5

10°

n,. (Pas)

10

0,1 | 1 | 10 | 1(|)0 | 1000
.p -1
£°(s)

Figure 1: Process elongational viscosity as a functionhef process elongational rate for LDPES. Algo=

0.012 m /s,vg= 0.006 m /s,z; = 10 cm andDR=200. Lines indicate numerical predictions with different
closure criteria: [IIMIEq. (20), -9 Eqg. (21) and-—) Eq. (22).

This melt spinning situation may be also observeBigure 2 where numerical results of
the process elongational viscosity for differeriscire criteria are depicted within the map of
the true elongational and shear viscosities. Itfognd that the values of the process
elongational viscosity obtained from the melt spagnmodel is in between the elongational
and shear rheometric viscosity curves in a rathertgange of deformation rate. This aspect
is relevant mainly to characterize rheometricathyymer melts in pure elongational flow
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Figure 2: Process elongational viscosity for different cleswriteria depicted within the map of the true
elongational (upper curve) and shear (lower cungosities. Symbols are rheometric data from Bati§2001)

for LDPE9, where full lines show the PTTM fitting&lso v.= 0.012 m /s,vg= 0.006 m /s,z; = 10 cm and
DR=200 are process variabl®ther lines indicate numerical predictions of psxelongational viscosity for
different closure criterialllIEq. (20), - Eq. (21) and{—) Eq. (22).

1,2

. . . I . .
0,00 0,02 0,04 0,06 0,08 0,10 0,12
z(m)

Figure 3: Axial velocity profile as a function of the spimee position for LDPES. Alsov, = 0.012 m /s\vg=

0.006 m /s,z| = 10 cm andDR=200. Lines indicate numerical predictions withfefiént closure criteriaI{Il}]
Eqg. (20), -9 Eq. (21) and—) Eq. (22).
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(Ottone et al., 2006) in the sense that the rheereetd process elongational viscosity curves
are numerically different although their shapes mgimilar.

Figure 3 shows the prediction of the axial velogitgfile through the isothermal spinning
model when closure criteria are used for LDPE9. Mucal results indicate that closure
criteria provide quite similar velocity profilesrfthe melt under consideration. On the other
hand, small differences on the axial velocity fiale reflected in rather important differences
of the process elongational viscosity, as illusdain Figures 1 and 2. Nevertheless, this
particular conclusion is not necessarily generdl fanther comparison with experimental data
is required. This task is being carried out atghesent for other polymer melts and spinning
velocity experimental data available in the literat The presence of wiggles in the curves of
rheometric and process elongational viscositiegufieis 1 and 2) is characteristic in results
coming from the use of spectral constitutive modalghough one expects they do not have
physical meaning, it is clear that there existemmgromised situation between predicting well
and simultaneously the apparent and elongationabmietric viscosities against obtaining
rather a smooth process elongational viscosity

5 CONCLUSIONS

Numerical results from the isothermal melt spinningdel shows that the application of
different closure criteria at the onset of the spig flow for the spectral PTTM, generates
two zones along the stretching domain: one is pteaé high elongational rates where
numerical results are rather insensitive to closecrigeria, while the other involves the
counterpart situation at low elongational ratesAit is found that the values of the process
elongational viscosity obtained from the melt spignmodel is lower that the rheometric
elongational viscosity. This aspect is relevantniyaio characterize rheometrically polymer
melts in pure elongational flow. Finally, furtheumerical studies and comparison with
experimental data of the spinning velocity and nyastresses are required to indicate which
criterion is better to assign the spectrum of sest the initial condition of the melt spinning
flow.
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