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Abstract. The approach toward the sol-gel transition maydszdbed by a basic structural parameter
that evolves to the percolation value under statinditions. In this framework, two asymptotic
responses are well identified for the gelling psscef macromolecular solutions. One involves the
initial sol viscosity that may be associated witle quilibrium viscosity value when the structural
parameter is null (the microstructure is fully beak The other is the percolation zero shear rate
viscosity and corresponds to the maximum valueéhefdtructural parameter. Under flow, thixotropic
theories allow one to convert directly experimerdata obtained as shear stress versus time for a
given shear rate into the time evolution of theuauiral parameter. Consequently rheometric
experimental data available places the search kimedic model of the structural parameter. Here, a
expression for this model is investigated comparetily, which involves both the rates of structure
breakdown and buildup, where the sizes of floccalesgoverned by the value of the shear rate. The
rate equation thus obtained may be then appliegyiirciple, to any arbitrary rate of deformation
history. Numerical results of the rheokinetic mogebposed in this work fit well experimental
rheometric data obtained in shear flow for theesallution of gelatin solutions.
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1 INTRODUCTION

The gelling process through chemical or physicaisslinking mechanisms involves a
transition from an initial sol state (associategidglly with the solvent-macromolecular
solute pair) to a gel (the percolation conditiowhere the apparent rheometric viscosity
function at near zero shear rate increases to gty values before fracture. Between these
two states, the material evolution may be sensebmietrically as a thixotropic fluid
response, in which the microstructure is destroyegthanically (breakdown process) and
simultaneously formed kinetically (build up procesas relatively higher rates than those of
conventional thixotropic materials formed by cortcate pastes and suspensions. In this
sense, it is possible to establish that all shie@ning materials are thixotropic, because a
finite time is required to produce the microstruatuarrangements that are necessary to
respond mechanically as shear thinning (Barnes/,18809).

From the continuum phenomenological point of vieme observes that thixotropy is
mainly associated with the structure breakdown lamidblup of materials tested through a
deformation history imposed, for instance, in aorhetric cell. Therefore, under flow, it is
expected an equilibrium structure formation at Idimges that depends on the appropriate
measure of the rate of deformation process. Thigsore is typically the shear rate in most
studies carried out and reported in the litera{gsee, for instance, the reviews of Bauer and
Collins, 1967, Mewis, 1979, and Barnes, 1997). é&lith thixotropy may be found in a wide
spectrum of material types (lubricating greasedlirdy mud, foodstuffs, filled polymers,
electrorheological fluids, flour-water dough, matgrmacromolecular solutions, gels, etc.) at
present it is quite evident that a common struttetaracteristic of these materials is
responsible for the thixotropic response under redtion: the state of segregation of the
particulate phase suspended in a fluids must cheorgeach value of a given measure of the
rate of deformation.

In general it is found two different types of regpes in thixotropic fluids by starting from
the full structured state. Thus one finds an ihigtastic deformation prior to yielding
followed by a viscous response (or eventually aogtastic response) during the start-up of a
constant shear flow. Further, in this process, tagerial may change from an “elastically
dominated phase” to a “viscous dominated phasesipgghus through a plastic flow quite
gradually, as described by Mujumdar et al. (2002 also possible to find some materials
where avalanche and shear localization or bandiegpeedominant phenomena; thus the
material presents both sharp solid like and shgdhind like zones (Coussot et al., 2002a-b;
Varnik et al., 2003; Roussel et al., 2004; Huangalet 2005). Therefore the predictive
expectations from a tensorial constitutive modethokotropic materials may meet several
limitations due to the complexity of the preseratestof-the-art of this subject (Beris et al.,
2008). This situation places the actual researaméwork into studying mainly simple 1-D
mechanical histories like, for instance, sequerufeshear rates (steps up and down), shear
rate loops (also designated thixotropic loops) aftters tests expressed through specific
designed time functions of shear rates, which nmelp to visualize micro-scale mechanisms
associated with the breaking (also designated eejation) and forming (or aging) structural
rate processes. Most of the constitutive equationthixotropy that applies to arbitrary shear
rate flows has been presented and tabulated by rivlgu et al. (2002), where they are
classified into two groups: (a) phenomenologicaldele and (b) structural kinetic models.
This last one may also be secondarily classifiedigst and indirect models. At present, the
indirect structural kinetic model has gained mdterdion in the literature, perhaps due to its
apparent simplicity. This model is applied to thedligg process, and it is the subject of the
present work.
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From the above framework, it is interesting to aadé here that the rheokinetics of
maturing gelatin solutions (aqueous solvent wigsdived macromolecules that reverts to the
tropocollagenic structure in a disordered state) islevant example of gelling fluid prone to
be studied as a thixotropic material in shear fl@ee, for instance, Huang and Sorensen,
1996; de Carvalho and Djabourov, 1997) in ordegdbrelevant information concerning the
microstructure evolution, mainly in the followinggects: (a) the rate of structure formation is
relatively fast and competes with the breaking esscin relatively small time intervals,
placing thus emphasis in the thixotropic responsaremthan in the asymptotic and
conventional pseudoplastic behavior manifestedafeapid structure reconstruction (Barnes,
1997), (b) the thixotropic response may be dete@ddldwing the inverse process of the
classical studies in thixotropy; thus, from thelyfulinstructured fluid toward the fully
structured material.

In this context of analysis, inferences on the keature of structure formation is also
possible mainly by following the work of Baraviahat. (1996), where a structural parameter
is evaluated from viscosity measurement (the proeeds described below). Within this
framework, we present here a computational modehé&vacterize the rheokinetic response of
the gelling process in shear flow of maturing gelablutions, based on the indirect structural
kinetic model approach proposed by Baravian gt1896) and also on the recent analyses of
thixotropic phenomena carried out by Mujumdar et (@2D02), Moller et al. (2006) and
Dullaert and Mewis (2006, 2005).

Throughout this work the sol-gel transition may 8escribed by a basic structural
parameter/~ that evolves to the percolation valdg under static conditions (when no flow
is imposed) and hence, it is convenient to define hormalized structural parameter
A=r/I, for the gelling process. Therefore, one recognim@sasymptotic responses of the
gelation process of macromolecular solutions. @welves the initial sol viscosity that may
be associated with the equilibrium viscosity valgg when the normalized structural
parameterA is null (the microstructure is fully broken). Tlther is the percolation zero
shear rate viscosity), at y - 0 and corresponds tol =1, with 77, — o« (Winter and
Chambon, 1986). These definitions allow one to eohdirectly experimental data obtained
as shear stress versus titnfer a given rate of deformation history into theokition of the
structural parameteA(t s described below. Consequently the experimelatial available
through A(t ) places the search for a kinetic expressitf) = g(A, ) of )the normalized
structural parameter, whengt i9 the shear rate function, describing the shat@ history

(typically a sequence of shear rate steps). The eguation thus obtained may be then
applied, in principle, to any arbitrary rate of dehation history. Here we investigate
computationally an expression f@(A,y , hvolving both the rates of structure breakdown

and buildup, where the size of floccules are goserhy the shear rate value (see also de
Carvalho and Djabourov 1997).

2 MODELLING THE GELLING PROCESSFROM THIXOTROPY
2.1 Onthestructural parameter

Within the framework of thixotropy, the knowledgé the structural kinetic equation
A=g(A,p) is relevant because it allows one to predict theas stress from an arbitrary
mechanical history. Nevertheless, the determinatibthe function g(A, y )through basic
rheometric data is not a simple task. From theyamalof the literature and taking several

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



978 M.L. OTTONE, M.B. PEIROTTI, J.A. DEIBER

basic studies for different thixotropic systems (Mioet al., 2006), we propose here a quite
general equation described as follows,

A=Y(P)A- 1)V A - X () (1)

where X(p) is the breakdown function satisfying (0) - . Blso, Y(y) is usually found to

be a kinetic constant, here designakgd and q(y) >0 (constrained t@(0) = )lis associated
with the kinetic order of the build up process, evhis proportional to the distance from the
actual structural statd to the percolation staté =1, where one expects to find an infinitely
high asymptotic apparent viscosity=7/y at null shear rate, defined as the ratio between
shear stresg and shear ratg. Also it is frequently assumed that the breakd@naotess is

proportional to the amount of structure formed @spnt time. In Eqg. (1)¢ is a constant
close to one, although in some gelling matecialO is required because the initial increase of
the normalized structural parameter is rapid. Ooecluides that in shear flow} evolves
through two basic mechanisms, one involves the grwf microstructure, which is mainly
concerned with attractive forces and the partiogmaodf the associated Brownian force, and
the other considers the breakdown of microstrudyrenechanical forces (here in particular
that caused by shear rate). Most of the struckiratic equations proposed in the literature
may be derived from Eq. (1) by selecting appropreatpressions foX (y ,)Y(y) andq(y ).

For the particular cas¢ —» ,@vith q(0) =1 and c =0, the normalized structural parameter
satisfies,

A =1-expEkot), )

which is able to describe the approach toward tleyal transition as the maturation time
increases.
It is then clear thaty — (s the strict condition to approach the transitemi-gel, and

hence one infers that fgrz the two right hand terms of Eg. (1) survives, thasallowing

the material to reach the percolation poidt { 1). Here one expects to find a suspending
phase composed by growing floccules of the macreoutés dissolved in the solvent. This
phase has an equilibrium state value of the stracparameterl, described by the condition

g(A,y) =0. Consequently from Eq. (1) and in particular &fy) =1 andc=0, it is found,

Y
Y+X

3)

e ™

where, A, is a decreasing function of shear rate. Once ifione a different point of view Eq.
(3) demonstrates that the percolation point isead only fory —» 0
Since q(y ) is an increasing function of shear rate in genetta value A, shall be

determined numerically because the functions asduabeve to obtain analytic expressions
are usually too simple for practical applicatioalshough they are qualitatively correct.

An analytic solution of Eq. (1), fo¥(y) =k,, X () =k’®, q(y) =1 and c =0, may be
readily obtained,

A = Ae{l-expl-(ky + kyyP)t]} (4)

This equation shows simply that=A, and A =0 for t -~ «© andt —» Q respectively, as
one would expect physically following the concepisntioned above. More generally, due to
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nonlinear terms, one needs a numerical solutigheofull structural kinetic equation (Eqg. (1))
for applications of this theory to gelling fluids.

2.2 Ontheconstitutive model for shear stress

Within the context of the indirect structural kimemodelling of thixotropy for gelling
solutions, the relation between shear stress aedrstate and the normalized structural
parameter has been formulated through differentesgons in the literature, which are not
necessarily equivalent. Thus, one may start byideriag that the apparent viscosity function
for a given constant temperature is a functiorheffull set of mechanical variables for a quite
generalized thixotropic fluid,

n=n(y),yt.0,A ). pi) (5)

where p(t) is the shear rate history(t',t i9 the shear deformation between preset tiared
any a generic timg, A(t, y) is the normalized structural parameter evolutmmtifie applying
shear rate history ang; (i= 1...n) is a set ofn physical parameters. In this context of the
analysis it is usually proposed,

r=1,A+Ky"(1- 1) (6)

where 7 is the classical yield stress. Thus by introduding structural parameter into the

Bingham-Herschel-Bulkley equation type one is ableonciliate thixotropy with yielding
fluids (Moller, et al., 2006). Further, Mujumdar at (2002) introduced a smooth transition
from solid-like to fluid-like by expressing,

T =Gy A+ Ky"@d- 1)) (7)

with the constrainty, (t,t) < y.A(t, )¢, otherwise only the pure fluid response survives
clear that in this equatio®y, is the elastic response mainly for high valuethefstructural

parameter, which for classical thixotropic fluids unity at the initial time. It should be
observed that this situation is the opposite to ddhe gelling process, which starts from the
null structural parameter.

An interesting particular case of Eq. (5) is togider the following expression,

r=n(At.y).m)y (8)

Within this model, one finds the relation propodsdBaravian et al. (1996) indicating that
the normalized structural parameter is relatechtoapparent viscosity function through the
following expression,

A=@- M=y 9)
n
where,
K =@ |T=) (10)
Mo

For gelling solutions at a shear rate asymptoycalll (y - 0) the conditionA =1 is
achieved and henog, - c at the percolation point. Also, at the initial &nthe sol viscosity
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ns is that corresponding to the equilibrium viscoskglue 77, when A =0 (the

microstructure is fully broken and no maturatiors lh@en effective yet). Thus, from Egs. (9)
and (10) the normalized structural parameter is,

A=(1- %), K =1 (11)

Consequently the only physical parameter used isetlee viscosity of the macromolecular
solution, p; =7. Far from the elastic response of the maturingtgwi, and at shear stress
above the yield point, one can assume that theriakig evolving in the rheometric cell as
being mainly an inelastic thixotropic fluid, whetiee fluid like response covers the whole
flow domain (slip and shearing banding are exclude®, for instance, Moller et al., 2006,
and Baudez and Coussot, 2004). For the inelagtiottbpic fluid, the above theory applies
and one readily gets,

NA® ), Br) =15 1L-A(7,1) (12)

Other constitutive models for the indirect struatukinetic equation may be found in
Mujumdar et al. (2002).

2.3 Onthenumerical solution of the model proposed

The model proposed here for the shear stress respdrgelling macromolecular solution
is composed of Egs. (1), (8) and (12) having ERatd (3) as the asymptotic responses for
zero and high values of shear rates, respectigaigtly valid for g =1 andc=0. Conversely,
experimental information concerning the structysatameter is obtained through Eq. (11)
when data of the apparent viscosity from the rhaomeell are available. Consequently the
numerical prediction ofd through Eqg (1) must fit experimental data providgdEq. (11).
The numerical code generated for this purpose radgdilowing steps: (1) Expressions for
X(y), Y(y) and q(y ) are selected by following the trend of preliminaggults and studies
(see following section). (2) Then Eqg. (1) is writt finite differences and the simple Euler
type subroutine is introduced to seek solutioh,y for) sudden inceptions of different
constant shear rates. Also the Runge-Kutta alguorithf fourth order is introduced to
crosscheck invariance of numerical results in i@teto time step sizes (of the order of*1%)
with a quite exigent convergence criterion (relatarror between methods lower thar*)L0
(3) Numerical results obtained for are compared with experimental values reportettieat
same shear rate step through Eq. (11). This proeeadiows one to fix and evaluate physical
parameters and constants of the selected funcfidvesfitting process follows several simple
rules. For instancey (y) = k, is estimated from the slope of the cut¥eas a function of time

for t=0 as indicated by Eq. (1) witid(0) =0. Further, X(y ) Y(y) and q(y ) controls the
asymptotic valueA, observed in the experimental data, as indicateglitgtively by the
analytic version ofd (Eq. (3)) forc=0 andq=1. It is then clear that increasing the shear, rate
g(y) increases and, decreases toward a lower equilibrium value wigmeller equilibrated

cluster size on the average (see also below). i@nFsteps (1) to (3) the structural kinetic
equation (Eq. (1)) is fully determined (functiar(A,y i9 known now); hence the model is

able, in principle, to predict the apparent visgofiinction for any shear rate histopft by

using the same algorithms described above with ftimeetions and parameters already
evaluated in steps (1) to (3). In particular, belwe present numerical studies carried out for
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different sequences of three increasing and deageateps of shear rates, to study the effect
on the model of discontinuities in the shear rat@gion, which on the basis of these results
requires reformulation of initial conditions afteach shear rate jumps. Also numerical
predictions are compared with experimental datanted by de Carvalho and Djabourov
(1997) and discussed in relation to Huang and Serer{1996) results involving gelling
gelatin solutions.

3 ANALYSISAND DISCUSSION OF RESULTS

Figure 1 (a and b) shows that the rheokinetic mpdebosed here fits well experimental
data of the structural parameter for a sequentiereé decreasing (a) and increasing (b) steps
of shear rates. Here we used experimental data dtantaboratory of the apparent viscosity
function (see Section 2.2) concerning the matunatid gelatin solutions with 6.66 % in
protein (Bloom 266 g; the gelatin was obtained frioavine hide). Tests were carried out at
26 °C. In this figure one finds a good agreemerntwvéen model and experimental data.
Nevertheless, after each sudden shear rate chiamgegecessary to re-initialize the structural
parameterA to follows the correct track of the maturation kexion. This last result has two
relevant conclusions. One of them indicates tlatpfir gelatin solutions, reversibility is not
satisfied because the re-initialization af cannot be imposed from the known family of
curves at different shear rates (from 76 to 418nsthis case) used to define the parameters
and functions of the model (see caption of Figyre 1
For more dilute gelatin solutions of around 3% &tjal source was bone) Huang and Sorensen
(1996) showed that the reversibility condition wapproximately satisfied. The other
conclusion is that, the structural kinetic equati(lag. (1)) can handle appropriately
continuous mechanical histories only.

Further, experimental data of the apparent visgdaiiction concerning the maturation of
gelatine solutions at different constant shearsragported by de Carvalho and Djabourov
(1997) were fitted well, thus validating the moghebposed here (results to be published).
These authors used gelatin solutions 6.5 % in préBloom 256 g; the gelatine was obtained
from bones with photographic grade) and tests wanged out at 26 °C.

In addition, by considering the quenching of tedligg process, it is worth to observe that
for a given value of the normalized structural paeter, the projection of the apparent
viscosity function (Eqg. (12)) into a macroscopigidl model, like for instance the Bingham
fluid, may be expressed as follows:

Ns 1A= A(y,1))? =1, (A)] p(1) +11 (13)

Figure 2 depicts numerical results obtained fraqm (#3) for the gelatin solution described
in the caption of Figure 1. Thus, for a constareasirate, the yield stress, (1) becomes

higher as the gelling time increases, due to tleevr of microstructure. Further, (1 5

higher at any fixed value of gelling time when @@nstant gelling shear rate is increased,
indicating that a smaller average diameter of flbes is generated at the higher shear rates.
Thus a more effective structural packing is obtdin is clear that these results are valid

when a suspension of clusters is formed at religtivigh values of shear rates, far from the

network formation approaching the percolation point

Copyright © 2008 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



982

0,8

0,6

0,4

0,2

0,0

0.6+

04

0,2

0,0

M.L. OTTONE, M.B. PEIROTTI, J.A. DEIBER

y= 418-209-106 %

0 600 1200

t (s)

y = 106-209-419'%

| |
0 600 1200

t(s)

1800

Figure 1. Structural parameted as a function of maturation timtidor a sequence of shear rate steps, down (a)
and up (b). Symbols are experimental data as iteticén the text. Full lines are the rheokinetic mlod

predictions with re-initialization of the structlgzarameterA after each shear rate jump and %¢)) = k yp ,

1

q(y) = (1.788+0.0145) %, Y(y) =ky =10~ 3 &7, k =10 °s'"P p=13c=0.
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Figure 2: Yield stress as a function of gelling time fornstant shear rates. Full lines are the numerical

predictions with Eq. (13). The structural parametér is obtained from Eq. (1) withX(y)=klyp,

q(y) = (1.788+0.0145)*°, Y() =ky =10 3 s, k =10 9¢1*P p=13,c=0.

4 CONCLUSIONS

Numerical results of the rheokinetic model propoketk fit well experimental rheomeric
data obtained in shear flow for the sol evolutidrgelatin solutions. Different steps of shear
rates are required for a consistent evaluation ashupeters and functions included in the
structural kinetic equation. Other shear rate fionst, like for instance, sequences of step
shear rates, up and down, describe the complekitigixotropic phenomena associated with
the gelling of gelatin solutions. Predictions imggal indicate the progresses and limitations
of modeling the rheokinetic gelling phenomenon,ureqg more accurate rheological
constitutive models at present.
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