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Abstract. Mechanical behaviour of geomaterials have high complexity and variability, witch have 
been reported a large number of constitutive models, depending on different mathematical 
idealizations. 
The pressure dependent elasto-plastic models are considered as the most appropriate representations 
this behaviour because of the existence of inelastic deformation  of the materials subjected to shear 
stress or/and volumetric pressure. Because  the mathematical complexities this models, such as 
nonlinear elastic law and work plastic dissipation dependent hardening/softening law, resulting from 
the complex nature implementation is not trivial.  
This paper present an elastic-plastic model for unsaturated soils within the regime of finite 
deformation based in an extension of model’s of Macari, Runesson and Sture originally devised by 
Lade et al. (MRS-Lade). An overall implicit return method for non-associative elastic-plastic model of 
geomaterials is presented within the regime of large strains. The mathematical model formulated in the 
framework of additive elastic-plastic decomposition of the rate deformation tensor is briefly 
summarized. Representative numerical simulation was performed under axial symmetric compression 
conditions and the results of the simulations are discussed to assess the performance of the unsaturated 
soils model. 
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1 INTRODUCTION 
In the last years, several models were implemented for geomaterials formulated for the 

case of small deformations and more recently elastoplastics models was applied in finite 
deformations to approaches of  failure surface type Cam-clay carried out by  Simo and 
Meshke (1993) and and Meschke et al.(1996).  In this work the implementation of an 
elastoplastic model is presented for frictional cohesive materials into the finite deformations 
with development of a total implicit integration.   

In the finite deformation regime the rate of deformation tensord  is decomposed into an 
elastic part ed  and plastic part pd  by means of the additive decomposition: pe ddd += . The 
stress response is obtained by virtue of the hipoelastic constitutive relation, where the 
components of the rate stress tensor are lineal functions of the components of the rate of 
deformation tensor Garino (1993).   

In the specific model under consideration, the elastic domain is assumed to be defined 
by: 0<′ s)κ,,f(σ , 0=′ s)κ,,f(σ   determines a convex failure surface in the stress space.   

2 CONSTITUTIVE MODEL 

2.2 In the original configuration    
The gradient of deformation:   

 
X
x

∂
∂

=F  (1)             

The Green Lagrange tensor:   I)(CE −=
2
1            (2) 

The symmetric right Cauchy-Green tensor:   

 FFC T=   (3)   

   Pe EEE +=                        (4)   

The material is defined as hipoelastic, where the components of the rate stress tensor are 
lineal functions of the components of the rate strain tensor.   

The “constitutive” second Piola-Kirchhoff stress tensor:    

 E : D S && =′       (5) 

Where,   D   is the tangent elasticity module in the original configuration.  

2.2 In the current configuration 
The space expression or eulerian:   

 pe eee +=         (6)   

Where )b(Ie -1−=
2
1    (7)   
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is the Almansy strain tensor, and  

 
T

FFb =         (8)   

 is the Left Cauchy-Green tensor.   
The “constitutive” Cauchy stress tensor comes given for:   

  S σ ′=′ *J
φ1  (9)   

Where, *φ   is the  push-forward transformations  therefore it will be:   

 TFSFσ
J
1 =′  (10)   

 Sσ ′=′ && *
1 φ
J

 (11) 

The rate of deformation tensor: 

 Eed &
*v 2

1)(L φ==  (12) 

 pe ddd +=  (13)  

In eq. (13) pe dd , are the elastic part and plastic part of the rate of deformation tensor, 
respectively 

 
σ

dp

∂
∂

=
gλ&  (14) 

 σp md λ&=   (15) 

where 
σ

mσ

∂
∂

=
g   is the gradient of the plastic potential function. 

The material is defined as hipoelastic, where the components of the rate stress tensor are 
lineal functions of the components of the rate of deformation tensor.   

 )pe d(d:aσ −=′&  (16) 

  ae , is the tangent elasticity module in the current configuration obtained way push-forward 
transformation      

 D ae
*φJ=  (17) 

Following Weihe (1990), the flow rule can be formulated in terms of the space of sub-
differentials representing a fan of admissible normal at each corner of the composite failure 
surface: 

  { } ( ) { }{ }s,κ,B,0a:|aκ,,s, λoλ && dσσσdσ o ∈′∀≥′−′=′∂ f             (18) 

The non-associated flow rule-based general constitutive equations for partially saturated 
soils can, therefore, be expressed as: 
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 )pe d(d:aσ −=′&  (19) 

)κ,s(,0:)( &d,σd:Aσσ p Boo ∈′∀≥′−′        (20) 

 ( )pdhκ =&  (21) 

The variation form of the non-associated flow rule can be reformulated using its rate form 
and the Kuhn-Tucker conditions, an identical form to the one for small deformation theory:   

 00),,(0 =≤′≥ λκλ && fsf σ                (22)  

3 CONSTITUTIVE STRESS    

3.1 In the original configuration   
Throughout this paper, we shall adopt Bishop´s (1959) stress tensor decomposition based 

on constitutive stresses.The partially saturated soils are generally described in terms of the 
“constitutive” second Piola-Kirchhoff stress tensor, and following Borja et al.(1997) comes 
given for:   

 1
n

1
w CSCpSS −− +=−=′ s&&&&&                (23) 

 )( wa pps −=        (24)   

 1CSS −−= an p         (25)   

thereby s  is the matrix soil suction, nS   the second Piola-Kirchhoff net stress tensor, S   the 
second Piola-Kirchhoff  total stress tensor , C  symmetric right Cauchy-Green tensor, pa ,  pw  
the pore air and the  pore water pressure, respectively.    

3.2 The consistency condition   
In the case of partially saturated soils the consistency condition during plastic loading, in 

the original configuration, comes given for:   

    0κ
κ

s
s

=
∂
∂

+
∂
∂

+′
′∂

∂
= &&&& ff:ff S

S
     (26)   

Where f  is the yield function defined as function of the three invariant of stress. The model 
used is MRS-Lade proposed by Sture et al.(1989), and extended to unsaturated soil by 
Schiava (2001). 
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 ( )pE&& hκ =  (30) 

As compared to the consistency condition of classical elastoplastic models, eq (27) has an 
additional term sns

i & related with the evolution of the suction and the gradient of the yield 
surface with respect to the suction. 

Now, the constitutive equation:  

 ( )pEE:DE:DS &&&& −==′ e   (31) 

 ⎟
⎠
⎞

⎜
⎝
⎛

′∂
∂

λ=
S

Ep

&
&& g  (32) 
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Is the gradient de yield potential function respect to “constitutive” second Piola-Kirchhoff 
stress tensor. For non associative yield rule is: S1S n:Am ′−′ = . For associative flow rule  

IA = . Where I    is unit fourth order tensor  
The flow rule is: 

 ∑ ′=′
U

i

S
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p mE iλ&&  (34)  

 0≥λ i
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 0λfi =i&  (36)    

Replacing in the eq. (26), the expression of the plastic multiplier λ&  can be obtained as:   
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Substituting   the expression of second constitutive P-K tensor:   
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We obtain the evolution of the total second P-K stress tensor 
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3.3  In the current configuration   
The stress state is described for partially saturated soils as: 

 IσIσσ
J
s

J
pW &

&
&

&& +=−=′ n  (40) 

Mecánica Computacional Vol XXVII, págs. 985-992 (2008) 989

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



thereby σ′  is the “constitutive” Cauchy stress tensor and ( )FdetJ =  is the Jacobian of the 
solid phase motion. 

In case of partially saturated soil, the consistent condition take the form: 

 0κ
κ
fs

s
f:ff =
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∂

+
∂
∂

+′
′∂

∂
= &&&& σ

σ
 (41) 
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The expression of the plastic multiplierλ&  can be obtained as:   
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The “constitutive” Cauchy stress tensor comes given for: 
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We obtain the evolution of the total Cauchy stress tensor: 
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4 YIELD CONDITION 
The yield condition, is defined in terms of the first invariant of the effective stress 

tensor p , of the second and third invariant of the deviatoric stress tensor q  and θ , 
respectively, and of the hardening/softening variables in the cone region coneκ . Defining the 
effective pressure in terms of the net mean stress np  and the suction s  the generic shape of 
the cone takes the form: 
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Thereby 

n1I  is the first invariant of the net stress tensor and D2J  and DJ3 the second and 
third invariants of the deviatoric stress tensor, respectively. Finally, ( )θg  is the Willam and 
Warnke factor which assures a continuous and smooth variation of the shear strength in the 
deviatoric plane as long as the so-called eccentricity parameter e fulfills the condition 

1e
2
1

≤< . In the present formulation the plastic potential function in the cone regime is 

defined in the form: 

 0)psp(}{κηns},θ,qf{.}κ,s,θ,q,{p cconeconecononcone =−+−=g  (52) 

where n is a scalar parameter.  For a more elaborate description of the model, see Schiava 
and Etse (2006). 

5  NUMERICAL SIMULATION   
  The model predictions of the failure response behaviour of unsaturated soils are analyzed 

for the uniaxial compression test, implementing the model in program of finite elements.   
In the numeric simulation of axial symmetric test, the structure was model by means of a 
homogeneous quadrilaterals element of four nodes, applying vertical displacements in the top 
nodes.   In the Figure 1 the answer is observed that is obtained with the extended of MRS-
Lade model for small deformations and the model implemented for finite deformations. It is 
deduced that the influence on the level stress increases in finite deformations for increment 
suction values.   

6 CONCLUSIONS  
An elastoplastic constitutive model for unsaturated soils is proposed in finite deformations 

regime, it is considered the decomposition additive of the rate of deformation tensor and 
defined the material as hipoelastic where the components of the rate stress tensor are lineal 
functions of the components of the rate of deformation tensor.  The simulation of the axial 
compression test showed the influence on the level stress increases in finite deformations for 
the increment suction values. 
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Figure 1. Uniaxial compression case 
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