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Abstract. Starting from the mathematical structure and kinematic framework of the Arruda-
Boyce viscoplastic model, a great variety of ideas can be tested to develop advanced 
constitutive models for polymers, biomaterials and soft tissues. Moreover, the primitive Arruda-
Boyce constitutive model has been the cornerstone for the development of quite sophisticated 
models to reproduce large-strain mechanical behavior of polymers and soft biological tissues.  
However, it is noteworthy that it is still impossible to find a scientific article (or book) providing 
a detailed description of explicit or implicit integration schemes for this constitutive model. In 
fact, it is quite difficult to find numerical implementations of any unified viscoplastic model. 
For that reason, the authors present in this article two simple integration algorithms for the 
Arruda-Boyce viscoplastic model, one them explicit and the other one implicit.  
The development of this algorithms required a thorough bibliographical review, searching and 
collecting the most convenient numerical strategies, revision of standard numerical practices 
(and eventually their avoidance) and of course the inclusion of the own ideas of the authors. The 
final result is a meticulous combination of elements which were carefully assembled into two 
numerical material routines, which up to the present date, have worked satisfactorily with all the 
finite element analyses carried out by the authors. 
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1 INTRODUCTION 

1.1 Alternatives for the numerical implementation of Unified Viscoplastic models 
The Arruda-Boyce constitutive model does not have a yield function like classical 

elastoplastic and viscoplastic constitutive models. With this formulation, elastic and 
inelastic deformations occur for every loading stage; therefore, the Arruda-Boyce 
constitutive model can be classified as a “unified viscoplastic model”. Probably, the 
best known unified viscoplastic model is the Bodner-Partom model (Bodner and Partom 
1975). This kind of models attempt to remove distinction between plasticity, creep, 
relaxation and viscous effect. Unified viscoplasticity should not be confused with 
“overstress viscoplasticity” (Perzyna’s viscoplasticity). In Addition, the Arruda-Boyce 
constitutive model uses what some authors call a “Total-Lagrangian-Hencky” 
formulation or just TLH formulation (see Bathe 1996). In plain terms a TLH 
formulation means the following: there is a rate of plastic deformation but there is NO 
stress rate, the kinematic formulation is based on the multiplicative decomposition of 
the elastic and inelastic deformation gradients and the total stress is computed from the 
elastic “Hencky” strain measure (the logarithmic strain measure). 

Unlike classical rate independent plasticity, there are not many works undertaking 
the numerical implementation of unified viscoplastic models as a central topic. An 
intense bibliographical revision has been carried out by the authors in the search of 
“similar” constitutive models (most of them for metals) and their numerical 
implementations. The result of this search brought up the different alternatives for their 
numerical implementation and the concern about additional numerical problems that 
might be found in this type of constitutive models. There are five basic possibilities for 
the numerical implementation of unified viscoplastic models: 

1. Explicit Runge-Kutta schemes in combination with automatic time-stepping 
algorithms. These algorithms are very accurate, however, they must include a 
non-negligible “control” computational cost to work properly. Specifically, the 
numerical results obtained with these integration schemes is usually compared 
with an even more accurate solution, which is usually computed using “step 
doubling”. See for instance Zirky 1994. 

2. Explicit Embedded Runge-Kutta schemes in combination with automatic 
time-stepping algorithms. This kind of integration schemes include two 
solutions of different accuracy order within their mathematical structure, 
consequently, control and qualification of the numerical solution obtained with 
these integration schemes has a very low computational cost. See for instance 
Arya 1996 and Fritzen and Wittekindt 1997. 

3. Generalized Backward Euler Methods. In these kind of schemes, the 
continuous evolution problem is transformed into a set of n non-linear scalar 
equations with n unknowns which are solved using a Newton-Raphson 
procedure. The number of unknowns is usually 18n =  or 12n = , occasionally, it 
can be reduced to 6n = . Application of these schemes to unified viscoplasticity 
can be found on Saleeb 2000 and Tang 2007. Only a pithy coverage of these 
schemes for classical elasto-plasticity can be found on the section “General 
return mapping algorithms” of Simo and Hughes 1998. 

4. Reduced Backward Euler methods. This kind of algorithms include an 
important number of assumptions and simplifications, some of this 
simplifications have their roots in geometric considerations, and feature the 
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reduction of the integration scheme to the solution of 1 (at most 2) nonlinear 
scalar equations. This kind of integration schemes are the traditional approach 
used in classical rate-independent elastoplasticity. 
Application of these schemes to unified viscoplasticity can be found in Weber 
and Anand 1990, Lush et. al. 1989 and Sansour 1997. 

5. High order Backward differentiation formulas (BDF). Backward 
differentiation formulas were specifically created to deal with “stiff” 
initial value problems. This kind of algorithms are not self starting and use 
information from previous time increments. Application of these schemes to 
unified viscoplasticity can be found in Kirchner and Simeon 1999 and 
Bergström 2006. 
The Generalized Backward Euler method is a Backward differentiation formula 
of order 1 (known as BDF1). It is a particular case which is self-starting and 
does not use information from previous increments. 

Without claiming completeness nor top relevance of the previous record of articles, 
the reader can appreciate that this partial list of citations is quite small. This fact reflects 
the actual scarcity of scientific literature covering this particular topic. It is important to 
mention that only Weber and Anand 1990 and Sansour 1997 report numerical 
procedures specifically created for models with TLH formulations. It also noteworthy 
that; with the exception of Tang 2007 and Bergström 2006; none of this works is related 
to polymeric materials. 

1.2 Contents, aims, motivations and main focus of this article  
Two simple numerical implementations for the Arruda-Boyce constitutive model are 

presented in this article, one of them explicit and the other one implicit: 
 A second-order accurate embedded Runge-Kutta integration scheme, which 

works in combination with an automatic time-stepping algorithm. This 
integration algorithm  belongs to the type 2 of the previous list. 

 A Reduced Backward Euler scheme, featuring the reduction of the integration 
procedure to the solution of a system of 2 non-linear scalar equations. This 
algorithm  belongs to the type 4 of the previous list classifying integration 
algorithms. In practice, this numerical implementation was not coded as a “fixed 
backward Euler method” but rather as a “generalized midpoint rule” allowing to 
use a variable θ , obtaining: a fully implicit integration scheme (Backward Euler 
method) for 1θ = , midpoint rule for 1 2θ =  and any intermediate 
unconditionally stable scheme for  0 5 1. θ< < . This algorithm is mostly inspired 
in the ideas found in Eterovic and Bathe 1990 and Weber and Anand 1990. 

The main purpose of this article is to just present some “numerical procedures”, 
which in the “subjective” experience of the authors have worked very well. The 
procedures are not analyzed in the “strict framework of numerical analysis”, 
consequently, the presentation is quite technical. However, the authors attempted to 
provide the reasoning and the theoretical details underlying the development of these 
numerical procedures in order to give the reader insights into the potentialities and 
limitations of the ideas proposed in this article. 

To be consistent with the idea of a “technical exposition”, in all the cases, the authors 
tried to report with maximum simplicity and detail the recommended tolerances for 
residuals, criteria for the size the perturbation, choices of the order and type of 
approximants, initial guesses for iterative procedures, safeguard precautions and other 
important information of major pragmatic relevance. 
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It can be inferred that this article is twofold: it can be regarded collection of ideas 
and numerical practices or as two numerical implementations ready to be duplicated and 
used. 

Computation of square roots, logarithms and exponentials of second order tensors 
constitute a non-negligible computational cost in the numerical implementation of 
constitutive models with TLH formulations. In order to reduce the computational cost of 
these numerical computations (which are pervasive in the numerical implementation of 
this kind of constitutive models) an appropriate methodology is presented in section 2.2. 
Some considerations were taken separately for the explicit and implicit integration 
schemes. 

Both integration schemes where combined with a numerically obtained algorithmic 
tangent stiffness matrix. This strategy, provides great flexibility, since modifications of 
the integration algorithm or constitutive model only require minor modifications (or no 
one at all) of the subroutine that computes the tangent stiffness matrix. The details and 
practical considerations about the technique used to perturbate the deformation gradient 
are given in detail. 

The main reason for building an explicit integration schemes is that they are very 
appealing in the context of research and development of constitutive models. Usually, 
the synthesis of a new constitutive model is finally accomplished after thorough 
numerical implementation and evaluation of many trial ideas. In this process in which 
trial ideas are constantly evaluated (and consequently accepted or discarded) it may not 
be necessary (or it may be impractical) to build a fully implicit integration scheme. In 
addition, explicit integration schemes (for the material routine) are quite well suited for 
Explicit (dynamic) finite element codes. With this purposes in mind, an efficient 
explicit integration scheme is presented in this article. 

The major disadvantage of most explicit integration schemes is that they usually turn 
to be quite inefficient in “Standard” finite element codes. For instance, according to 
Arya 1996 and Saleeb 2000, between 10,000 and 100,000 increments are required to 
simulate mildly sophisticated uniaxial tests such as creep, cyclic loading or half-cycle 
loading (loading and unloading) when explicit integration algorithms are used for 
unified viscoplastic models. 

As a starting point, the authors attempted the application of the time-stepping 
algorithms in the style of those proposed in Arya 1996, Zirky 1994, Fritzen and 
Wittekindt 1997 or Press 1992; which in essence, they are all equivalent since they are 
all based on the same idea. Application of those time-stepping algorithms to the Arruda-
Boyce constitutive model did not produce satisfactory results. One of the reasons why 
the authors qualify those results as unsatisfactory is that too many increments were 
required to simulate simple uniaxial tests. However, the low efficiency of those time-
stepping algorithms is just anecdotic; the most important point to be reported is that 
only a few finite element simulations could be completed; most of them were 
interrupted by the global finite element solver as a consequence of poor numerical 
stability or the requirement of deliberately small time increments. Consequently, the 
authors rejected those time-stepping algorithms and proceeded to define their own. As a 
result, the authors found that slight modification in the time-stepping algorithms 
proposed in those works improves significantly the computational efficiency of explicit 
integration schemes and still provide more stable solutions. The details of the time-
stepping algorithm proposed in this article can be found on section 3.3. 

On the other hand, a Reduced Backward Euler scheme is presented in this article. 
The underlying assumption of this kind of integration schemes is that the whole time-
evolution problem can be reduced to the determination of a few relevant “invariants” 
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capable to capture the essential nature of the evolving system. In this kind of integration 
schemes it is still necessary to solve a system of non-linear equations, however, it is 
obvious that solving a system of 2n =  is much cheaper than solving a system of  
or  as its necessary with Generalized Backward Euler Methods, see 

12n =
18n = Saleeb 2000. 

The Reduced Backward Euler scheme presented in this article is supposed to be 
computationally cheaper than a Generalized Back Euler Method and yet unconditionally 
stable. However, in some publications (see for instance Arya 1996 or Weber and Anand 
1990) it is suggested that unified viscoplastic constitutive models lead to a stiff system 
of ordinary differential equations governing the evolution of the inelastic deformations. 
Consequently, as the Generalized Back Euler (BDF1) can deal successfully with “stiff” 
initial value problems, it may be regarded as safer choice than a reduced Backward 
Euler method. Anyway, it is unclear if its really necessary (or imperative) to build a 
Generalized Backward Euler numerical implementation for the Arruda-Boyce 
constitutive model. The authors made no attempt to determine if there is stiff behavior 
(existence of significant disparity between the “principal” time rates of the initial value 
problem) in the Arruda-Boyce constitutive model using any theoretical device such as 
“conditioning numbers” or “stiffness ratios” as it has been done in Zirky 1994 for a 
different constitutive model . 

Both numerical implementations (the explicit and the implicit one) were coded as 
UMAT subroutines for the finite element software ABAQUS-STANDARD. 

1.3 Formulas of the modified Arruda-Boyce constitutive model and Notation 

 
The modified Arruda-Boyce constitutive model 

 
The total Cauchy Stress (stress of the elastic network) at the intermediate 

configuration is calculated using the elastic relationship: 

 [ ]1 12
3

e e e eT dev E k tr E
J

μ⎛ ⎞⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ ⋅⎜ ⎟⎣ ⎦⎝ ⎠
1  (1) 

Where 

 ( )eE ln U= e  (2) 

 ( ) ( )eJ = det F det F=  (3) 

The total Kirchhoff stress at the intermediate configuration is just: 

 J Tσ = ⋅  (4) 

The stress in the Hyperelastic element is computed as follows:  

 ( ) ( ), , ,B B L L i p i L i
lock G lockE f devσ σ μ λ μ λ λ B⎡ ⎤= = ⋅ ⋅ ⎣ ⎦  (5) 

Where 

 i i iTB F F= ⋅  (6) 
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And the inverse Langevín function ( )1L− i  is approximated as follows: 

 ( )
2

1
21

A Bx⎛ ⎞+

C = −⎩

(9) 

The continuity, differentiability, exact (analytical) “in
fac

 at the intermediate configuration is defined as 
llows: 

 

L x x
Cx

− ≅ ⎜ ⎟
+⎝ ⎠

    with  = -1.14365108190676B  ⎪
⎨
⎪

 
= 2.99248834685337  A ⎧

1 

tegrability”, accuracy  and the 
t that it’s not a function by parts, make this approximation very appealing in a 

computational setting. 
The rate of inelastic deformations

fo

( )i i vp id d Nσ γ= = ⋅�  (10) 

Where the stress driving the viscoplastic flow is the f
at

ollowing (the notation implies 
th  vpσ  is a deviatoric stress tensor): 

( ) [ ]2vp B e e Bdev dev Eσ σ σ μ= − =

The magnitude of the rate of viscoplastic deformation is defined by: 

 

σ⋅ −  (11) 

0
i exp

base

τγ γ ⎛ ⎞= ⋅ ⎜ ⎟� �  
τ⎝ ⎠

(12) 

vp

F
τ σ=  (13) 

sor The direction in which the inelastic flow occurs is given by the normalized ten
N , which is basically the direction of the deviatoric stress tensor vpσ : 

vp vp

vp

F

N σ σ
τσ

= =  ( 14) 

2 GE

2.1 Th
The “incremental prob

“unknowns” to be comp ): 

NERAL CONSIDERATIONS FOR BOTH KINDS OF ALGORITHMS 

e stress update task in non-linear solid mechanics 
lem” can be summarized in terms of “given data” and 

uted as follows (see Bathe 1996
Given for the integration point χ : the stre  at the beginning of the time 
increment, the initial deformation

ss
radients 

 tT
 g { }0 0 0, ,t t e t iF F F , t

n

he value of all the 
internal state variables at the beginning of the time increment 

( ), ,...,t t t t
1 2ξ ξ ξ ξ=  and the total deformation gradient at the end of the time 
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increment 0
t tF+Δ ; calculate (update) at time t t+Δ  the triad { }0 0

t t t t e t t iT , F , F+Δ +Δ +Δ , 

all the internal state variables ( )1 2, ,...,t t t t t
n

t t tξ ξ ξ ξΔ +Δ +Δ  and provide the +Δ +=
continuum tangent stiffness matrix evaluated at the end of the increment; 
expression (15); or if it is possible, the algorithmic tangent stiffness matrix ; 
expression (16)). 

 
t t

σ
ε +Δ∂

 (15) ∂

 
( )( )

t t

σ ε
ε +Δ

∂ Δ Δ  (1

2.2 Natural logarithms, Exponentials and square roots of second order tensors 
As stated and analyzed in 

∂Δ
6) 

Ortiz 2001, spectral decompositions of the type 
T

AA = Ω⋅Λ ⋅Ω  , where A , Ω and AΛ 3 3×∈\ , co stitute a non-negligible 
computational e numerical implementation of TLH formulations. In 
consequence, the strategy chosen in this work is 

n
cost in th

total avoidance of spectral 
decompositions. The main reason is that in most situations neither  Ω nor AΛ are really 
needed. For instance, to compute the elastic strain tensor E  we actually do not use or 
need the triad { }e e eU ,R ,Λ . Our whole stress update procedures (the explicit and the 
implicit) do not need or use these tensorial entities at all. 

The strategy chosen by the authors is massive use of high order Padé approximants, 
which provided a highly accurate and yet computationally efficient approach. The 
outstanding capabilities of the Padé approximants for this specific task seem to have 

een appreciated by first time in Weber and Anand 1990, however, they still remain 
ts have much greater 

ccuracy and larger convergence ratio than Taylor expansions of the same accuracy 
ord

 
quare roots and natural logarithms of second order te

Throughout the stress update process there are tw
squ

b
quite unnoticed in computational inelasticity. Padé approximan
a

er. Additional theoretical details of this technique can be found in Bender and 
Orszag 1978. 

S nsors 
 

o operations in which we will use 
are roots and logarithms, these are the following ones: 

 ( )Te e eU F F C= ⋅ =  

 

(17) 

( )E ln U=  

The first simplification is to fuse the operations of expressions 

(18) 

) into one(17) and (18  
operator ( ) ( )f ln=i i . This last operator will be approximated with a high order Padé 

approximant expanded in the neighborhood of the identity matrix. Low order 
approximants such as ( )1P ln x  are enough for stiff materials such as steel. In fact, a 

standard approach in metal-forming is to use the st o er
1

fir rd  accurate ( )1
0P ln x  

approximant, which leads to the Cauchy-Green strain measure. However, in compliant 
aterials (such as polymers) at large strains, principal elastic

significantly from the unity. For instance, UHMWPE during uniaxial tests can reach a 
m  stretches can depart 
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 1 14 1 4. .λ = −principal elastic stretch in the order of  at failure stress. F
ants such as  or 

 

or that reason, it 
is convenient to use higher order approxim 1

2P 2
2P . 

( ) ( ) ( )26 8 5x x x
11

2P ln x
−

= ⋅ − ⋅ − − ⋅1 1  

 

(19) 

( ) ( ) ( ) ( )( ) 12 2
2 3 2 + 4P ln x x x x x

−
= ⋅ + ⋅ − ⋅ ⋅ +1 1 1  (20) 

Since th
Where 3 3x ×∈\  and 3 3×∈1 \  is the second order identity matrix. 

e operator ( ) ( )f ln=i i  will always be r; not an 

“incremental” one; our choice for both kinds of integration schemes (the explicit and the 
e fourth order accurate 

used to map a “total” tenso

implicit) is th ( )2
2P ln x  Padé approximant.  

The accuracy of Padé approximants is astonishing. Generally speaking, when the 
( )2

2P ln x  is applied to second order tensors T
AA = Ω⋅Λ ⋅Ω , where Ω  is not 

necessarily the identity matrix, and the entries in the diagonal of AΛ  are in the range 
0 6 1 4. .λ< < , the premature observation is that th ant; 
expression (21); will be in the range 10-3-10-5 while the relative error of the “supposedly 
quivalent” fourth-order Taylor polynomial will always be 1

ants constitute a very interesting replacement for the inexact Taylor series 
expansions and the accurate; but computationally expensive; subroutines for eigen 
omputations. 

 

e relative error of Padé approxim

e 0-100 times larger. Padé 
approxim

c

( )2
2 F

F

Error
ln A

=  
P ln A ln A−

(21) 

xponential mappings of second order tensors 
 
E

 
Throughout both integration algorithms, the exponential mapping is only used in the 

update of the inelastic deformation gradient, which is detailed as follows: 

( )
0 0

t t i t t i t iF = exp d t Fθ θ+ Δ + Δ ⋅Δ ⋅  (22) 

The exponential mapping of expression (22) can be approximated
Padé approximants expanded in the neighborhood of the null tensor 

 )

 with the following 

( )( ) ( ) ( 11
1 2 2P exp x x x −= + ⋅ ⋅ ⋅ −1 1  (23) 

 ( )( ) ( ) 6( )1 2
2 2 3 4P exp x x x x

1−
= ⋅ + ⋅ ⋅ − ⋅1 1  

 

+ (24) 

)( )( ) ( ) ( 12 2 2
2 6 12 6 12P exp x x x x x

−
= + + ⋅ ⋅ − + ⋅1 1  (25) 

The error term of these approximations is of the form ( ) 1n
1nO x

+
, where  is the n+

accuracy order of the approximant. In our case we have that x  takes the following 
form: 

t t i t t x d t tθ θθ γ= ⋅ Δ = ⋅

Whereas 

θθ γΔ = Δ  (26) + Δ + Δ

θγΔ ed to remain small (close to the null tensor) in explicit  is suppos
integration algorithms (because of the natural limitations in the time-increment size of 
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explicit algorithms); θγΔ  may take quite large values in implicit algorithms. 
( )( )1

1P exp x For that reason, our choices are the following ones:  for the explicit 
algorithm and ( )( )2

2

2.3

m (exact) continuum or algorithmic tangent stiffness matrix 
for

 numerical co
t time i

P exp x  for the implicit one. The mean guideline for this decision is 
the satisfaction of the incompressibility constraint on the inelastic deformations. 

 Computation of the tangent stiffness matrix 
The computation of the tangent stiffness matrix is the whole step 18 of the explicit 

integration algorithm (see section 3.2) and the whole step 27 of the implicit integration 
algorithm (see section 4.6) 

Obtaining a closed-for
 the Arruda-Boyce constitutive model is not a straightforward task. The strategy 

followed in this work is the mputation of an approximated algorithmic 
tangent stiffness matrix. This strategy seems to have been proposed by firs n 
Kojic and Bathe 1987.  

For “Hypoelastic type” constitutive formulations, the whole stress update algorithm 
can be thought as a function ( )σ σ εΔ = Δ Δ  which has εΔ  as the only input argument. 
The algorithmic tangent stiffness m e derivative” of the function atrix is a “tru ( )σ εΔ Δ ; 

 other words, the left hand term of expression (27). On 
perturbation strategy is truly simple: the analytical derivative is replaced by a numerical 
ap hich is based on the elementary definition of differential calculus: 

in the other hand, the 

proximation, w

 
( ) ( )σ δ σ σ ε δε σ ε

ε δ ε δ
∂Δ Δ Δ Δ + − Δ Δ

≅ =
∂Δ Δ

 (27) 

Where  
 ( )σ εΔ Δ  is the “stress increment function”, which actually depends on the 

integration algorithm and the stress-strain constitutive relationship of the 
constitutive model. 

 εΔ  is the strain increment tensor, which has been applied to the material point χ 
(integ time increment from  to ration point in a numerical setting) during the 

. 
 t

t t+ Δ
 δε  is an “almost null” tensor, which only contains two small perturbations of 

size δ  in the components ijδε  and jiδε , all the remaining entries of δε  are zero. 

 jε ε δεΔ = Δ +  is a perturbate increment tens  
 

 formulation of the Arruda-Boyce model does not use an 
“Hypoelastic type” formulation but a rather a “Total Lagrangian” formulation, we don’t 
have a “stress increment function” 

d strain or

Since the constitutive

( )σ εΔ Δ , in addition, εΔ  is not a direct input of our 
ration algorithm. In total form ons we have a “total stress functio

t t e t i t tF F Fσ σ +Δ=  instead of a “stress increment function”. Con
ex

integ n” 
t+Δ sequently, 

ulati
( )0 0 0, ,

pression (27) takes the following form in our case: 

 
( ) ( )0 0 0 0 0 0, , , ,t t t e t i t t t t t e t i t tF F F F F Fσ σσ δ σ

ε δ ε δ

+Δ +Δ +Δ +Δ−∂Δ Δ
≅ =

∂Δ Δ

�
 

The task involves the perturbation of the total deformation gradient. Conceptually, an 
simal perturbation of the stretche

(28) 

infinite d “fibers” in the spatial configuration can be 
thought as a pre-multiplication of the deformation gradient by a stretch tensor , see dU
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e  very close to the identity tensor, xpression (30). This tensor  is supposed to be
owever,  must include an “infinitesimal” perturbation of si

dU
h ze  dU δ  in the components 
( )ijdU  and ( ) jidU , see expression (29). 

 dU δε= +1  

 

(29) 

( )
0 0 0

t t t tF dU F Fδε+Δ +Δ= ⋅1�  (30) 

In the context of three dimensional analysis, the deform

t t+Δ⋅ = +

 must be ation gradient 0

perturbated 6 times. Then, each set 

t tF+Δ

{ }0 0 0, ,t e t i t tF F F+Δ �  is used as input argument for the 
algorithm used to update the total stress. Subsequently, using the formula of expression 
(28) the six columns of the Jacobian matrix are generated. 

This perturbation technique is ridiculously simple and yet it works outstandingly (see 
later Table 5 in section 5). Other more sophisticated perturbation techniques have been 
tested by the authors but no one provided as good results as this one in terms of 
computational efficiency. 

The size of the perturbation δ  must be small enough s a to keep the quotient of 
(28) sufficiently close the value of the “true” d

btain an accurate approximation for the tangent stiffn
inc

expression erivative. A simple strategy to 
o ess matrix for every load (time) 

rement is to keep δ  relatively small when compared to the Frobenius (Euclidean) 
norm of the strain increment tensor by setting a fixed value α . 

     
F

δ α ε= ⋅ Δ  

The authors do not encourage to use deliberately small values for 

(31) 

α . First of all 
because it is not necessary. Second, it is important to remember that there are too many 
operations involved in the computation of the perturbated stress; though, it has not been 
observed by authors; there is always the risk that the effect of a very small α  might be 
“dissipated” because of roundoff (the effect of finite computer accuracy). 

From the numerical experience of the authors, an α  as large as  310α −=  can work 
quite well, however, smaller values can bring out better results. The particular choice of 
the authors has been 510α −=  for all circumstances. Values for α  smaller than 510−  did 
not provide any additional benefit in terms of numbers of equilibrium iterations. 

It is important to mention Miehe 1996, the only reference known by the authors, and 
perhaps the only one that exists, dealing with the numerical computation of algorithmic 
tangent stiffness matrices for constitutive models that use “Total Lagrangian” 
formulations. In that work a more sophisticated methodology is proposed, using a 
different perturbation technique which takes into account advanced kinematic 
considerations and a different criteria for the choice of the size of the perturbation. On 
the other hand, the methodology presented in this work is not as “correct” as that one of 
Miehe 1996, however, it presents the required essential characteristics: it is very robust, 
in fact, it has never been the source of failure or interruption of any finite element 

 
when it is compared to the performance of a constant (elastic) tangent stiffness matrix, 
analysis; and provides a significant reduction in the number of equilibrium iterations

see Table 5 in section 5. 
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3 ACCURATE AND ROBUST EXPLICIT INTEGRATION SCHEME 

3.1 Selection of the integration algorithms: Embedded Runge-Kutta schemes and 
“convergence” tests 

It is the opinion of the authors (and perhaps that one of most practitioners) that using 
explicit integration algorithms without any kind of time-stepping algorithm, internal 
“control” or internal subroutine “qualifying” the obtained numerical solution can be a 
quite risky practice. The numerical solution obtained with any explicit integration
algorithm must be controlled and qualified as “acceptable” or “unacceptable”. The
criteria of qualification is another important issue: we can use a “mild” or a 
“mathematically rigorous” criterion. Something important about controlling the quality 
of the obtained numerical solution is that “control” has a computational cost which must 
afforded but there are some choices which can make of control an absolutely effor
task. 

 
 

tless 

t 

 rather than accuracy and that high-order schemes provide no relevant 
advantage. Consequently, no attempt has been carried out to implement the classical 
embedded Runge h as: the Fehlberg-Runge-Kutta scheme and the 
Cash-Karp-Runge-Kutta scheme, both of which are fifth order accurate but require 6 
functional evaluations (6 time rates to be averaged). 

Some of the simplest low order Embedded Runge-Kutta schemes are the Explicit 
Trapezoidal Rule and the Explicit Midpoint Rule, both of which are second order 
accurate and both embed the first-order accurate Forward Euler (FE) approximation, see 
Table 1. 

 
Trapezoidal Rule (TR) Midpoint rule (MP) 

In the process of selection of an appropriate integration scheme, the accuracy order is 
a topic of major importance. The large variety of explicit integration schemes (of any 
accuracy order) that exists certainly boggles the mind, see for instance Hairer 1993 and 
Butcher 2003. It could be possible to go directly to high order schemes such as the 
RK4s or RK5s, however, that can result into quite sophisticated algorithms and it is no
clear if they are worth the effort. The main question is: which accuracy order constitutes 
the most sensible choice? In other words: which accuracy order provides a suitable 
balance between simplicity, efficiency and effortless control? 

Following the advice of Arya 1996, only low and moderate order schemes will be 
used in this work. In Arya 1996 it is stated that the major limitation of these algorithms 
is stability

-Kutta schemes, suc

( )
( )

( )

1

2 1  ;  

1 2
2

1

t t t
TR

t t t
FE

K y y,t

K y y t K t t

ty y K K

y y t K

+Δ

+Δ

⎧ =⎪
⎨

= + Δ ⋅ + Δ⎪⎩
Δ⎧ = + +⎪

⎨
⎪ = + Δ ⋅⎩

�
�  

( )1

2 1;
2 2

2

1

t t t
MP

t t t
FE

K y y,t

t tK y y K   t

y y t K

y y t K

+Δ

+Δ

⎧ =
⎪
⎨ Δ Δ⎛ ⎞= + ⋅ +⎜ ⎟⎪ ⎝ ⎠⎩
⎧ = + Δ ⋅⎪
⎨

= + Δ ⋅⎪⎩

�

�  

Table 1. Midpoint and trapezoidal schemes, usually called second order Runge-Kutta.  
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However, the midpoint rule has an advantage over the Trapezoidal rule. That 
advantage is that the Midpoint Rule time rates ( 1K  and 2K ) are included into the RK3 
formulas, see Table 2. Consequently, the RK3 method includes a first, a second and a 
third order accurate approximation without any additional computational effort. This 
fact is noted in Fritzen and Wittekindt 1997.  

 
RK3 

( )

( )( )

3

1

2 1;
2 2

3 2 2 1 ;

1

2
1 2 11 2
6 3 6

t t t
FE

t t t
MP

t t t
RK

K y y,t
t tK y y K   t

K y y t K K   t t

y y t K

y y t K

y y t K K K

+Δ

+Δ

+Δ

⎧ =
⎪

Δ Δ⎪ ⎛ ⎞= + ⋅ +⎜ ⎟⎨ ⎝ ⎠⎪
⎪ = + Δ ⋅ − + Δ⎩
⎧
⎪ = + Δ ⋅
⎪⎪ = + Δ ⋅⎨
⎪ ⎛ ⎞⎪ = + Δ ⋅ + +⎜ ⎟⎪ ⎝ ⎠⎩

�

�

�

3

 

Table 2. Third order Runge-Kutta scheme 

This special characteristic of the RK3 method makes it even more attractive than 
traditional high-order embedded Runge-Kutta schemes (such as Fehlberg, Cash-Karp, 
etc), because it makes it suitable to develop some “rudimentary” (but quite effective) 
methodologies to monitor the accuracy and particularly the “convergence” of the 
obtained numerical solution. Specifically, the RK3 method is “like” having access to the 
three the terms of the third-order Taylor series expansion. Consequently, if the RK3 
method is supposed to be converging, it sounds reasonable to think that the respective 
Taylor series expansion is convergent too. In real life, we will never have access to the 
infinite terms of the Taylor series expansion nor the analytic expression of its terms to 
evaluate the following inequality which determines absolute convergence: 

 ( )
( )

( )

1 1

1

1

1
1 ! 11
!

n n

n

n n n nn

y ta nLim Lim
a y t

n

+ +

+

→∞ →∞ +

Δ
+= <

Δ
 (32) 

but we have information of the third-order truncated series, consequently, for our 
pragmatic purposes, we should at least be able to verify the satisfaction of the following 
inequalities: 

 ( ) ( ) ( )3
t t t t t t t t t t t

MP RK MP FE FEd y , y d y , y d y , y+Δ +Δ +Δ +Δ +Δ< <  (33) 

Where: 

( )

( )

( )

3
3 3

2
2

1

1
3!
1
2!

1
1!

t t t t t
MP RK

t t t t t
MP FE

t t t t
FE

d y , y a y t

d y , y a y t

d y , y a y t

+Δ +Δ

+Δ +Δ

+Δ

≅ = ⋅Δ

≅ = ⋅Δ

≅ = ⋅Δ

���

��

�

 

Where  denotes “distance” between the two input arguments. It is important to 
remark that any test derived from this inequalities is not conclusive, since in general, 

( )d ,i i
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“local converge” does not imply “stability” of the numerical solution. However, we can 
derive a sort of “mild” convergence tests, which can be computed with the investment 
of insignificant computational effort (for the RK2 and RK3 method) and may work 
reasonably well. On the other hand, conclusive stability tests rely in quite expensive 
eigen value computations (see for instance Heath 1997). 

The global update process requires the tangent stiffness matrix, which in this kind of 
simple numerical implementations is computed numerically. The same algorithm that is 
used to update the stress should be used to compute the tangent stiffness matrix. 
Therefore; if a high-order integration scheme is used; the final number of computations 
grows significantly. This argument is a good reason to use low-order Runge-Kutta 
schemes such as the Midpoint rule. 

Finally, it is important to mention that Embedded Runge-Kutta schemes of order n  
requiring only  functional evaluations (  time rates to be averaged) of order greater 
than 3 do not seem to exist (see 

n n
Hairer 1993). For instance, the Embedded Runge-Kutta 

schemes RK4 requires 5 time rates  and the Embedded Runge-Kutta schemes RK5 
require 6 time rates. Consequently, the Runge-Kutta scheme RK3 constitutes a 
reasonable “upper ceiling” for the accuracy order in terms of “additional benefits per 
functional evaluation” and “effortless control”. 

Ki

3.2 Explicit Midpoint Integration Scheme for the Arruda-Boyce constitutive 
model 

 
 
1. The value of tensors { }0 0 0 0, , ,t t e t i t tF F F F+Δ  is available at the beginning of 

each time increment. 
2. Compute ( )0

t eeE = ln U  in a single operation using the ( )2
2P ln x  Padé 

approximant 

( )0 0

Tt e t e t eE ln F F= ⋅  

3. Compute t Bσ  with expressions (5) to (9) using 0
t iF  as input argument for 

those expressions. 
4. Compute ( )t vpdev σ  using the following expression  

[ ]2t vp e t e t Bdev Eσ μ σ= ⋅ −  
For this purpose, use the value of t eE  computed in the step 2 and the value 
of t Bσ  computed in the step 3. 

5. Compute t id : use the tensor t vpσ  calculated in the previous step as input 
argument for expressions (10) and (12) to (14).  
Store t id , not only for direct use in the next step but also for later use in 
the error assessment and the time-stepping algorithm (both in step 13). 

6. Compute 2
0

t t iF+Δ  as follows: 

( )2
0 02t t i t i t iF exp d t F+Δ = ⋅Δ ⋅  

Use the Padé approximant ( )( )1
1P exp x  to compute the exponential 

mapping within this operation. 
Note that in this operation the half time increment size ( 2tΔ ) must be 
used. 

 

Mecánica Computacional Vol XXVII, págs. 1003-1042 (2008) 1015

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 
7. Compute 2

0
t t F+Δ  as an average of 0

tF  and 0
t tF+Δ  (both tensors are given 

data) 
2 0 0
0 2

t t t
t t F FF

+Δ
+Δ +

=  

8. Compute 2
0

t t eF+Δ  as follows 

( ) 12 2 2
0 0 0

t t e t t t t iF F F
−+Δ +Δ +Δ= ⋅  

9. With 2
0

t t eF+Δ  calculated in the previous step compute 2t t eE+Δ  

( )2 2
0 0

Tt t e t t e t t e2E ln F F+Δ +Δ +Δ= ⋅  

Again, use the (2
2P ln x )  Padé approximant for this operation. 

10. With 2t t eE+Δ  computed in the previous step and 2
0

t t iF+Δ  computed in step 6 
calculate 2t t vpσ+Δ . 

11. Compute 2t t id+Δ : use the tensor 2t t vpσ+Δ  computed in the previous step as 
input argument of expressions (10) and (12) to (14). 

12. Compute 0
t t iF+Δ  as follows 

( )2
0 0

t t i t t i t iF exp d t F+Δ +Δ= ⋅Δ ⋅  
Use the Padé approximant ( )( )1

1P exp x  to compute the exponential 
mapping within this operation. 
Note that in this step the full time increment size ( tΔ ) must be used.  

13. Error assessment of 0
t t iF+Δ  and time-stepping algorithm: For details of the 

error assessment and time-stepping algorithm: see section 3.3. 
 

If the inelastic deformation gradient  computed in the last step qualifies 
successfully the constraint imposed in the error assessment routine, then, the 
algorithm continues with the following steps, otherwise the material routine halts 
at the end of this step. 

0
t t iF+Δ

 

14. Compute 0
t t eF+Δ  as follows 

( ) 1

0 0 0
t t e t t t t iF F F

−+Δ +Δ +Δ= ⋅  

15. With 0
t t eF+Δ  calculated in the last step compute t t eE+Δ  

( )0 0

Tt t e t t e t t eE ln F F+Δ +Δ +Δ= ⋅  

Use the ( )2
2P ln x  Padé approximant for this operation. 

16. Compute the total Cauchy stress t tT+Δ  (spatial stress) using elastic 
relationship and the tensor t t eE+Δ  calculated in the previous step. 

[ ]1 12
3

t t e t t e e t t eT dev E k tr E
J

μ+Δ +Δ +Δ⎛ ⎞⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ ⋅⎜ ⎟⎣ ⎦⎝ ⎠
1  

17. Store 0
t t eF+Δ  and 0

t t iF+Δ  and report the total stress t tT+Δ . 
18. Compute of the tangent stiffness matrix: see section 2.3 
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It should be noted that the input argument for the operator ( ) (f ln=i )i
e

 it’s not 

always a  (a Green deformation tensor). In the step 0
t tCθ+ Δ 15, the operator 

( ) (f ln=i )i  is applied to 0
t t eB+Δ , the elastic Finger deformation tensor, which is a 

tensor defined in the “spatial” configuration (see Dvorkin 2006). Consequently, no 
rotation tensor 0

t t eRθ+ Δ  is needed in the integration algorithm. 
The RK3 algorithm can be implemented similarly, in other words: using tensorial 

entities from the “intermediate configuration” to compute the different time rates (K1, 
K2 and K3), and computing spatial entities (the elastic logarithmic strain and the 
Cauchy stress) only at the end of the integration process, hence, avoiding the 
computation of rotation tensors 0

t t eRθ+ Δ . 

3.3 Error estimation and time-stepping algorithm 

Analytical development of the time-stepping algorithm 
 
Actually, the error estimation and time-stepping algorithm is the whole step 13 of the 

integration algorithm in the previous section (section 3.2.). However, this time-stepping 
algorithm could also be applied to the implicit integration scheme (section 4.6) using 

0 5.θ = . 
The error of a given numerical solution is the difference between this approximate 

solution and the exact one. As the exact solution is usually unknown, the standard 
approach to qualify the accuracy of the numerical solution of an initial value problem is 
to compare it with another numerical solution that has been obtained with an integration 
scheme of higher accuracy order. 

For instance, to evaluate the quality of a first-order-accurate numerical solution for 
the inelastic deformation gradient  we can compare it with the solution obtained 
with the explicit midpoint scheme as in expression 

0
t t iF+Δ

(34). 

 0 0
t t i t t i

FE MPE F F+Δ +Δ= −  (34) 

Where  
 0

t t i
FEF+Δ  represents a numerical estimation for 0

t t iF+Δ  using the Forward Euler 
method (first order accurate) 

 0
t t i

MPF+Δ  represents a numerical estimation for 0
t t iF+Δ  using the explicit Midpoint 

rule (second order accurate) 
The error estimation E  actually applies to the first order accurate approximation. 

However, a standard approach implied by the embedding technique, is to keep (and 
report!) the high-order estimation. Consequently, it is assumed that E  presents a 
reasonable upper bound for the error introduced by the midpoint rule approximation. 

Afterward, it is imposed that the value of ε ; see expression (35); which we will call 
“weighted error formula”, should not be grater than k to keep the numerical solution 
accurate and stable: 

 0 0

0 0

t t i t t i
FE MP E

t t i t i
MP E

F F
k 

F F
ε

+Δ +Δ

+Δ

−
= <

−
 (35) 
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Where  

 ε  is a “weighted or relative difference” between the first and second order 
numerical approximations.  

 the denominator of expression (35) determines the “weight or importance” of 
this difference. It is noteworthy that the denominator proposed in expression 
(35) is the norm of i

MP F−  rather than the norm of the a total 
(accumulated) deformation gradient such as 

0 0
i t t i tF F+ΔΔ =

0
t t i

MPF+Δ , 0
t t i

FEF+Δ  or 0
t iF . 

 0 1k< <  is a value adjusted to obtain the desired quality in the numerical 
solution.  

If kε > , then, we must abort the current time increment, and restart it (make a new 
attempt) using a smaller time increment newtΔ . The problem is to decide how small 

 should be to satisfy the inequality newtΔ kε <  in the new attempt. 
It is known that any Runge-Kutta integration scheme just represents a truncated 

Taylor series expansion, see expression (36). 

 2 3 40 0 0 0 0
0 ...

0! 1! 2! 3! 4!

t i t i t i t i t i
t t i F F F F FF t t t+Δ = + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ +

� �� ��� ����
t  (36) 

In the case of the Forward Euler method, the numerical approximation is 
“equivalent” to take only the first two summands of the Taylor series, which yield an 
error with a dominant term ; see expression 2

2O t⋅ Δ (37). In the case of the Midpoint 
rule, the numerical approximation is equivalent to take first three summands, which 
yield an error with a leading term 3

3O t⋅ Δ , see expression (37). 

 

0

0

2 3 40 0 0 0 0
0 ...

0! 1! 2! 3! 4!
t t i

FE

t t i
MP

t i t i t i t i t i
t t i

F

F

F F F F FF t t t

+Δ

+Δ

+Δ

≅

≅

= + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ +
� �� ��� ����

���	��

�����	����


t  (37) 

Consequently, the difference E  between the Midpoint and the Forward-Euler 
approximations takes the following approximate form 

 2
0 0 2

t t i t t i
FE MPE F F O+Δ +Δ t= − ≅ ⋅Δ  (38) 

And the difference between the Midpoint approximation and the initial solution; see 
the denominator of expression (35); takes the following form  

 20 0
0 0 1! 2!

t i t i
t t i t i

MP
F FF F t+Δ t− ≅ ⋅Δ + ⋅Δ
� ��

 (39) 

However, as the leading term of this last expression is of order  and 
considering that 

1O ⋅Δt
2

1 2O t O t⋅Δ >> ⋅Δ   we discard the second-order terms of expression 
(39) to obtain the first-order approximation of expression (40). 

 0 0 1
t t i t i

MPF F O+Δ t− ≅ ⋅Δ  (40) 

Note that the assumption , although it is not a sufficient condition, 
it somehow “insinuates” the idea that the numerical solution is convergent. 

2
1 2O t O t⋅Δ >> ⋅Δ
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Replacing with the approximations of expressions (38) and (40) into the error 
weighting formula of expression (35) we get: 

 
2

2

1

E

E

O t
a t

O t
ε

⋅Δ
≅ = ⋅Δ

⋅Δ
 (41) 

If the inequality kε <  is not satisfied, then, known ε ; which is computed with 
expression (35); and the current time increment size tΔ  we can compute an upper 
bound for  capable to satisfy the inequality newtΔ kε <  in the next attempt. See the 
logical procedure in expression (42). 

 a
t
ε

=
Δ

        ⇒ new newa t kε = ⋅Δ <           ⇒ new current
kt t
ε

Δ < Δ  (42) 

Generally speaking, this kind of algorithms based on the estimation of truncation 
errors work very well. However, preliminary tests confirmed that under some particular 
conditions can get trapped. The problems that occurs is that the algorithm starts to 
suggest a  repeatedly, as a consequence, futile attempts unable to satisfy error 
constraint are carried out over and over again. To avoid this problem, it is important to 
guarantee that the suggested time increment 

newtΔ ≅ Δt

newtΔ  is “consistently smaller” than the 
current one ; following the advice of tΔ Fritzen and Wittekindt 1997; two alternatives 
for new   should be proposed, then, the smallest of those two tentative time increments 
should be chosen (for the specific details, see step 

tΔ
3.b of the time-stepping algorithm in 

this section). 
 
The time-stepping algorithm 

 
 

1. Compute the forward Euler approximation 0
t t i

FEF+Δ : for this purpose we use 
t id  (already computed in step 5 of the main material routine, see section 
3.2.) and ( )( )1

1P exp x  to compute the exponential mapping. 
( )

0 0
t t i t i t i

FEF exp d t F+Δ = ⋅Δ ⋅  
2. Compute ε  using the formula of expression (35). 0

t t i
FEF+Δ  is taken from the 

previous step and the midpoint estimation 0
t t i

MPF+Δ  is supposed to be already 
computed in step 12 of the main material routine. 

3. If the condition kε <  is satisfied, then, the main integration routine 
continues with steps 14 to 18 (see section 3.2), otherwise it continues 
computing the suggestedtΔ  as follows: 

a. First we compute 

new current
kt b t
ε

Δ = ⋅Δ  

Where  is a constant to guarantee that 0 b< ≤1 new current
kt t
ε

Δ < Δ .  

b. The final time increment size to be used in the next attempt is the 
following one: 

[ ];suggested newt min t cΔ = Δ ⋅ tΔ  
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Where  [ ];min   i i  is the smallest of the two arguments separated by 
the semicolon. This final step saves the algorithm of repeated 
iterations using the almost the same size for the time increment, 
leading to infinite attempts unable to satisfy error requirements and 
a fatal crash of the algorithm. 
 

 
Values for b  slightly smaller that 1 provide the best overall performance. In all 

circumstances, the authors used 0 95b .= . 
The main parameter limiting the maximum allowable size for the time increment is 

. The larger it is the larger the time increments will be. It can take values as high as 
 or . The value 

k
0 4k .= 0 3k .= 0 5k .=  works at the beginning of most analysis but 

finally blows up. Although with 0 4k .=  the algorithm is still capable to work; keeping 
the numerical solution in the “right track”; the obtained numerical results turn to be 
quite “rough”. The authors do not recommend such large values for k . The authors 

0 1.−  in all the finite element analyused k .= ses. 0 05
An appropriate value for  can be 0.7, 0.8 or 0.9 (see c Fritzen and Wittekindt 1997). 

In all circumstances the authors used 0 8c .=  
 
Conceptual differences 

 
The classical time-stepping algorithms use an error weighting formula (a “constraint 

imposed to the distance” between two numerical solutions) like that one in expression 
(43). In early stages, the authors attempted to use the classical time-stepping algorithms 
which rely on error weighting formulas similar to expression (43) and could not obtain 
satisfactory results. 

 0 0

0

t t i t t i
FE MP E
t t i

MP E

F F
k 

F
ε

+Δ +Δ

+Δ

−
= <  (43) 

This typical constraint used in classical time-stepping algorithms is quite restrictive 
at the beginning of the deformation process when 0 3t t i

MP E
F+Δ ≅ , however, when the 

deformation increases (imagine for instance an uniaxial traction test), that constraint is 
gradually relaxed since the denominator of expression (43) increases too. Consequently, 
if it’s desired to obtain an accurate and stable numerical solution throughout all the 
analysis using the classical error weighting formula; such as that one in expression (43); 
it is necessary to use a very small value for , which force to use deliberately small 
values for  at the beginning of the analysis but small-moderate sized time increments 
at large strains, which produce a relatively unstable numerical solutions.  

k
tΔ

On the other hand, the “distance constraint” between two numerical solutions 
presented in this section does not have much difference with those presented in Arya 
1996, Zirky 1994 and Fritzen and Wittekindt 1997 or in classical books of numerical 
methods such as Press 1992 or in numerical analysis books highly specialized in 
ordinary differential equations such as Hairer 1993 and Butcher 2003. The only 
difference is the denominator of expression (35). The difference is slight, however, it 
reduces significantly the number of increments and still provides more stable solutions.  

Generally speaking, expression (35) does not care about the total accumulated error. 
The condition imposed by expression (35) only cares about what is happening from 
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time t  to t . We could say it is a “local constraint” between two numerical 
solutions  and 

t+Δ

0
t t i

FEF+Δ
0

t t i
MPF+Δ , because it does not care about the size of the total 

accumulated tensors 0
t t i

MPF+Δ , 0
t t i

MPF+Δ ,  nor their associated errors. This local 
constraint imposes a “maximum admissible distance” between two numerical solution 
weighted over the magnitude of the local (from time t  to t

0
t iF

t+ Δ ) deformation increment 
. 0 0

i t t i t
MPF F+Δ iF−Δ =

However, there is a more precise reason why this weighting error formula works 
better than that one expression (43). Basically, up to some point we can find that the 
analytical development relies in the assumption that 2

1 2O t O t⋅Δ >> ⋅Δ . Under this 
assumption, we could arrive to the idea that . Replacing with this last 
approximation into the denominator of expression 

0 0
t t i t t i

FE MPF+Δ +Δ≅ F
(35) we get that the weighting 

formula becomes:  

 0 0

0 0

t t i t t i
FE MP E

t t i t i
FE E

F F
k 

F F
ε

+Δ +Δ

+Δ

−
= <

−
 (44) 

Looking closely at the this last formula we have that it expresses the same idea of 
expression (33). In other words, it enforces the satisfaction of the following inequality:  

 0 0 0 0
t t i t t i t t i t i

FE MP FEE
F F F F+Δ +Δ +Δ− < −

E
 (45) 

The constraints imposed in expression (35) and expression (44) are quite equivalent; 
in fact, they can be used indistinctly producing very similar numerical results. These 
distance constraints do not work to enforce a certain level accuracy, these distance 
constraints “intend” to enforce “local convergence” of the Runge-Kutta method by 
using sufficiently small . k

4 ACCURATE AND EFFICIENT IMPLICIT SCHEME 

4.1 Step 1: Application of the backward-Euler operator 

The starting point of this scheme is the determination (computation) of  and the 
application of the backward Euler operator to elastic and inelastic deformation 
gradients.  

0
t tFθ+ Δ

First compute/define  as follows; 0
t t Fθ+ Δ

 ( )
0 0 1t t t t tF Fθ θ+ Δ +Δ= ⋅ + − 0 Fθ  (46) 

Where 0 5 1. θ≤ ≤ . 
Proceeding as if t t idθ+ Δ  is already known; apply the backward Euler operator from 

time t tθ+ Δ  to the inelastic and the elastic deformation gradients, see expressions (47) 
and (48). 

 ( )
0 0

t t i t t i t iF exp t d Fθθ+Δ + Δ= Δ ⋅ ⋅        (47) 

 ( ) ( ) ( )1

0 0
t t e t t t i t t iF F F exp tθ θ θθ

−+ Δ + Δ + Δ= ⋅ ⋅ − Δ ⋅ d        (48) 

Where  

 ( )t t i t t t tdθ θγ τ+ Δ + Δ + Δ= ⋅ Nθ  (49) 
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t t vp t t vp

t t
t tt t vp

N
θ θ

θ
θθ

σ σ
τσ

+ Δ + Δ
+ Δ

+ Δ+ Δ
= =  (50) 

It is noteworthy that expression (48) can be rewritten as follows 

 ( )
0

t t e e t t i
trialF F exp t dθθ+Δ + Δ= ⋅ − Δ ⋅        (51) 

Where  

 ( ) ( ) 1

0 0
e t t t i

trialF F Fθ −+ Δ= ⋅        (52) 

This last tensor can be computed directly from the given data at the beginning of 
each time increment. Additionally, as the inelastic deformations are supposed to occur 
without change of volume ( ), then, the elastic volumetric deformation t e  
at time t

1t iJ   = ∀t
t

Jθ+ Δ

θ+ Δ  can be computed as follows 

 ( )t t e e e
trial trialJ J det Fθ+ Δ = =        (53) 

Dividing both terms (left and right terms) of expression (51) by ( )1 3t eJθ+ Δ , the 
isochoric deformation gradient  is obtained: 0

t t eθ+ ΔF

 ( )
0

t t e e t t i
trial exp t dθ θθ+ Δ + Δ= ⋅ − Δ ⋅F F        (54) 

 
( )1 3

e
e trial

trial t t e

F

Jθ+ Δ
=F        (55) 

The Arruda-Boyce constitutive model implemented in this work does not have any 
scalar internal state variable. However, this kind of models usually have a set of scalar 
state variables ( 1 2, ,...,t t t t t t t t

n )ξ ξ ξ ξ+Δ +Δ +Δ +Δ= . If that is the case, the backward Euler 
operator should be applied to these scalar state variables too.  

 

1 1 1

2 2

...

t t t t t

t t t t t

t t t t t
n n

t

t

t

θ

θ

θ

2

n

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

+Δ + Δ

+Δ + Δ

+Δ + Δ

⎧ = + Δ ⋅
⎪

= + Δ ⋅⎪
⎨
⎪
⎪ = + Δ ⋅⎩

�
�

�

       (56) 

4.2 Step 2: analytical expressions for the stress driving the viscoplastic flow at 
time t tθ+ Δ  

The mathematical formulas for the stress driving the viscoplastic flow t t vpθ σ+ Δ ;  
expressions (11) and (5) to (8); is rewritten as follows: 

 [ ] ( )2 ,t t vp e t t e p t t i L t t i
lockdev E f dev Bθ θ θσ μ μ λ λ+ Δ + Δ + Δ + Δθ⎡ ⎤= ⋅ − ⋅ ⋅ ⎣ ⎦        (57) 

Using the expression (47) the finger deformation tensor t t iBθ+ Δ  is rewritten in terms 
of t tdθ+ Δ i : 

 ( ) ( )
0

t t i t t i t i t t iB exp t d B exp t dθ θθ θ+ Δ + Δ + Δ= Δ ⋅ ⋅ ⋅ Δ ⋅ θ        (58) 

Additionally, we know that deviatoric part of the Hencky strain tensor can be 
computed directly from the isochoric elastic deformation gradient as follows:  
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 ( ) ( )t t e eT edev E lnθ+ Δ = ⋅F F        (59) 

Replacing with expression (54) into this last expression we obtain: 

 ( ) ( ) ( )( )t t e t t i e t t i
trialdev E ln exp t d exp t dθ θθ θ+ Δ + Δ + Δ= − Δ ⋅ ⋅ ⋅ − Δ ⋅C θ

e

       (60) 

        (61) e e T
trial trial trial= ⋅C F F

It is noteworthy that in order to compute the hyperelastic stress at time t tθ+ Δ ; 
second summand of expression (57); we also need  the effective stretch measure t t iθ λ+ Δ , 
which is computed from finger deformation tensor t t iBθ+ Δ . The effective stretch measure 
t t iθ λ+ Δ  can be computed taking the trace of expression (58); see expression (62): 

 ( ) ( ) ( )2

03 t t i t t i t i t t itrace exp t d B exp t dθ θλ θ θ+ Δ + Δ + Δθ⎡ ⎤= Δ ⋅ ⋅ ⋅ Δ ⋅⎣ ⎦        (62) 

4.3 Step 3: suitable approximations and linearizations 

Approximations and linearizations to be included 
 
Since expressions (58), (60) and (62) are quite intricate, it is necessary to add some 

simplifications and approximations to make the problem mathematically tractable. 
The exponential mappings of expressions (58) to (62) will be replaced with a first 

order accurate approximation, see expression (63). 

 ( ) ( )2
2exp x x O x= + +1        (63) 

On the other hand; as proposed in Eterovic and Bathe 1990; expression (60) can be 
replaced with the following first order accurate approximation: 

 ( ) ( ) ( ) ( 2

2
t t e t t e e t t i t t i

trialdev E ln dev E t d O t dθ θ θ θθ θ+ Δ + Δ + Δ + Δ= = − Δ + ⋅ Δ�C )

t

       (64) 

This is a quite good approximation, however, comparatively, it can be verified that 
expression (64) generally includes greater errors than the approximation of expression 
(63).  

It is noteworthy that expression (64) constitutes a forceful attempt to write the elastic 
deviatoric strain in a “rate-type form”. This approximation is eventually used to write 
the total deviatoric stress in “rate-type form”. It is recalled that in this type of 
constitutive formulations there is no stress rate.  Expression (64) is just a mathematical 
artifice that makes the problem more tractable but up to some point corrupts the original 
nature of the formulation.  

In addition, our implicit integration scheme will make use and “abuse” of the 
following classical approximation: 

        (65) t t
trialN Nθ+ Δ ≅

This approximation is somehow a “prediction” of the behavior of the constitutive 
model at time t θ+ Δ  rather than a “simplification”. 

Summarizing, the total number of approximations to be included are three: 
expressions (63), (64) and (65). It is important to remark that any approximation or 
simplification has a price to be paid, which could be negligible or not. In other words, 
some of these approximations might introduce some limitation or restriction in the 
integration algorithm while others will not cause any detrimental effect at all. The effect 
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of these approximations is discussed in section 4.5. 
 
Inclusion of the linearized expressions 
 

Replacing the exponential mappings of expression (58) with its corresponding first 
order accurate approximation; expression (63); and t t idθ+ Δ  with the right-hand term of 
expression (49), the following approximation for t t iBθ+ Δ  is obtained: 

 
( ) ( )

( )( ) ( )
0 0

2 2
0

2t t i t i t t t i t t

t t t t t i t t

B B t sym B N

t N B N

θ θ θ
θ

θ θ θ
θ

γ τ

γ τ

+ Δ + Δ + Δ

+ Δ + Δ + Δ

⎡ ⎤≅ + ⋅ Δ ⋅ ⋅ ⋅ +⎣ ⎦

⎡ ⎤+ ⋅ Δ ⋅ ⋅ ⋅⎣ ⎦
       (66) 

Where  

 t tθ θΔ = ⋅Δ        (67) 

Then, incorporating the approximations (64) and (66) into the expression (57), and 
replacing t tdθ+ Δ i  with the right-hand term of expression (49), we finally obtain an 
approximation for the stress driving the viscoplastic flow t t vpθ σ+ Δ : 

 

( ) ( )

( )

( ) ( ) ( )
( ) ( )( )

0

0

2 2
0

2 2

  

2   

t t vp e e t t e t t
trial

L t t i t i
eff

L t t i t t t i t t
eff

L t t i t t t t t i t t
eff

dev E t N

dev B

t dev sym B N

t dev N B N

θ θ
θ

θ

θ θ θ
θ

θ θ θ θ
θ

σ μ γ τ μ

μ λ

μ λ γ τ

μ λ γ τ

+ Δ + Δ + Δ

+ Δ

+ Δ + Δ + Δ

+ Δ + Δ + Δ + Δ

⎡ ⎤ θ⎡ ⎤≅ − ⋅ Δ ⋅ ⋅⎣ ⎦⎣ ⎦
⎡ ⎤− ⋅ ⎣ ⎦

⎡ ⎤⎡ ⎤− ⋅ ⋅ Δ ⋅ ⋅ ⋅⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤− ⋅ ⋅ Δ ⋅ ⋅ ⋅⎣ ⎦⎣ ⎦

       (68) 

Where  

 ( ) ( ),L t t i p t t i L
eff lockfθ θμ λ μ λ λ+ Δ + Δ= ⋅        (69) 

Reduction of the problem to 2 non-linear scalar equations 
 

Since [ ] ( 2
3t t i t t itr Bθ θ )λ+ Δ + Δ= , applying the trace to expression (66) a non-linear 

scalar equation in terms of t t iθ λ+ Δ   and t tθ τ+ Δ   is obtained: 

 
( )( ) ( )
( ) ( ) ( )

2 2
0

2

0 02 3

t t t t t i t t

t t t i t t t i t t i

t tr N B N

t tr B N tr B

θ θ θ
θ

θ θ
θ

γ τ

γ τ λ

+ Δ + Δ + Δ

+ Δ + Δ + Δ

⎡ ⎤⋅ Δ ⋅ ⋅ ⋅ +⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ⋅ ⋅ Δ ⋅ ⋅ + −⎣ ⎦ ⎣ ⎦ 0θ =
       (70) 

Then, by taking the dot product of expression (68) with  another non-linear 
equation in terms of 

t t Nθ+ Δ

t tθ iλ+ Δ   and t tθ τ+ Δ  is obtained: 

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )( )

0

0

2 2
0

2 : : 2

2 :

:

e e t t L t t i t i t t t t e
trial eff

L t t i t t t i t t t t
eff

L t t i t t t t t i t t
eff

dev E N dev B N t

t dev sym B N N

t dev N B N

θ θ θ θ
θ

θ θ θ θ
θ

θ θ θ θ
θ

μ μ λ γ τ

μ λ γ τ

μ λ γ τ

+ Δ + Δ + Δ + Δ

+ Δ + Δ + Δ + Δ

+ Δ + Δ + Δ + Δ

⎡ ⎤⎡ ⎤ +μ⎡ ⎤ ⎡+ ⋅ − + ⋅ − ⋅Δ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤+ ⋅ ⋅ − ⋅Δ ⋅ ⋅ +⎣ ⎦⎣ ⎦

⎡ ⎤+ ⋅ ⋅ −Δ ⋅ ⋅ ⋅⎣ ⎦ 0t t t tNθ θ τ+ Δ + Δ⎡ ⎤ − =⎣ ⎦

⎤

       (71) 

Finally, we have that expressions (70) and (71) constitute a set of two non-linear 
equations with two unknowns: t t iθ λ+ Δ   and t tθ τ+ Δ . However, it is noteworthy that  
is unknown and without t t  we can’t compute the coefficients of these non-linear 

t t Nθ+ Δ

Nθ+ Δ
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equations. To solve this problem we just replace t t  with . The consequences of 
this approximation in a numerical setting are discussed in section 

Nθ+ Δ
trialN

4.5. 

4.4 Numerical strategy to solve the system of equations 
Solving the systems of equations defined by expressions (70) and (71) is not a trivial 

task. This system of equation has the following form: 

 
( )
( )

1

2

0
0

f ,
f ,
τ λ
τ λ

=⎧⎪
⎨

=⎪⎩
 (72) 

In which expressions (70) and (71) are represented by expressions  and ( )1 0f ,τ λ =

( )2 0f ,τ λ =  respectively. These 2 functions can be plotted in the planeτλ − . The 
“physically meaningful” solution to this system of equations is the intersection point 
defined by ( ,t t i t tθ θ )λ τ+ Δ + Δ . However, this system of equations does not have a unique 
intersection. The specific behavior of this system in the planeτλ −  depends on the 
functions ( ), lockf λ λ  and ( )γ τ , expressions (7) and (12) respectively for the Arruda-
Boyce viscoplastic model. In our particular case, four intersection points exist between 
and only one of them has physical meaning. In Figure 1 the reader can appreciate the 
qualitative behavior of this system of equations. The equations plotted in Figure 1 were 
taken from an arbitrary integration point and loading conditions. 

τ = effective shear stress

20 25 30 35 40 45 50

λ 
= 

ef
fe

ct
iv

e 
st

re
tc

h

-4

-2

0

2

4

f1(τ,λ)

f2(τ,λ) 

 
Figure 1. Graph of the functions f1(τ,λ) and f2(τ,λ) in the τλ-plane showing the 4 intersections. 

Two possible strategies to solve this problem are the following ones: 
1. Using a 2-variable Newton-Raphson procedure. 
2. Using a 2-level Newton-Raphson procedure capable to “bracket” the correct 

solution. This strategy is suggested and used in Lush et. al. 1989. 
The authors found that a hasty attempt to use the 2-variable Newton-Raphson 

procedure in combination with a “supposedly reasonable” initial guess works very well 
in a number of situations but also fails catastrophically in a few circumstances. 
Generally speaking, the 2-variable Newton-Raphson procedure works well, but some 
additional refinement must be added to make it more reliable. 

On the other hand, the 2-level (2 stages) Newton-Raphson procedure splits the 
problem in two halves: it combines the “bracketing capabilities” of the bisection scheme 
and the efficiency of the Newton-Raphson procedure for scalar equations with only one 
unknown. The main objective of this numerical strategy is to guarantee than only the 
physically meaningful solution is obtained. For further details see Lush et. al. 1989. 

The final methodology implemented in this work lies somehow between the two 
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methodologies previously described. The two stages of our procedure are the following 
ones: 

1. Stage 1: the main goal of this stage is determining upper and lower bounds for  
t t iθ λ+ Δ  and  t tθ τ+ Δ , then, with this bounds we can determine a accurate initial 
guess ( )0 0,τ λ . 

2. Stage 2: using the accurate initial guess ( )0 0,τ λ  developed in the previous stage, 
the system of two equations with two unknowns is solved using the 2-variable 
Newton-Raphson procedure. 

Conceptually, this procedure is similar to that one used in Lush et. al. 1989 because it 
splits the problem in two halves and uses only one of the equations of the system in the 
first stage. However, computationally and mathematically it is quite different. 

Most of the efforts were concentrated in developing good estimations for the upper 
and lower bounds of t tθ iλ+ Δ  and t tθ τ+ Δ , which is the stage 1 of our procedure. In an ideal 
circumstance, the upper and lower bounds for t tθ τ+ Δ  and t tθ iλ+ Δ  should define a small 
“window” (a rectangular subset) in the planeτλ −  (see Figure 2b) which only contains 
the physically meaningful solution (intersection). Then, taking any point of this small 
“rectangle” (for instance, the point in the geometric center of this rectangle) as an initial 
guess, the 2-variable Newton-Raphson procedure will converge to the closest 
intersection point (see step 17 of the implicit integration algorithm is section 4.6).  

It is important to develop “narrow estimations” for t tθ τ+ Δ  and t t iθ λ+ Δ , in other words, 
we should be able to verify that the “gap” defined by the upper and lower bounds is a 
small when compared to the average of them. Mathematically, we should be able to 
verify the following: 

 1

2

t t t t
upper lower

t t t t
upper lower

θ θ

θ θ

τ τ
τ τ

+ Δ + Δ

+ Δ + Δ

−
<<

⎛ ⎞+
⎜ ⎟
⎝ ⎠

   and   1

2

t t t t
upper lower

t t t t
upper lower

θ θ

θ θ

λ λ
λ λ

+ Δ + Δ

+ Δ + Δ

−
<<

⎛ ⎞+
⎜ ⎟
⎝ ⎠

       (73) 

Finding upper and lower bounds for t t iθ λ+ Δ  satisfying this previous requirement is 
quite straightforward, the procedure relies in the computation of two trial states. 
However, computing upper and lower bounds for t tθ τ+ Δ  is a bit more sophisticated. 
 
Using two trial states to define upper and lower bounds for t tθ iλ+ Δ  

 
Usually, “trial state” means that from time t  to t tθ+ Δ  only elastic deformations 

occur and inelastic deformations remain unchanged. We will call this trial state “trial 
state 1” or just “trial 1”.  

 ( ) 1

0 0 0
t t e t t t i

trial 1F F Fθ −+Δ + Δ= ⋅        (74) 

        (75) 0 0
t t i t i

trial 1F F+Δ =

We can consider another trial state, meaning that from time t  to t tθ+ Δ  only 
inelastic deformations occur and elastic deformations remain unchanged. We will call 
this trial state “trial state 2”. 

        (76) 0 0
t t e t e

trial 2F F+Δ =

 ( ) 1

0 0
t t i t e t t

trial 2F F θ−+Δ + Δ= ⋅ 0 F        (77) 
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Then using the trial inelastic deformation gradients  and  we can 
compute the corresponding scalars 

0
t t i

trial 1F+Δ
0

t t i
trial 2F+Δ

1
t t i

trial
θ λ+ Δ  and 2

t t i
trial

θ λ+ Δ . In practice, in can be 
verified that the scalars  1

t t i
trial

θ λ+ Δ  and 2
t t i

trial
θ λ+ Δ  define a very “narrow range” for the 

effective stretch measure.  
Consequently, the values 1

t t i
trial

θ λ+ Δ  and 2
t t i

trial
θ λ+ Δ  are used to define an upper and 

lower bound for t tθ iλ+ Δ . It is noteworthy that no assumption can be made about which 
one is the “upper bound” and which one is the “lower bound”, that depends on the 
loading conditions. Therefore, 1

t t i
trial

θ λ+ Δ  and 2
t t i

trial
θ λ+ Δ  must be sorted according to their 

size, finally, the largest value is assigned to  and the smallest value is assigned 

to .  

t t
upper

θ λ+ Δ

t t
lower

θ λ+ Δ

 
Computing upper an lower bounds for t tθ τ+ Δ  

 
We can continue using each pair ( )0 0,t t e t t i

trial 1 trial 1F F+Δ +Δ  and ( )0 0,t t e t t i
trial 2 trial 2F F+Δ +Δ  to 

compute the corresponding scalars  and . The physically meaningful 
intersection point will lies between the vertical lines  and , 
however, the “gap” defined by this bounds will usually be greater than the average of 
them. Consequently, the values  and  cannot be directly used to 
establish directly useful upper and lower bounds for 

1
t t

trial
θ τ+ Δ

2
t t

trial
θ τ+ Δ

1
t t

trial
θτ τ+ Δ= 2

t t
trial

θτ τ+ Δ=

1
t t

trial
θ τ+ Δ

2
t t

trial
θ τ+ Δ

t tθ τ+ Δ . Anyway, these two values; 
 and ; are computed because they might be useful in intermediate 

steps, particularly, as initial guesses for intermediate iterative procedures (see steps 
 1

t t
trial

θ τ+ Δ
 2

t t
trial

θ τ+ Δ

12 
and 13 of the implicit integration scheme in section 4.6). 

Conceptually, the methodology to obtain accurate upper and lower bounds for t tθ τ+ Δ  
is described as follows: 

 t t
upper

θ  and t t
lower

θ  define two horizontal lines in t  λ λ+ Δ= λ λ+ Δ= he planeτλ − , 

see Figure 2a. The actual solution point ( ),i t tθt tθ λ τ+ Δ  lies between these two 
horizontal lines; see 

+ Δ

Figure 2a and the enlarged detail in Figure 2b. 
 Both equations of the system ( )1 0f ,τ λ =  and ( )2 0f ,τ λ =  cross these 

horizontal lines. However, the points crossed by the function ( )2 0f ,τ λ =  are 
closer than the points crossed by the function ( )1 0f ,τ λ = , see Figure 2. The 
horizontal coordinates of the two intersection points between ( )2 0f ,τ λ =  and 
the horizontal lines t t

upper
θ  and t t

lower
θ  define very accurate upper 

and lower bounds for t tθ

λ λ+ Δ= λ λ+ Δ=

τ+ Δ . See Figure 2b. 
 Then, to find the horizontal coordinates of these 2 intersection points it is 

necessary to solve two non-linear equation with one unknown for each one.  
( )
( )

2

2

0

0

t t
lower

t t
upper

f ,

f ,

θ

θ

τ λ

τ λ

+ Δ

+ Δ

=

=
 

The solution of one of these equations will be t t  and the solution from the 
other will be t t . 

lower
θ τ+ Δ

upper
θ τ+ Δ
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(a)

τ = effective shear stress
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τ = effective shear stress
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Figure 2. Figure 2a: Graph of the functions f1(τ, λ) and f2(τ, λ) showing the 4 intersections and the 
physically meaningful intersection bounded by the horizontal lines λ = t+θΔtλupper and λ = t+θΔtλlower.  

Figure 2b: enlarged detail of the physically meaningful intersection point; the upper and lower bounds for 
the intersection point are defined by the horizontal (continuum) and vertical (dotted) lines. The vertical 

doted lines are defined by the intersections of f2(τ, λ) with the horizontal lines.  

4.5 Safeguard Precautions and Sources of error 
The main advantages of this integration algorithm are its simplicity and efficiency, 

since you only have to solve a system of 2 non-linear equations with 2 unknowns. The 
main disadvantage is that everything depends on it. In other words, the whole reliability 
of this algorithm depends on the routine used to solve the system of two equations with 
two unknowns. The key question is: what can go wrong with the solution to this 
system? 

One of the things that can happen is that the Newton-Raphson procedures spend too 
many iterations to find the solutions. To solve the this problem, the authors just imposed 
limits (maximum number iterations) for the Newton-Raphson Procedures. If the 
maximum number of iterations is reached, then, the integration procedure is aborted and 
reattempted using half the current time increment size. That’s all what is needed solve 
the problem. This is a problem of minor importance. 

A totally different, and more serious, kind of problem is when we obtain a 
“supposedly” physically meaningful solution; in other words, the correct intersection 
point; but the values for its coordinates ( ),t t i t tθ θλ τ+ Δ + Δ  are absolutely unreasonable. 
Actually, under some particular circumstances, it is possible to obtain a solution which 
is “the correct one”; but which is not truly representative of the evolution law imposed 
by the constitutive model. In what follows, the authors will explain why can that happen 
and the measures that must be taken to avoid that kind of “non-representative” 
solutions. 

How can be possible that the correct solution to the system of equations defined by 
equations (70) and (71) returns absolutely non-reasonable values for t tθ iλ+ Δ  and t tθ τ+ Δ ? 
The answer is simple, the two non-linear equations (70) and (71) include the 
approximations of expressions (63), (64) and (65), consequently, they incorporate their 
truncation errors too. 

These two non-linear equations represent the constraint that the material point should 
satisfy at time t tθ+ Δ . This constraint constitutes the satisfaction of the evolution law 
defined by the constitutive model, which is captured with the time evolution of the 
invariants iλ  and τ . But whether expressions (70) and (71) accurately approximate 
that constraint imposed by evolution law or just and aberration of it depends on the 
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accuracy of the approximations (63), (64) and (65).  
Therefore, if we want to keep the two non-linear equations (70) and (71) truly 

representative of the evolution law defined by the constitutive model, we just need to 
keep the error of approximations (63), (64) and (65) sufficiently small. The error term of 
approximations (63) and (64) is of the form 2

2O θγ⋅Δ . In addition, the three 

approximations become exact expressions if 0t t tθ
θγ γ θ+ ΔΔ = ⋅ Δ = . In other words, 

expressions (63), (64) and (65) become exact expressions if there isn’t inelastic flow 
from time  to t t tθ+ Δ . 

Therefore, a maximum allowable size for the value of θγΔ  should be imposed. 
Going to pragmatic measures: values such as 1θγΔ ≅  clearly define a malfunction and 
plausible failure of the numerical procedure; values such as 0.5θγΔ ≅  work well; the 
choice taken by the authors is that θγΔ  should never violate the constraint 0.15θγΔ <  
(see step 19 of the implicit integration algorithm in section 4.6).  

By imposing 0.15θγΔ < , the errors associated to approximations (63) and (64) turns 
to be quite low. For instance, with 0.15θγΔ =  the error included in the first order 
accurate approximation of the exponential mapping is in the order of the 1%. It is 
important to mention that 0.15θγΔ <  is a quite conservative choice, since larger values 
such as  0.3 0.5θγΔ ≅ −  were tested without any signal of malfunction. 

Though, a simple limitation in the maximum admissible value of θγΔ  is enough to 
solve the problem, it is still important to understand which are the greatest sources of 
error. Whereas approximation (63) and specially approximation (64) include large 
errors for large values of θγΔ ; the error of the approximation   is 
absolutely negligible. 

t t
trialN Nθ+ Δ ≅

As stated in section 4.3, the simplification t t
trial , is an hypothesis or 

prediction about the direction of the plastic flow at time t t
N Nθ+ Δ ≅

θ+ Δ  rather than a 
simplification. Then, if it’s a reasonable hypothesis, it should be confirmed with great 
accuracy when the direction of the plastic flow  is computed at the end of the 
integration procedure. Measuring the error in terms of a “distance”, see expression 

t t Nθ+ Δ

(78), 
it can be verified the high accuracy of this simplification.  

 ( ) 1  1, t t t t
trial trial F

error d N N N Nθ+ Δ + Δ= = − θ  (78) 

The error of approximation t t
trial  is in the range of N Nθ+ Δ ≅ 1210−  and for quite 

large time increments. Taking into account that for many numerical practitioners 

1710−

1610−  
is considered “computer accuracy”, we are taking about a very small error. If 
deliberately large time (load) increments are attempted, then, the error of the 
approximation trial  will be in the order of t t N Nθ+ Δ ≅ 1010− , which is still negligible. 
Generally speaking, the approximation t t

trial  can be used with impunity, even 
for time increments larger than those presented in this article. It is suspected that the 
underlying “geometric structure” of the initial value problem posed by the inelastic flow 
ma

N Nθ+ Δ ≅

y justify the quality of this approximation. 
Basically, all the limitations for the size of the maximum allowable size for the time 

increment come from the expressions (63) and specially (64), which always included 
the largest errors. In addition, it is important to point out that any numerical 
implementation using any of these two approximations may suffer the same limitations. 
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For instance, in Tang 2007 a generalized backward Euler method is proposed for a 
viscoplastic constitutive model (which is very similar to the Arruda-Boyce constitutive 
model) which uses the approximation of expression (64) in its mathematical 
formulation. That kind of integration algorithms may have the same limitations that the 
algorithm presented in this work has. 

4.6 Implicit integration scheme 
 
 
1. The value of the tensors { }0 0 0 0, , ,t t e t i t tF F F F+Δ  is known at the beginning of each 

time increment. Additionally the value for θ ; with 0 5 1. θ< < ; has been set up 
by the user. 

2. Define 0
t t Fθ+ Δ  as ( )

0 0: 1t t t t tF F 0
θ θ θ+ Δ +Δ= ⋅ + F−  

3. Define tθΔ  as :t tθ θΔ = ⋅Δ  
4. Compute  1

e
trialF ; see expression (52); and compute 1

e
trialE  in a single operation 

using the Padé approximant ( )2
2P ln x : 

( )1  1:
Te e

trial trial trialE ln F F= ⋅  1
e  

5. Compute  1
i

trialλ  and  1
B
trialσ  with expressions (5) to (9) using 0

t iF  as input 
argument for those expressions. 

6. Compute  1
vp
trialσ  using the following expression  

1  1  : 2vp e e B
trial trial trialdev Eσ μ σ⎡ ⎤= ⋅ −⎣ ⎦ 1  

For this purpose, use the value of 1
e
trialE  computed in the step 2 and the value of 

 1
B
trialσ  computed in the step 3. 

7. From  1
vp
trialσ  computed in the last step, compute: 1trialτ  and  1trialN , see 

expressions (13) and (14).  
8. As a by-product of the operations 4 to 7 it is necessary to compute the following 

tensors 

( )
[ ]

0

 1 0  1

1  1 0

 1

0

1:

2 : 1

3 : 2

4 :

5 : 1

t i

t i
trial trial

t i
trial trial trial

e
trial

t i

T B

T T N B N

T N T N B N

T dev E

T dev T dev B

=

= ⋅ = ⋅

= ⋅ = ⋅ ⋅

=

⎡ ⎤= = ⎣ ⎦

 1  

These five tensors { }1 2 3 4 5T ,T ,T ,T ,T  together with , are all the tensorial 
identities that are necessary to compute the 8 coefficients of the non-linear 
equations 

1trialN

( )1 ,f τ λ = 0  and ( )2 ,f τ λ 0= , expressions (70) and (71) respectively. 
9. Compute the following coefficients:  
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( )[ ]
( )( )

( )2

11: 1

12 : 2 2

13: 3

C tr T

C t tr sym T

C t tr T
θ

θ

=

⎡ ⎤= Δ ⋅ ⋅⎣ ⎦
⎡ ⎤= Δ ⋅⎣ ⎦

    [ ]
( )

[ ]

 1

 1

 1

2
 1

21: 2 4 :

22 : 2

23: 5 :

24 : 2 2 :

25 : 3 :

e
trial

e

trial

trial

trial

C T N

C t

C T N

C t dev sym T N

C t dev T N

θ

θ

θ

μ

μ

⎡ ⎤= ⋅⎣ ⎦
⎡ ⎤= − ⋅Δ⎣ ⎦

= −

⎡ ⎤= − ⋅Δ ⋅ ⎡ ⎤⎣ ⎦⎣ ⎦
⎡ ⎤= −Δ ⋅⎣ ⎦

 

 
 

The coefficients , ,  belong to the non-linear equation of 
expression 

11C 12C 13C
(70). On the other hand, the coefficients , , , 

 belong to the non-linear equation of expression 
21C 22C 23C 24C , 

25C (71). 
10. Compute  2

i
trialλ  and  2trialτ  (scalar identities from the “trial state 2”) from 

e
trial 2F and i

trial 2F  ; see expressions (76) and (77). 
11. Sort  1

i
trialλ  (computed in step 5) and 2

i
trialλ  (computed in the previous step) 

Assign the largest value to t t
upper

θ λ+ Δ  and the smallest value to t t
lower

θ λ+ Δ . 
12. From  1trialτ  (computed in step 7) and 2trialτ  (computed in step 10) keep the 

smallest one, which we will call lowτ , this value will be used as an initial guess 
in the first stage of the non-linear equation solver. 

13. Replace with t t
upper

θ λ+ Δ  into ( )2 , 0τ λf = , and find the τ  that satisfies this non-
linear equation using the Newton-Raphson method. Use 0 lowτ τ=  as an initial 
guess.  

14. Replace with t t
lower

θ λ+ Δ  into ( )2 , 0τ λf = , and find the τ  that satisfies this non-
linear equation using the Newton-Raphson method. Use the value of τ  obtained 
in the solution of the non-linear equation of the previous step as an initial guess. 

15. Sort the two values of τ  obtained in the steps 13 and 14. Assign the largest 
value to t t

upper
θ τ+ Δ  and the smallest value to t t

lower
θ τ+ Δ . 

16. In steps 11 and 15 we have determined the accurate upper and lower bounds for 
t tθ τ+ Δ  and t t iθ λ+ Δ , now, we define the initial guess for the two-variable Newton-
Raphson procedure as an average of the upper and lower bounds: 

[ ]0 0, : ;
2 2

Tt t t t t t t t
T upper lower upper lower

θ θ θ θτ τ λ λ
τ λ

+ Δ + Δ + Δ + Δ⎡ ⎤+ +
= ⎢ ⎥
⎣ ⎦

 

17. Solve the system of two non-linear equations with two unknowns  
and 

( )1 , 0f τ λ =

( )2 , 0τ λf =  using the Newton-Raphson method and the initial guess 

[ ]0 0, Tτ λ  computed in step 16. 

Each  iteration of the Newton-Raphson procedure will require the evaluation 
of the vector of residuals : 

thk
( ) ( )1 2, ; ,

T
f fτ λ τ λ⎡ ⎤⎣ ⎦

 

( )
( )

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 2

1
2

2

13 12 11 3,
, 21 22  23 24 25

k k kk k

L L Lk k k eff k eff k k eff k k

C C Cf
f C C C C C

γ τ γ τ λτ λ
τ λ

kγ τ μ λ μ λ γ τ μ λ γ τ τ

⎡ ⎤⋅ + ⋅ + −⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ −⎣ ⎦

 

 

This two last formulas for ( )1 ,k kf τ λ  and ( )2 ,k kf τ λ  are expressions (70) and 
(71) but rewritten in a more compact fashion, using the coefficients , , 11C 12C

Mecánica Computacional Vol XXVII, págs. 1003-1042 (2008) 1031

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



13C , , , ,  and computed in step 21C 22C 23C 24C 25C 9. 
In addition, each iteration will require the assembly, evaluation and inversion of 
the following Jacobian: 

( )
1 1

2 2
k k

f f

J ,
f f
τ λτ λ

τ λ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂= ⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 

Which again, uses the coefficients , , , , , ,  and 
 computed in step 

11C 12C 13C 21C 22C 23C 24C
25C 9. 

The result of this step is supposed to be the solution “vector” [ ],
Tt t t t iθ θτ λ+ Δ + Δ   

18. With the value of t tθ τ+ Δ ; obtained from the previous step; compute t tθ γ+ Δ  using 
expressions (12).  

19. If ( 0 15 ) then t t t .θ
θγ γ+ ΔΔ = ⋅Δ <

GOTO step 20.  
Else If ( 0 15.γΔ > ) then  

Interrupt the integration algorithm a make a new attempt using half the 
current time increment size. 

EndIf 
20. Compute the rate of inelastic deformation as  1:t t i t t

triald Nγ , where θ θ+ Δ + Δ= ⋅ t tθ γ+ Δ  
has been computed in step 18 and 1trialN  has been computed in step 7 

21. Compute 0
t t iFθ+ Δ  using the exponential mapping: 

( )0 0:t t i t t i t iF exp d t Fθ θ
θ

+ Δ + Δ= ⋅Δ ⋅  

Use the Padé approximant ( )( )2
2P exp x  to compute the exponential mapping 

within this operations, see expression (25). 
22. Compute 0

t t eFθ+ Δ  as ( ) 1

0 0 0:t t e t t t t iF F Fθ θ θ −+ Δ + Δ + Δ= ⋅  
23. If ( 1θ = ) then 

0 0

0 0

:

:

t t e t t e

t t i t t i

F F

F F

θ

θ

+Δ + Δ

+Δ + Δ

=

=
 

Else If ( 1θ ≠ ) then 
Re-compute t t idθ+ Δ  from  and .  0

t t eFθ+ Δ
0

t t iFθ+ Δ

Using this “new” rate of deformation gradient t t idθ+ Δ , compute : 0
t t iF+Δ

( )
0 0:t t i t t i t iF exp d t Fθ+Δ + Δ= ⋅Δ ⋅  

Subsequently, compute : 0
t t eF+Δ

( ) 1

0 0 0:t t e t t t t iF F F
−+Δ +Δ +Δ= ⋅  

End If 
24. With 0

t t eF+Δ  calculated (or defined) in step 23 compute t t eE+Δ  

( )0 0:
Tt t e t t e t t eE ln F F+Δ +Δ +Δ= ⋅  

Use the Padé approximant ( )2
2P ln x  for this operation. 

25. Compute the total Cauchy stress t tT+Δ  (spatial stress) using elastic relationship 
and the tensor t t eE+Δ  calculated in the previous step: 
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[ ]1 1: 2
3

t t e t t e e t t eT dev E k tr E
J

μ+Δ +Δ +Δ⎛ ⎞⎡ ⎤= ⋅ ⋅ + ⋅ ⋅ ⋅⎜ ⎟⎣ ⎦⎝ ⎠
1  

26. Store 0
t t eF+Δ  and 0

t t iF+Δ  and report the total stress t tT+Δ . 
27. Compute of the tangent stiffness matrix: see section 2.3 

 
 
It is important to remark that this implicit integration scheme makes use of 3 

Newton-Raphson procedures: see steps 13, 14 and 17. Two of this procedures are for a 
single equation with only one unknown (steps 13 and 14), and step 17 is for the system 
of two non-linear equations with two unknowns which requires the evaluation of a 2 2×  
Jacobian. 

Analytical derivation of the jacobians may not be recommendable, since it’s very 
easy to introduce an error in the process, in addition, it can be a quite time consuming 
task. To avoid the introduction of any error, in all the cases, the jacobians were derived 
analytically using GPL symbolic calculus software and directly exported to FORTRAN. 
Adaptation of the implicit numerical scheme presented in this article to different 
“variants” of the Arruda-Boyce constitutive model; which use different functions 
( ), lockf λ λ  and ( )γ τ ; is quite straightforward using this computational strategy, in fact, 

it only takes a few minutes.  
It is noteworthy that the analytical derivation of the 2 2×  jacobian requires the 

derivation of the scaling function ( ), lockf λ λ , consequently, it requires the derivation of 
the Inverse Langevín function. At this point, is where it turns be quite convenient, or at 
least practical, to have the inverse Langevín function defined as a single function and 
not as a function by parts.  

Apart from the procedures to solve the non-linear equations there are no other 
iterative processes, since logarithms, exponentials and square roots of second order 
tensors are computed using Padé approximants. In addition, no rotation matrix eR  is 
used at any stage of the integration scheme.  

It is important to mention that, in 3-dimensional analysis, it is necessary to evaluate 
the stress tensor a total of 7 times. The first time, it is evaluated compute the stress 
which will be reported to the finite element program. The other 6 times it is evaluated to 
compute the tangent stiffness matrix. The computational cost of these 6 re-computations 
can be reduced by using some information generated during the first stress-update 
procedure. More precisely, steps 10 to 16 can be eliminated during the 6 re-
computations of the stress tensor because we don’t need to obtain an accurate initial 
guess for the 2-variable Newton-Raphson procedure. The reason is that we already have 
a very accurate initial guess: when solving the systems ( )1 ,f τ λ 0=  and ( )2 , 0f τ λ =  in 

each of the 6 re-computations of the stress tensor, we just use the vector [ ],
Tt t t t iθ θτ λ+ Δ + Δ  

computed in the step 17 of the first stress update as an initial guess. 
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5 NUMERICAL EXPERIMENTS 
Three kinds of numerical experiments will be reported in this article: 

 Displacement-controlled uniaxial test: displacement ramp and unload ramp 
returning to the initial length, see Figure 3a and Figure 3b. 

 Load-controlled uniaxial test: load ramp starting from zero uniaxial stress 
and unload ramp returning to a zero stress state, see Figure 3c and Figure 3d.  

 A displacement controlled plane-stress indentation, see Figure 4 and Figure 5 
For each numerical experiment it will be reported: 

 The total number of increments which were required to complete the finite 
element analysis. 

 The total number of global equilibrium iterations required in the during the 
whole finite element analysis 

In addition, we will report the numerical performance of the Newton-Raphson 
procedures within the material routine for the Load-controlled uniaxial test, see Table 4. 

All the numerical results presented in this article for the implicit integration scheme 
were carried out with 1θ = , in other words, Backward Euler scheme. Other very 
interesting results were obtained for 0 5 1. θ≤ ≤  but for obvious reasons of space are not 
presented in this article.  

In all the cases, the set of 6 mechanical parameters of the model was the following 
one: 

{ } { }7
0; ; ; ; ; 251 7 ; 2898 ; 6 52 ; 2 92; 1 284 10 1 s; 0 962e e p L

lock base . MPa MPa . MPa . . . MPaμ λ μ λ γ τ −= ⋅�

which was taken from Bergström 2002. 
 
Displacement and load controlled and Uniaxial tests 
 

The goal of these two numerical experiments was to check the accuracy, stability and 
efficiency of the both kinds of integration algorithms. Particularly, the main interest was 
to find any weakness of the schemes which could eventually lead to the complete 
interruption of the computational process or blow up of the numerical solution. 

Displacement and load-controlled tests can be regarded as very similar experiments. 
However, that is not true. Actually, displacement and load controlled tests behave quite 
differently in a computational setting. In spite of its deceptively simple aspect, the load-
controlled test proved to be toughest numerical experiment carried out by the authors. 

It is much difficult to find the equilibrium of the momentum equation in the load-
controlled tests than in the displacement-controlled tests. For instance, while a constant  
tangent stiffness matrix (the elastic tangent stiffness matrix) can provisionally work in 
displacement-controlled uniaxial tests, it may not work at all in any load-controlled test.  

Furthermore, not only the constant tangent stiffness matrix failed in load-controlled 
uniaxial tests but also any symmetric (or symmetrized) tangent stiffness matrix. Since 
nonsymmetric equation solution is as much as four times as expensive as the 
corresponding symmetric system, unsymmetric tangent stiffness matrices are usually 
avoided (see ABAQUS theory manual). Consequently, by default, ABAQUS-Standard 
only takes the symmetric part of the tangent stiffness matrix provided by the material 
routine (see ABAQUS Analysis manual). Customary practice tells that the symmetric 
part of the tangent stiffness matrix can be good enough for most finite element 
procedures, the only penalty might be a mild increase in the number of equilibrium 
iterations. However, for the specific case of the Arruda-Boyce constitutive model in 
load-controlled uniaxial tests, the symmetrized-numerically-obtained tangent stiffness 
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matrix did not provide any satisfactory result at all. Actually, no load-controlled 
uniaxial tests could be completed using a symmetrized tangent stiffness matrix. It is 
important to mention that only the load-controlled uniaxial tests exhibited such a 
marked characteristic, for all the other numerical experiments presented in this article a 
symmetrized tangent stiffness matrix was enough. Nevertheless, to “play safe”, 
generalized use of the unsymmetric tangent stiffness matrix is always recommendable. 

All the uniaxial tests presented in this article were performed using a single element 
of unitary dimensions. The maximum length reached by the element was in the order of 
5 unities, in other words, the maximum “nominal strain” was in the order of 400%. The 
tangent stiffness matrix used by the global solver was the complete (the unsymmetric) 
numerically obtained tangent stiffness matrix. The methodology used for the numerical 
computation of the tangent stiffness matrix was presented in section 2.3. 

(b)
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Figure 3. Figure 3a: external load for the displacement-controlled uniaxial. Figure 3b: corresponding 

stress-strain results for the displacement-controlled test. Figure 3c: external load for the load-controlled 
uniaxial test. Figure 3d: corresponding stress-strain results for the stress controlled test. 

Displacement controlled 
uniaxial test Load controlled uniaxial test  

Explicit 
Midpoint rule 

Backward 
Euler 

Explicit 
Midpoint rule 

Backward 
Euler 

Total Number of increments  908 83 1591 79 
Total Number of equilibrium 
iterations 911 117 1605 125 

Table 3. Numerical performance of the Explicit and Implicit integration schemes in the displacement and 
stress controlled uniaxial tests 

It can be appreciated (see Table 3) that the relation between the number of 
increments used by the implicit and explicit integration schemes is approximately one 
order of magnitude (≈1/10) for the displacement controlled uniaxial test. For the case 
load-controlled uniaxial test, the difference is even larger: the implicit integration 
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scheme only requires ≈1/16 of the increments required by the explicit integration 
scheme. To evaluate the CPU time required for the computation with each integration 
algorithm, consider the total number of equilibrium iterations as directly proportional to 
the time consumed. 

In terms of accuracy, the explicit integration scheme is the reference, this algorithm 
performs very accurately. On the other hand, the implicit integration scheme does an 
outstanding job too: it can be appreciated that the crosses (the points provided by the 
results of the implicit integration scheme) lie very well over the curves provided by the 
explicit integration scheme, sees Figure 3b and Figure 3d. 

At internal level, it can be verified that the steps used to refine the initial guess (steps 
13 and 14 of the implicit algorithm described in section 4.6) use a relevant number of 
Newton-Raphson iterations, specially the step 13. However, they yield a very accurate 
initial guess. With that initial guess, only 4 iterations of the two-variable Newton-
Raphson procedure are required to reach a residual in the order of  for each 
function 

1610−

( )1 ,f τ λ  and ( )2 ,f τ λ . 
Additionally, it is important to comment a result that it’s not in the tables nor in the 

figures. In section 4.5, the authors discussed about the limitations that should be 
imposed in the maximum strain increment γΔ  to avoid undesired “non-representative” 
solutions. In this sense, the action taken by the authors at computational level is the step 
19 of the implicit integration scheme, which imposed the constraint 0 15.γΔ < . During 
the whole uniaxial tests the constraint 0 15.γΔ <  was violated in only 3 occasions, 
consequently, the UMAT requested 3 time increment cutbacks. Those cutbacks 
occurred during the unloading process, when the greatest rates of inelastic deformation 
occur because both the total stress (the elastic stress) and the backstress “push” in the 
same direction. Without those cutbacks the integration algorithm and the whole finite 
element model, might have crashed. Three cutbacks is a quite “acceptable price” paid 
for the use and abuse of the approximations (63), (64) and (65) into the formulation of 
the expressions for ( )1 ,f τ λ = 0  and ( )2 ,f τ λ 0= . In addition, taking into account that 
these pair of uniaxial tests constitute quite severe numerical experiments, it can be 
gathered that for general finite element analyses (not as severe as these ones) the UMAT 
may request not cutback at all. 

 
 Range 

(Min-Max) Average 

Newton iterations for step 13 2-30 9 
Newton iterations for step 14 1-5 4 
Newton iterations for the system of two 
equations (step 17) 1-5 4 

Table 4. Performance of the Newton-Raphson procedures within the material routine. The data were 
taken from the load-controlled uniaxial test.  

Plane stress indentation test 
 

The goal of this numerical experiment was to check the behavior of the explicit and 
implicit integration schemes in the context of inhomogeneous distribution of strains and 
strain rates and contact. In Figure 4, the reader can appreciate the geometric setup and 
boundary conditions of the finite element model. 

Again, the difference between the explicit and implicit integration algorithm schemes 
is approximately one order of magnitude (1/10) for the indentation test, see Table 5. In 
spite of the large time increments, the accuracy of the Backward Euler method is 
remarkable, the crosses (the points provided by the results of the implicit integration 
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scheme) lie very well over the “reference curve” provided by the explicit integration 
scheme, see Figure 5. 

 

10 mm. 

30 mm.

 

Figure 4. Indentation test: underformed geometric setup of the model and deformed shape showing Von 
Mises stress contours when the indenter reaches maximum depth (3 mm.). The indenter is an analytic 

rigid body (absolutely undeformable) with its rotational degrees of freedom constrained to zero.  
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Figure 5. Figure 5a: displacement of the indenter. Figure 5b: numerically obtained force–displacement 

curves for the indentation test. 

In the case of the indentation model, three alternative tangent stiffness matrices were 
tested for the implicit integration scheme: the numerically obtained tangent stiffness 
matrix, the symmetric part of the numerically obtained tangent stiffness matrix and the 
elastic tangent stiffness. The numerical performance for these three alternatives is 
presented Table 5. It can be appreciated that for “general” finite element analyses, the 
symmetric part of numerically obtained tangent stiffness matrix is enough. Furthermore, 
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the complete numerically obtained tangent stiffness matrix did not provide any 
additional benefit at all. 

Additionally, the constraint 0.15γΔ <  was not violated during the whole finite 
element analysis of the indentation test. Consequently, the UMAT routine didn’t request 
any time increment cutback. 

 
Backward Euler 

 Explicit 
midpoint rule 

Symmetrized-Numerically 
obtained tangent stiffness 

matrix 

Complete Numerically obtained 
tangent stiffness matrix 

Constant tangent 
stiffness matrix 

Total number of 
increments 1433 69 69 132 

Total number of 
equilibrium iterations 1592 176 176 612 

Table 5. Numerical performance of the Explicit and Implicit integration schemes in the plane stress 
indentation 

6 GENERAL OBSERVATIONS DISCUSSION AND COMMENTS 
The explicit midpoint rule combined with the time-stepping algorithm presented in 

this article turned to be quite reliable. In fact, this combination always did its work, 
completing all the finite element analysis which were tested. This is primarily a merit of 
the time-stepping algorithm presented in this article, which is based on the error formula 
of expression (35) or alternatively expression (44).  

The efficiency of the explicit integration scheme is quite notorious too. For instance, 
the displacement-controlled test in Figure 3b required 400 increments to apply the total 
displacement of 4 units and 508 increments to return the element to its initial length. 
This is clearly much less than the minimum of 10.000 increments suggested for instance 
in Saleeb 2000 or the 100.000 suggested in Arya 1996. Again, the merit belongs to the 
time-stepping algorithm. 

Some of the possible applications for this explicit integration scheme are the 
following ones: 

 A simple and fast approach to implement unified viscoplastic models using TLH 
formulations in the context of constitutive model development. 

 Computation of reference solutions. A good reference solution is not supposed 
to just be accurate, it must also provide many “discrete points” capable to 
resolve the most subtle details. Some details are difficult to analyze if there are 
only a few points in a curve, for instance, the transition from elastic behavior to 
plastic behavior in uniaxial tests, post-yielding strain softening, pressure 
dependence and fitting capabilities among others. In this sense, the time-
stepping algorithm presented in this article increases the resolution (adds more 
“points”) only when it counts, in other words, when the interesting phenomena 
happens and helps to keep the numerical solution deliberately smooth. In 
addition, reference solutions are used to qualify the accuracy of efficient 
integration schemes such as the implicit scheme presented in this article. 

 Numerical implementation of unified viscoplastic models in within Explicit 
(Dynamic) finite element codes. Clearly, Explicit finite element codes base their 
power in the fast computation of hundreds of thousands increments dealing with 
the most severe non-linearities. In this context, prompt computation of the 
material routine is a very important factor, perhaps, more important than 
stability of the numerical results provided by the material routine. Stability may 
not be important for simple reason: the time increments in Explicit finite 
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element analyses are so small that it is unlikely that the material routine 
(UMAT) could require (and hence request) smaller time increments than those 
provided by the Explicit Finite Element Solver. 

From the point of view of “numerical experimentation”, it is quite interesting the fact 
that enforcement of “local convergence” generally provided very stable solutions. On 
the other hand, from numerical analysis theory, it is known that “consistency + stability 
⇒  convergence” is a just a one way relation, consequently, the converse; “convergence 
⇒  consistency + stability”; is not generally true. However, for pragmatic purposes, the 
converse worked quite well.  

On the other hand, we have that the implicit numerical scheme for the Arruda-Boyce 
constitutive model turned to be particularly efficient allowing to use large time 
increments. 

The number of approximations and simplifications included in the analytical 
derivation of the conditions ( )1 ,f τ λ 0=  and ( )2 ,f τ λ 0=  should not be ignored. As a 
consequence of those approximations, the conditions 1 0f =  and  have a finite 
range of validity. Basically, these conditions loose its validity (and physical sense) if 

2 0f =

γΔ  takes large values. In a computational setting, the constraint imposed to γΔ  was 
violated in rare occasions. Consequently, it can be said that the massive use of the 
approximations (63), (64) and (65) only added minor limitations to the implicit 
integration scheme. However, the constraint imposed to the value of γΔ  should not be 
considered as an “accessory routine” of the integration scheme, the inclusion of that 
constraint is mandatory to guarantee robust analysis procedures. 

 It is important to note that the implicit integration scheme presented in this article is 
not limited to the original A-B model. Considering the A-B model just as an elementary 
basis, we can modify (or change) it’s flow rule ( )γ τ , modify (or change) its scaling 

( , lockf λ λ )  and add some scalar internal state variables in order to adapt it to specific 
applications. Playing with these aspects, it is possible to develop advanced constitutive 
models (capable to reproduce specific phenomena of polymers and biomaterials) and 
their corresponding numerical implementations. For instance, it is quite easy to adapt 
the implicit integration scheme presented in this article to a constitutive model with the 
following form: 

 Magnitude of the rate of inelastic deformation defined by the power law; see 
expression (79): 

 ( )
0

m

vp

τγ τ γ
τ
⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

�  (79) 

 The shear resistance vpτ  of the viscoplastic element does not need to be a 
constant, it can be modeled in rate-form as a scalar state variable as it has been 
done in Arruda 1993b, Bergström 2002 or Anand and Gurtin 2003. See 
expressions (80) and (81) depicting the functional dependencies and the 
application of the backward Euler-operator applied to the shear resistance vpτ .  

 ( )( )vp gτ γ τ=�  (80) 

 ( )( )t t t t t
vp vp t gτ τ γ+Δ +Δ= + Δ ⋅ τ  (81) 
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 We could add one modification more: keeping the original scaling function 
( ), lockλ λ  for the Hyperelastic model, the mechanical parameters pf μ  and L

lockλ  
can be modeled in rate-form becoming scalar state variables: 

 ( )( )p hμ γ τ=�  (82) 

 ( )( )t t p t p t tt hμ μ γ+Δ +Δ= + Δ ⋅ τ  (83) 

This last possibility is very interesting to model the evolution of “isotropic” 
damage (“degradation” of the elastic constants) in the hyperlastic element. This 
feature might be necessary to model cyclic behavior. 

In spite of these modifications, such a constitutive model can be implemented using 
the same integration algorithm presented in this article. The mathematical problem can 
be reduced to the determination of  ( ),t t i t tλ τ+Δ +Δ  from a system of two non-linear 
equations, just like it was done for the original A-B model. 

Additionally, the numerical procedure presented to compute the algorithmic tangent 
stiffness matrix turned to be quite efficient. A good measure of the computational 
efficiency (CPU time) is the total number of equilibrium iterations. Specifically looking 
at Table 5 it can be appreciated that the implicit integration scheme in combination with 
the elastic tangent stiffness matrix required 612 increments to complete the analysis, 
while the same integration scheme combined with the numerically obtained tangent 
stiffness matrix required just 176 increments. This is a considerable reduction in the 
global computational cost and CPU time.  

In other circumstances, the major concern related to the tangent-stiffness matrix is 
not efficiency, but rather obtaining a solution or no one at all. For instance, the complete 
numerically-obtained tangent-stiffness matrix is mandatory for the simulation of load 
(stress) controlled deformations processes in which occur relevant orientation of the of 
the material fibers (anisotropic evolution processes). On the other hand, we have that 
the symmetrized tangent stiffness matrix is quite enough for general displacement-
controlled multiaxial loading conditions in which only moderate strains and minor 
orientation of the material fibers occur. Any intermediate condition, between the two 
cases previously described, must be adjusted on case by case basis. 

Finally, it is important to remark that both numerical implementations do not use any 
eigen value computation nor rotation tensor. Not even the perturbation of the 
deformation gradient requires the application of eigen-decomposition. 

7 CONCLUSIONS 
Two simple numerical implementations for the Arruda-Boyce constitutive models 

have been presented in this article, one of them explicit and the other one implicit. Both 
material routines were coded as an UMAT for the software ABAQUS-STANDARD. 

The explicit integration scheme turned to be very stable and quite fast in spite of its 
natural limitations for maximum allowable size of the time increment size. Most the 
merits of its performance are due to the time-stepping presented in this article. The 
time-stepping algorithms presented in this article “intends” to enforce local converge of 
the numerical solution.  

In addition, this explicit integration algorithm is deliberately accurate and ideally 
suited for testing trial ideas, constitutive model development, computation of reference 
solutions and may work quite well in Explicit finite element codes. 

On the other hand, the implicit numerical implementation turned to be very efficient 
and quite accurate too. On the basis of the Arruda-Boyce constitutive model and its 
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kinematic framework, this numerical implementation can be easily modified to test 
other flow rules and hyperelastic models for the back stress which can include scalar 
state variables.  

Both computational implementations worked in combination with numerically 
obtained tangent stiffness matrix and the Padé approximants for the computation of 
square roots, natural logarithms and exponentials of second order tensors. 
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