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Abstract. A finite element implementation of a rate-dependent versionof the nonlocal crystal plasticity
theory of Gurtin (J Mech Phys Solids 50:5-32 (2002)) is presented. The algorithm used is equivalent
to a conventional forward gradient method when the nonlocalterms are absent. Attention is restricted
to small deformations so that geometry changes are neglected. A two dimensional analysis of simple
shear of a constrained single crystal strip with two symmetric slip systems is carried out. The results
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effects can substantially change the boundary layers.
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1 INTRODUCTION

Consideration of the effects of material rate sensitivity in single crystals has been analyzed
numerically for instance in Pierce et al. (1983) and Asaro and Needleman (1985). Consideration
of such effects permits also that certain combinations of strain hardening and crystal geometries,
which can not be analyzed by rate-independent formulations, be studied. Also, rate-dependent
formulations eliminate ambiguities in determining activeslip systems, since all slip systems
with a non-zero resolved shear stress contribute to the plastic deformation.

These studies were restricted to classical crystal plasticity theories. However, classical plas-
ticity predicts a size independent response, which is in disagreement with experiments when
gradients of plastic flow occur (see for instance Ebeling andAshby, 1966, Brown and Ham,
1971, Fleck et al. 1994, etc.). One source of size effects arises from the presence of geo-
metrically necessary dislocations (Nye, 1953, Ashby, 1970). To take into account this effect,
phenomenological nonlocal plasticity theories have been proposed as in Fleck and Hutchinson
(1993, 1997, 2001), Acharya and Bassani (2000), etc. Here, we are specifically focus on the
nonlocal theory of Gurtin (2002). In a previous study, Bittencourt et al. (2003), it was found
that a rate-independent implementation of Gurtin’s (2002)theory gave a good representation of
results of discrete dislocation plasticity calculations.

Numerical implementations of nonlocal plasticity theories using rate-dependent constitutive
laws can be found, for instance, in Borg et al (2006). Howeverthis work focuses on isotropic
plasticity. In the present paper, we present an algorithm todeal with nonlocal rate-dependent
crystal plasticity. The theory follows the work of Gurtin (2002) and the numerical implementa-
tion of rate sensitivity follows the work of Pierce et al. (1983).

The boundary value problem considered is simple shear of a constrained layer (Shu el al.,
2001). In this problem, a local plasticity theory would predict a uniform shear strain in the
layer. Discrete dislocation plasticity and various nonlocal plasticity theories give rise to a very
different behavior: the shear strain in the layer is not uniform, and boundary layers evolve with
increasing deformation.

We begin by outlining the nonlocal plasticity theory proposed in Gurtin (2002), restricted
to infinitesmal deformations and rate-dependent material behavior. Two sources of hardening
are accounted for in this theory; dissipative hardening associated with an increase in slip re-
sistance and energetic hardening associated with an increase in free energy due to a density of
geometrically necessary dislocations. The discretization of the nonlocal theory within a finite
element framework and the implicit time integration procedure are then described. Results for
simple shear of a constrained layer obtained using the present rate dependent implementation
are compare with results of the rate independent theory in Bittencourt et al. (2003).

2 FORMULATION

The present formulation is based on nonlocal crystal plasticity theory due to Gurtin (2002).
We restrict attention to small deformations and the material is considered rate-dependent.

The gradient of the displacement vector,ui, is decomposed as the sum of an elastic and a
plastic part. The plastic part occurs by crystallographic slip on a set of slip planes. Withs(β)

i

andm
(β)
i unit vectors specifying the slip direction and the slip plane normal, respectively, for

slip systemβ, the plastic part of the displacement gradient is given by

up
ij =

∑

β

γ(β)s
(β)
i m

(β)
j (1)
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with γ(β) the total slip on the systemβ. (We use Greek superscripts, without the summation
convention, to label the slip systems.)

The balance laws are derived from the principle of virtual work, in which fieldsπ(β) andξ
(β)
i

work-conjugate to slips and slip gradients are introduced:
∫

B

[

Tijδui,j+
∑

β

(

π(β)
− τ (β)

)

δγ(β)+
∑

β

ξ
(β)
i δγ

(β)
,i

]

dV =

∫

∂Bq

∑

β

q(β)δγ(β)dA+

∫

∂Bt

tiδuidA

(2)
HereTij is the standard (Cauchy) stress tensor withTij = Tji. Since eq. (2) must hold for
variationsδu andδγ(β), we have the classical balance

Tij,j = 0 (3)

and a microforce balance

π(α)
− τ (α)

− ξ
(α)
i,i = 0 (4)

Hereτ (α) are resolved stresses and can be calculated as

τ (α) = P
(α)
ij Tij , P

(α)
ij =

1

2

(

s
(α)
i m

(α)
j + s

(α)
j m

(α)
i

)

(5)

whereπ(α) is the flow resistance.
We consider power law rate sensitivity and writeπ(α) as:

π(α) = σ(α)f(γ̇(α)) = σ(α) γ̇
(α)

ȧ(α)

∣

∣

∣

∣

γ̇(α)

ȧ(α)

∣

∣

∣

∣

m−1

(6)

Finally, ξ(α)
i is termed a microstress and it is related to the net Burgers vector (or the density of

geometrically necessary dislocations). In the calculations here it has the form (Gurtin, 2002):

ξ
(α)
i = ℓ2π(α)s

(α)
i

∑

β

s
(α)
j s

(β)
j γ

(β)
,k s

(β)
k (7)

whereℓ is a characteristic length. In the absence of microstresses, we have a standard local
theory, as can be seen replacing eq. (6) in eq. (4).

The quantityσ(α) is the slip resistance and is written in the rate form as:

σ̇(α) =
∑

β

hαβ

∣

∣γ̇(β)
∣

∣ (8)

The form of the hardening modulushαβ matrix used here follows Pierce et al. (1983),

hαβ = qH + (1 − q)Hδαβ (9)

whereq is the ratio of latent hardening to self hardening (typically taken to be in the range
1 − 1.4).

Boundary conditions in which either

ti = σijnj or ui (10)
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and either
q(β) = ξ

(β)
i ni or γ(β) (11)

are prescribed at each point of the boundary. Subsequently,a boundary condition of the form
γ(β) = 0 is referred to as a micro-clamped boundary condition and a boundary condition of
the formq(β) = 0 is termed a micro-free boundary condition. Microscopic boundary condi-
tions were studied in details in Gurtin and Needleman (2004)and it was shown that the micro-
clamped boundary condition as defined above can be too restrictive in some cases.

3 FINITE ELEMENT IMPLEMENTATION

The finite element method is used as spatial discretization of the domain. Independent dis-
cretizations of the displacement fieldui(x1, x2) and the slip fieldγ(β)(x1, x2) are used. In each
finite element, these fields are related to nodal values according to

γ(β)(x1, x2) =

NN
∑

N=1

φN(x1, x2)Γ
N,(β) (12)

ui(x1, x2) =
NN
∑

N=1

φN(x1, x2)Ui
N (13)

whereNN is the number of nodes per finite element, andUi
N andΓN,(β) are the nodal values

of displacement and slip, respectively. Thus, the number ofunknowns per node is two plus the
number of slip systems. Eight node isoparametric quadraticelements with serendipity interpo-
lation functionsφN are used for bothui andγ(β). As a consequence,ui andγ(β) are continuous
across element boundaries, but the derivativesui,j andγ

(β)
,i are not. Within each element, the

integration in eq. (2) is carried out using3 × 3 integration points.
For a representative nodeN of finite elemente and timet + ∆t, we calculate

F N
i =

∫

Be

Tij,(t+∆t)φ
N
,j dv −

∫

∂Bet

ti,(t+∆t)φ
Nda (14)

MN,(β) =

∫

Be

{(

τ
(β)
(t+∆t) − π

(β)
(t+∆t)

)

φN
− ξ

(β)
i,(t+∆t)φ

N
,i

}

dv +

∫

∂Beq

q
(β)
(t+∆t)φ

Nda (15)

with the surface integrals appearing only if one or more sides of the element are on a surface
whereti or q(β) is prescribed. With the assembled vectors from eq. (14) and eq. (15) denoted
by F andM, respectively, nodal equilibrium at timet + ∆t requires that

F = 0 , M = 0 (16)

4 SOLUTION PROCEDURE

An incremental-iterative strain-driven algorithm is used. It is assumed that the configuration
at timet is in equilibrium and an equilibrium solution at timet+∆t is sought. It is assumed that
the configuration(Ui, Γ

(α)) at timet andt + ∆t are known. Current increment of slips(∆γ(α))
are associated to rate of slips by:

∆γ(α) = γ̇
(α)
(t+∆t)∆t (17)
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4.1 Integration of Stresses

In small-deformations, increments of the Cauchy stresses∆T ij can be calculated as1:

∆Tij = Lijkl

(

∆ǫkl −

∑

β

P
(β)
kl ∆γ(β)

)

(18)

∆γ(β) is the increment in slips, and is obtained from the finite element nodal values as

∆γ(β) =

NN
∑

N=1

φN∆ΓN,(β) (19)

∆ǫij is the increment in total strains, that can be calculated as

∆ǫij =
1

2
(∆ui,j + ∆uj,i) (20)

the gradients∆ui,j are calculated as for a conventional size independent solid. Then,

∆ui,k =
NN
∑

N=1

φN
,k∆UN

i (21)

Lijkl is the Hooke tensor

Lijkl = Kδijδkl + 2G(δikδjl −
1

3
δijδkl) (22)

K is the incompressibility modulus,G the shear modulus. The updated value of the stress tensor
is then:

Tij,(t+∆t) = Tij,(t) + ∆Tij (23)

Resolved stresses are updated according to eq. (5). The flow resistance can be also updated (see
eq. (8)) as

σ
(α)
(t+∆t) = σ

(α)
(t) +

∑

β

hαβ

∣

∣∆γ(β)
∣

∣ (24)

Increments of microstressesξ
(α)
i are calculated according equation eq. (7) as

∆ξ
(α)
i = ℓ2π(α)s

(α)
i

∑

β

s
(α)
j s

(β)
j ∆γ

(β)
,k s

(β)
k (25)

Updated microstress is then,
ξ

(α)
i,(t+∆t) = ξ

(α)
i,(t) + ∆ξ

(α)
i (26)

1In the first iteration of each time-step, when∆γ(α) is considered equal to the previous time-step value
(γ̇

(α)
(t) ∆t), a better approximation of Cauchy stresses can be obtained by eq. (47) (see Section4.2),

∆Tij = Ltan
ijkl∆ǫkl −

∑

α

∑

β

R
(α)
ij Mαβγ̇

(β)
(t) ∆t
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In eq. (25), the gradient of slips∆γ
(β)
,k comes from nodal values of slip∆Γ(β), as follows:

∆γ
(β)
,k =

NN
∑

N=1

φN
,k∆ΓN,(β) (27)

Because for a rate-dependent solid all points undergo visco-plastic flow, the stress update pro-
cedure is performed for all points of the body. By way of contrast, the strong form (eq. (4))
used for a rate-independent solid to decide whether a node isplastic or elastic (Bittencourt et al.
(2003)) is not used.

4.2 Forward Gradient Method

In this section an application of a forward gradient method to visco-plastic constitutive equa-
tion will be described. The formulation follows that in Pierce et al. (1983) but is here restricted
to small-deformations.

In order to build a tangent operator, as we will discuss later, the exponential term introduced
in equation eq. (6) is linearized. This linearization can be obtained by a Taylor expansion of
π

(α)
(t) as follows:

π
(α)
(t+∆t) = π

(α)
(t) +

dπ(α)

dt

∣

∣

∣

∣

(t)

∆t (28)

The above derivative can be written as:

dπ(α)

dt
= mσ(α) γ̇(α)

(ȧ(α))
2

∣

∣

∣

∣

γ̇(α)

ȧ(α)

∣

∣

∣

∣

m−2
∣

∣

∣

∣

∣

(σ)

dγ̇(α)

dt
+

γ̇(α)

ȧ(α)

∣

∣

∣

∣

γ̇(α)

ȧ(α)

∣

∣

∣

∣

m−1
∣

∣

∣

∣

∣

(γ̇)

dσ(α)

dt
(29)

Using eq. (8) and eq. (6), replacing eq. (29) in eq. (28) and identifyingsgn(∆γ(β)) with
sgn(γ̇

(β)
(t) ) = sgn(τ (β)), we have:

∆π(α) =
mπ(α)

γ̇(α)

∣

∣

∣

∣

(t)

∆γ̇(α) +
π(α)

σ(α)

∣

∣

∣

∣

(t)

∑

β

hαβ∆γ(β)sgn(τ (β)) (30)

This expression is the same used by Borg et al. (2006) to calculate increments of flow stress.
Considering that,

∆γ̇(α) = γ̇
(α)
(t+∆t) − γ̇

(α)
(t) (31)

and multiplying both sides of eq. (30) by ∆t, this equation can be also written as:

∆π(α) =
mπ(α)

∆γ(α)

∣

∣

∣

∣

(t)

∆γ(α) + mπ(α)
∣

∣

(t)
+

π(α)

σ(α)

∣

∣

∣

∣

(t)

∑

β

hαβ∆γ(β)sgn(τ (β)) (32)

Updated flow resistanceπ(α)
t+∆t is then:

π
(α)
t+∆t = σ(α) γ̇

(α)

ȧ(α)

∣

∣

∣

∣

γ̇(α)

ȧ(α)

∣

∣

∣

∣

m−1
∣

∣

∣

∣

∣

(t)

+ ∆π(α) (33)

which is the expression used in the weak form (eq. (15)) and leads to a symmetric tangent
matrix.
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Considering the strong/incremental form of local microscopic balance, it requires that

∆π(α)
− ∆τ (α) = 0 (34)

Replacing∆π(α) by equation (30) and isolating∆γ̇, we have

∆γ̇(α) =
γ̇(α)

mπ(α)

∣

∣

∣

∣

(t)

∆τ (α)
−

γ̇(α)

mσ(α)

∣

∣

∣

∣

(t)

∑

β

hαβ∆γ(β)sgn(τ (β)) (35)

Multiplying the equation by∆t and considering that at timet equilibrium was achieved (and
thenπ(α) = τ (α)),

∆γ(α) = γ̇
(α)
(t) ∆t +

γ̇(α)∆t

mτ (α)

∣

∣

∣

∣

(t)

∆τ (α)
−

γ̇(α)∆t

mσ(α)

∣

∣

∣

∣

(t)

∑

β

hαβ∆γ(β)sgn(τ (β)) (36)

The expression eq. (36) is the same as obtained by the forward gradient method of Pierce et al.
(1983).

With the small-deformation approximation∆τ (α) can be calculated as:

∆τ (α) = R
(α)
ij

(

∆ǫij −

∑

β

P
(β)
ij ∆γ(β)

)

(37)

where∆ǫij is the variation of total strain in the time step andR
(α)
ij is defined as

R
(α)
ij = LijklP

(α)
kl (38)

Replacing eq. (37) in eq. (36), gives

∆γ(α) = γ̇
(α)
(t) ∆t + Q

(α)
ij ∆ǫij − Q

(α)
ij

∑

β

P
(β)
ij ∆γ(β)

−

γ̇
(α)
(t) ∆t

mσ(α)

∑

β

hαβ∆γ(β)sgn(τ (β)) (39)

where we used

Q
(α)
ij =

∆γ
(α)
(t)

mτ (α)
Rij (40)

Equation (39) can be written in the compact form,

γ̇
(α)
(t) ∆t + Q

(α)
ij ∆ǫij =

∑

β

∆γ(β)Nαβ (41)

with

Nαβ = δαβ +

(

γ̇
(α)
(t) ∆t

m

)[

R
(α)
ij P

(β)
ij

τ (α)
+

hαβ

σ(α)
sgn(τ (β))

]

(42)

Inverting eq. (41) leads to
∆γ(α) = f (α) + F

(α)
ij ∆ǫij (43)

where
f (α) =

∑

β

Mαβ γ̇
(β)
(t) ∆t (44)
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and

F
(α)
ij =

∑

β

MαβQ
(β)
ij (45)

Mαβ is the inverse ofNαβ. The variation of Cauchy stress in the time step can be now calculated
as,

∆Tij = Lijkl

(

∆ǫkl −

∑

α

P
(α)
kl ∆γ(α)

)

(46)

and using eq. (43) in eq. (46),

∆Tij = Ltan
ijkl∆ǫkl −

∑

α

∑

β

R
(α)
ij Mαβ γ̇

(β)
(t) ∆t (47)

with
Ltan

ijkl = Lijkl −

∑

α

R
(α)
ij F

(α)
kl (48)

Figure 1: Simple shear of an elasto-viscoplastic layer of thicknessh with two active slip system.

4.3 Iterative Scheme

In order to achieve equilibrium, an iterative Newton-Raphson scheme is used as follows:

(

KUU KUΓ

KΓU KΓΓ

)(i−1)

(t+∆t)

{

∆U

∆Γ

}(i)

=

{

F

M

}(i−1)

(t+∆t)

(49)

whereF andM are the assembled values ofF N
i andMN,(α) and∆U and∆Γ are the assembled

values of∆UN
i and∆ΓN,(β), respectively. The matrix in eq. (49) can be called a tangent matrix

and is symmetric in the present context. The sub-matrices inside it are built from the derivatives

KUU =
∂F

∂U

∣

∣

∣

∣

(t+∆t)

, KUΓ =
∂F

∂Γ

∣

∣

∣

∣

(t+∆t)

, KΓU =
∂M

∂U

∣

∣

∣

∣

(t+∆t)

, KΓΓ =
∂M

∂Γ

∣

∣

∣

∣

(t+∆t)
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Figure 2: Shear stress-shear strain relations withH = 0 (no dissipative hardening), comparing the present rate-
dependent results with corresponding rate-independent results (Bittencourt et al., 2003).

At each iterationi, the system eq. (49) is solved,∆U and∆Γ are calculated andTij , ξ
(α)
i , etc

are updated and thenF andM. Iterations will occur until the Euclidean norm of∆F and∆M

are sufficiently small.

5 AN EXAMPLE PROBLEM

A simple shear of a crystalline constrained layer is analyzed here. This example has been
analyzed using discrete dislocation plasticity in Shuet al. (1999) and using rate-independent
crystal plasticity in Bittencourtet al. (2003).

A strip, of heighth in thex2-direction, is considered, with shearing along thex1-direction
as illustrated in Figure1. Plane strain and quasi-static loading conditions are assumed, and the
strip is unbounded in thex1- andx3-directions. The crystal is taken to have two symmetrically
oriented slip systems.

The macroscopic boundary conditions are

u1 = 0 , u2 = 0 alongx2 = 0;

u1 = U(t) = hΓ(t) , u2 = 0 alongx2 = h, (50)

whereΓ(t) is the prescribed shear. In the constrained layer problem werestrict attention to
monotonic loading, so that the prescribed shear rate satifies Γ̇ > 0.

In addition, all field quantities are required to be periodicin x1 with periodw; for exam-
ple, ui(x1, x2) = ui(x1 + jw, x2) for any integerj. For the local theory and for the discrete
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Figure 3: Shear strain distributions withH = 0 (no dissipative hardening) comparing the present rate-dependent
results with corresponding rate-independent results (Bittencourt et al., 2003) atΓ = 0.0218.

dislocation calculations, the only boundary conditions are eq. (50) and periodicity. However,
for the nonlocal theory microscopic boundary conditions are required. Here we specify micro-
free boundary conditions on the sides and micro-clamped boundary conditions on the top and
bottom of the region analyzed, i.e.

q(β) = ξ
(β)
i ni = 0 alongx1 = ±w (51)

γ(β) = 0 alongx2 = 0, h (52)

whereβ = 1, 2.
The slip plane orientation is specified by the angleθ(β) = ±θ, as shown in Figure1. For the

nonlocal theory, field quantities in the solution to this simple shearing boundary value problem
are independent ofx1 and macro-equilibrium requiresσ12 to be spatially uniform and it is the
only non-vanishing in-plane stress component.

In order to facilitate comparison with the discrete dislocation results in Bittencourtet al.
(2003), stress quantities in this Section are normalized bya reference valueτref = 50 MPa. Slip
systems are oriented atθ(β) = ±60o. The value of the shear modulus isµ = 526τref , Poisson’s
ratio is taken to beν = 0.33 and the flow strength is specified byπ0 = 0.309τref . Various values
of the dissipative hardening parameterH are used. The influence of rate-dependent parameters
of the constitutive law, (m andȧ) is also studied. When not mentioned their values arem = 0.04
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Figure 4: Shear strain distribution with various values of the dissipative hardeningH atΓ = 0.0218.

(which is higher than realistic for a ducile metal crystal atroom temperature) anḋa = 0.001s−1.
Latent hardening was not considered(q = 0).

Overall shear stress-shear strain curves for the symmetrically double slipping crystal are
shown in Figure2 for two values of the characteristic lengthℓ with no dissipative hardening,
i.e. H = 0. The rate of shearinġΓ was set equal to the reference rate of shearingȧ = 0.001s−1.

Varyingh/ℓ by a factor of 100 shows that a small increase of the overall hardening with de-
creasing size is predicted also by the rate-dependent nonlocal theory. The results here are similar
to the rate-independent case in Bittencourt et al. (2003). In Figure2, in the rate-independent
case, a sharp transition occurs from elastic to plastic range, while in the rate-dependent case,
the stress-strain curve in this region has a smooth transition which is a rate sensitivity effect,
that here is relatively high (m = 0.04).

Figure3 shows the shear strain2ǫ12 = du1/dx2 distribution for crystals again withH = 0.
The rate-independent numerical solution (see Figure3) is coincident with the analytical solution
given in Bittencourtet al. (2003), which gives a quadratic plastic slip profile. Numerical solu-
tions for a rate dependent crystal using the present algorithm are also shown in Figure3. The
results are very close to the rate-independent results for alarge characteristic length,h/ℓ = 1.25.
However, forh/ℓ = 125 the shear strain is essentially uniform across most of the layer, with
boundary layers at the edges. Thus, in contrast to the rate-independent results forH = 0, for a
rate dependent crystal a boundary layer profile can develop with H = 0.

Three values of the dissipative hardening parameterH were considered:H/τref = 0.2, 2
and20. The effect of non-zero dissipative hardeningH at fixed size (h/ℓ = 1.25) is shown
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Figure 5: Shear stress-shear strain relations withH/τref = 0.2, comparing the present rate-dependent results with
corresponding rate-independent results (Bittencourt et al., 2003).

in Figure4 at Γ = 0.0218. Dissipative hardening tends to change the shape of shear strain
distribution, from parabolic to nearly constant in the crystal bulk with boundary layers at the
edges, forH sufficiently large. However,H does not have as strong an effect on the strain
distribution as in the rate-independent case, at least for the properties here studied. The tendency
to decrease the thickness of the boundary layer with increasing H seen for a rate-independent
crystal (Bittencourt et al., 2003) is also observed here. However, a much larger value ofH is
necessary in the rate-dependent cases to have the same size effect as for the rate independent
cases. This tendency apparently depends on the layer size involved, since, the effect of strain
hardening on the strain distribution practically vanishesfor h/ℓ = 125. In this case, the strain
distribution is nearly uniform over most of the layer regardless the value ofH.

Effects of dissipative hardening on the overall shear stress-shear strain curves are shown in
figure5. The results are similar to the rate-independent case, withstresses only slightly higher
due to the aforementioned effect of rate sensitivity.

The effect of the rate parametersȧ andm on the overall stress-strain curves and on the strain
distribution are shown in Figures6, 7 and8. For these calculations, the rate of shearingΓ̇ was
taken equal tȯΓ = 0.1s−1. In all cases in these figuresh/ℓ = 1.25.

These parameters only change the initial flow stress in the present calculations. No signif-
icant change in strain distribution was observed (see Figure 8). For ȧ = 0.1, the initial flow
stress is similar to that for the rate-independent case. In this case the value oḟa is coincident
with the overall rate of shearing(Γ̇) imposed. As seen in Figure7 the effect of the rates (Γ̇ or
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Figure 6: Shear stress-shear strain relations withH/τref = 2; (h/ℓ = 1.25).

ȧ), decreases with the value of the rate sensitivity exponentm, as expected.

6 CONCLUDING REMARKS

A finite element implementation of the crystal plasticity theory of Gurtin (2002), considering
material rate-dependence has been presened. The implementation was used to solve the problem
of a crystal with two symmetric slip systems subject to simple shear. The results show that, as
for a rate independent crystal, the theory of Gurtin (2002) is able to capture size effects as seen
in the discrete dislocation calculations of Shu et al. (2001). These effects cannot be captured by
a local crystal plasticity theory.

The consideration of rate effects does not substantially change the overall stress-strain re-
sponse when compared to the rate-independent case (sinceȧ is equal to the prescribed displace-
ment rateΓ̇, see eq. (6)). The shear distribution throughout the crystal also doesnot change
substantially for large values of the characteristic length ℓ and for low or vanishing dissipative
hardeningH, i.e., the shear distribution is essentially parabolic regardless the rate effects. How-
ever, a much larger dissipative value of hardening is necessary to produce boundary layers for a
rate-dependent crystal for large characteristic lengths.But the most noteable difference between
the two constitutive descriptions occurs when the characteristic length is decreased. In contrast
to the rate-independent prediction, boundary layers do appear when dissipative hardening is
absent, i.e. whenH = 0.

The rate-dependent algorithm developed here is equivalentto the conventional forward gra-
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Figure 7: Shear stress-shear strain relations withH/τref = 2; (h/ℓ = 1.25).

dient method when the nonlocal terms are absent. This algorithm has stability advantages when
compared to a pure Euler algorthm, since an estimation of theslip values is used in the next
time-step, in place of the previous time step values. The algorithm also gains in simplicity
when compared to that for rate-independent plasticity, since all Gauss points are visco-plastic
and the strong form, eq. (4), of the microscopic balance does not need to be computed. Exten-
tions of the implemention presented here to more than two slip systems and to more complex
boundary value problems are being undertaken.
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