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Abstract. A finite element implementation of a rate-dependent versfdhe nonlocal crystal plasticity
theory of Gurtin (J Mech Phys Solids 50:5-32 (2002)) is pnésg.  The algorithm used is equivalent
to a conventional forward gradient method when the nonlterahs are absent. Attention is restricted
to small deformations so that geometry changes are nedleétéwo dimensional analysis of simple
shear of a constrained single crystal strip with two symimediip systems is carried out. The results
are compared with results of the corresponding rate-intliga theory. Boundary layers develop that
give rise to size effects. For the rate sensitivity in thecglations here, it is found that the boundary
layers are not as strongly dependent on the dissipativeehigl as in the rate-independent case. In
cases without dissipative hardening, the rate-dependssuits essentially coincide with those of the
rate-independent theory for large characteristic lengt@wvever, for small characteristic lengths, rate
effects can substantially change the boundary layers.
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1 INTRODUCTION

Consideration of the effects of material rate sensitivitgingle crystals has been analyzed
numerically for instance in Pierce et al. (1983) and AsaMeedleman (1985). Consideration
of such effects permits also that certain combinationsrafrshardening and crystal geometries,
which can not be analyzed by rate-independent formulatioastudied. Also, rate-dependent
formulations eliminate ambiguities in determining actslg systems, since all slip systems
with a non-zero resolved shear stress contribute to théi@eformation.

These studies were restricted to classical crystal plgstieeories. However, classical plas-
ticity predicts a size independent response, which is ingtsement with experiments when
gradients of plastic flow occur (see for instance Ebeling Asldby, 1966, Brown and Ham,
1971, Fleck et al. 1994, etc.). One source of size effectearirom the presence of geo-
metrically necessary dislocations (Nye, 1953, Ashby, 1970 take into account this effect,
phenomenological nonlocal plasticity theories have beepgsed as in Fleck and Hutchinson
(1993, 1997, 2001), Acharya and Bassani (2000), etc. Hezeare specifically focus on the
nonlocal theory of Gurtin (2002). In a previous study, Bitteurt et al. (2003), it was found
that a rate-independent implementation of Gurtin’s (2@B2pry gave a good representation of
results of discrete dislocation plasticity calculations.

Numerical implementations of nonlocal plasticity theenesing rate-dependent constitutive
laws can be found, for instance, in Borg et al (2006). Howdesrwork focuses on isotropic
plasticity. In the present paper, we present an algorithotetd with nonlocal rate-dependent
crystal plasticity. The theory follows the work of GurtinO@2) and the numerical implementa-
tion of rate sensitivity follows the work of Pierce et al. 3.

The boundary value problem considered is simple shear ohsti@ned layer (Shu el al.,
2001). In this problem, a local plasticity theory would prtda uniform shear strain in the
layer. Discrete dislocation plasticity and various noalqaasticity theories give rise to a very
different behavior: the shear strain in the layer is notamif, and boundary layers evolve with
increasing deformation.

We begin by outlining the nonlocal plasticity theory propdsn Gurtin (2002), restricted
to infinitesmal deformations and rate-dependent mateehabior. Two sources of hardening
are accounted for in this theory; dissipative hardening@ased with an increase in slip re-
sistance and energetic hardening associated with an semedree energy due to a density of
geometrically necessary dislocations. The discretimatifothe nonlocal theory within a finite
element framework and the implicit time integration prascedare then described. Results for
simple shear of a constrained layer obtained using the preat dependent implementation
are compare with results of the rate independent theorytieigiourt et al. (2003).

2 FORMULATION

The present formulation is based on nonlocal crystal gigtiheory due to Gurtin (2002).
We restrict attention to small deformations and the mdteyieonsidered rate-dependent.

The gradient of the displacement vectoy, is decomposed as the sum of an elastic and a
plastic part. The plastic part occurs by crystallographen a set of slip planes. Withﬁﬁ)
andmfﬂ) unit vectors specifying the slip direction and the slip glarormal, respectively, for
slip systems, the plastic part of the displacement gradient is given by

uly = oD (1)
B
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with v® the total slip on the systemi. (We use Greek superscripts, without the summation
convention, to label the slip systems.)

The balance laws are derived from the principle of virtuatiky@ which fieldsr(®) andg”
work-conjugate to slips and slip gradients are introduced:

/B [Tijgum 137 (59 — 1) 59943 ) 57’(@?)] JV = /8 ) S (95O dA+ /a LoudA
B B B

By
2)
HereT;; is the standard (Cauchy) stress tensor With= T7};. Since eq. Z) must hold for
variationsiu ands~'?), we have the classical balance

Tij; =0 (3)
and a microforce balance
(@) — @) _ £Z(C;) =0 (4)
Herer(® are resolved stresses and can be calculated as
1
(@ = Pi(j“‘)Tij , Pl.(ja) =5 (sﬁa)mg.“’ + s§“)m§“)) (5)

wherer(®) is the flow resistance.
We consider power law rate sensitivity and writ&) as:

SMORPICY m=1
7@ = 5@ f(5@)) = 5@ —
a [0

(6)

ale)

Finally, §i(°“) is termed a microstress and it is related to the net Burgetewéor the density of
geometrically necessary dislocations). In the calcutetioere it has the form (Gurtin, 2002):

£0) = Pl 5 37 (@50, 0)0) @
B
where/ is a characteristic length. In the absence of microstresgediave a standard local

theory, as can be seen replacing &).if eq. @).
The quantitys(®) is the slip resistance and is written in the rate form as:

d(a) - Z haﬁ }7(5)} (8)
B

The form of the hardening moduléis s matrix used here follows Pierce et al. (1983),

hop =qH + (1 — q)Hdup (9)
wheregq is the ratio of latent hardening to self hardening (typica#lken to be in the range
1—1.4).

Boundary conditions in which either

tl' = 0;n; O U (10)
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and either
B) — SZ@M or ~® (11)

are prescribed at each point of the boundary. Subsequartilyundary condition of the form
+¥) = 0 is referred to as a micro-clamped boundary condition andumdary condition of
the formq”® = 0 is termed a micro-free boundary condition. Microscopic faary condi-
tions were studied in details in Gurtin and Needleman (2@dd)it was shown that the micro-
clamped boundary condition as defined above can be tooatastrin some cases.

3 FINITEELEMENT IMPLEMENTATION

The finite element method is used as spatial discretizafidineodomain. Independent dis-
cretizations of the displacement fielg(z,, z») and the slip fieldy!®) (z,, z,) are used. In each
finite element, these fields are related to nodal values ditgpto

NN

YOy 25) =Y N (@, )N (12)
N=1

i(x1,2) Z o (21, 22)U, (13)

where N N is the number of nodes per finite element, &hti andI'™(?) are the nodal values
of displacement and slip, respectively. Thus, the numben&howns per node is two plus the
number of slip systems. Eight node isoparametric quadeddiments with serendipity interpo-
lation functionsy”¥ are used for both, andy(?). As a consequence,; and~?) are continuous
across element boundaries, but the derivatngsandyff) are not. Within each element, the
integration in eq. ) is carried out using x 3 integration points.

For a representative node of finite element and timet + At, we calculate

F = / Tjeran @l dv — / tieran ¢ da (14)
Be

OBey

N,(8) _ (8) N N
M (ﬁ)_/B {(T(t+At)_ (t+At)><z5 5(t+At>¢ }dv+/aB q(t+At)<z5 da (15)

with the surface integrals appearing only if one or more siofethe element are on a surface
wheret; or ¢\%) is prescribed. With the assembled vectors from é4) &nd eq. {5) denoted
by F andM, respectively, nodal equilibrium at tinte+ At requires that

F=0 , M=0 (16)

4 SOLUTION PROCEDURE

An incremental-iterative strain-driven algorithm is usttds assumed that the configuration
at timet is in equilibrium and an equilibrium solution at tinhe At is sought. It is assumed that
the configuratior{U;, I'(®)) at timet andt + At are known. Current increment of slipA~(@))
are associated to rate of slips by:

A = 7(t+At)At @
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4.1 Integration of Stresses

In small-deformations, increments of the Cauchy stredsEs can be calculated as
ATy = Liju <Aekl - P,gf>m<ﬁ>> (18)
s
A~ is the increment in slips, and is obtained from the finite elatmodal values as
NN
B) _ Z ¢NAFN,(6) (19)
N=1
Ag;; is the increment in total strains, that can be calculated as

Aeij = % (Aum- + AU%Z') (20)

the gradients\v; ; are calculated as for a conventional size independent sitien,

NN
Auip =Y SYAUY (21)
N=1
L;jx is the Hooke tensor
1
Lk = K0;;0, + 2G (0051 — §5ij5k1) (22)

K is the incompressibility modulus; the shear modulus. The updated value of the stress tensor
is then:
Tijwran) = Tijy + ATy (23)

Resolved stresses are updated according td@qgT e flow resistance can be also updated (see
eg. @) as @
O(1rat) = t r Z hag | Ay (24)

Increments of microstressezg‘ are calculated according equation €0).4s
Agi(a) _ EQTF(O‘)SEQ) Z (a) ( ﬁ)A’Yk Skﬁ) (25)
i
Updated microstress is then,

f( (t+A) = 51-(,6(!2) + A (26)

In the first iteration of each time-step, wheXxry(®) is considered equal to the previous time-step value
(ﬁ((t))At) a better approximation of Cauchy stresses can be obtained.l47) (see Sectiod.2),

AT = L Ay — Z Z R Mogi(y) At
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In eq. @5), the gradient of slipgwa(,f) comes from nodal values of sliznf(®), as follows:
NN
Ay =" g AT (27)
N=1

Because for a rate-dependent solid all points undergo \pstic flow, the stress update pro-
cedure is performed for all points of the body. By way of castr the strong form (eq.4))
used for a rate-independent solid to decide whether a nqaassc or elastic (Bittencourt et al.
(2003)) is not used.

4.2 Forward Gradient Method

In this section an application of a forward gradient metteds$co-plastic constitutive equa-
tion will be described. The formulation follows that in Rieret al. (1983) but is here restricted
to small-deformations.

In order to build a tangent operator, as we will discuss |aberexponential term introduced
in equation eq. §) is linearized. This linearization can be obtained by a dagikpansion of

(@) :
Ty as follows:

(o)
@ _ (@, dr
Tipar = T + dt " At (28)
The above derivative can be written as:
A (a m—2 (a (a (a m—1 @
dt (al@)? |al® dt al®) | ale@ dt
(0) (%)

Using eq. 8) and eq. 6), replacing eq. 29) in eq. @8) and identifyingsgn(A~)) with

sgn(%f))) = sgn(7?), we have:

(@)
AY 4 Trl ST R Ay @sgn(r®) (30)
t

g(a) (

ma(®)

(@) _
A 7(a)

’ (®)

This expression is the same used by Borg et al. (2006) to leédcincrements of flow stress.
Considering that,

(@) _ s () : (@)
A’y( ) = ’y(t—i—At) - ’Y(t) (31)

and multiplying both sides of eq30) by At, this equation can be also written as:

) ()
(@ _ 7T (@) (o) T 8) )
Ar'Y = A@ AV + mm ](t) + ey E hog Ay W sgn(T4) (32)
(t) t) s
Updated flow resistanoq(j‘f)m is then:
S(a) | 4 (a) m—1

[e3 « 7 7 «

7T§+)At = ol )(‘z(a) e + Ar@ (33)

(t)

which is the expression used in the weak form (efj5)X and leads to a symmetric tangent
matrix.
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Considering the strong/incremental form of local micrggcdpalance, it requires that
Ar® — AT = (34)
ReplacingA7(® by equation 80) and isolating\+, we have

;y(a)

(o
Ar@ — )
mm ()

(o)
AV = o @
(t) (t)

> hasAyPsgn(r ) (35)
B

Multiplying the equation by\¢ and considering that at timeequilibrium was achieved (and
thenr(® = (@),

(v . (CV) At
Ay@ — 3@ Ap 4 (@) _ 7
mr (@) ) mo (@

> hapAyPsgn(7@)  (36)
® g

The expression eg36) is the same as obtained by the forward gradient method ofé et al.
(1983).
With the small-deformation approximatiakr(*) can be calculated as:

B

whereAg;; is the variation of total strain in the time step aﬂﬁ) is defined as
R = LyuPy’ (38)

Replacing eq.37) in eq. (36), gives

: (a)
o Ty A

Ay = 4N+ QI Ae; — QY PP AP — Zhaﬁm“ sgn(r?)  (39)

g

m(o‘

where we used (o
_ Ay

(o)
@i’ = m7(®)

Equation 89) can be written in the compact form,

Ry (40)

At+Q 'Aeij =D Ay DN, (41)
B

with ) ()

(@) p(B
Nop = 04 2 ®) 42
B 5+ < m ) T(O‘) + 5@ Sgn(T ) (42)

Inverting eq. 41) leads to
Ay = £ 4 Fi Ay (43)
where
=3 Mo At (44)
B
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and
F =3 MosQ!) (45)
B

M,z is the inverse ofV, 3. The variation of Cauchy stress in the time step can be nowilzed
as,

AT, = Liju (Afkl - Z P,E?"Av(“)> (46)

and using eq.43) in eq. @6), )
ATy = ListAey — Y 3 RS Mg () At (47)

a f

with
L = Liju — Y R R (48)
o ™
; X2 /"//

h

N
4 \
’

:N\\\\\\\\W

w

Figure 1: Simple shear of an elasto-viscoplastic layer icktiessh with two active slip system.

4.3 lterative Scheme

In order to achieve equilibrium, an iterative Newton-Raphscheme is used as follows:

( Kyy Kyr )(il) { AU }(i) :{ F }(il) (49)
Kry Krr (t+At) AT M (t+At)

whereF andM are the assembled valuesif and V") andAU andAT are the assembled
values of AU andAT™:(9), respectively. The matrix in eq49) can be called a tangent matrix

and is symmetric in the present context. The sub-matrigedarit are built from the derivatives

OF oM

Ko =55 ~ U

) KFU ) KFF -

(t+At) or (t+At)

(t+At) (t+At)
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Figure 2: Shear stress-shear strain relations Wite= 0 (no dissipative hardening), comparing the present rate-
dependent results with corresponding rate-independsultsgBittencourt et al., 2003).

At each iteration, the system eq.4Q) is solved, AU andATI" are calculated and;, §§O‘), etc
are updated and thdnandM. Iterations will occur until the Euclidean norm &fF andAM
are sufficiently small.

5 ANEXAMPLE PROBLEM

A simple shear of a crystalline constrained layer is anayzere. This example has been
analyzed using discrete dislocation plasticity in &hal. (1999) and using rate-independent
crystal plasticity in Bittencoundt al. (2003).

A strip, of heighth in the z,-direction, is considered, with shearing along thedirection
as illustrated in Figuré&. Plane strain and quasi-static loading conditions arenasduand the
strip is unbounded in the; - andzs-directions. The crystal is taken to have two symmetrically
oriented slip systems.

The macroscopic boundary conditions are

u =0 uy =0 alongzy = 0;
up=U(t)=hl'(t) , wuy=0 alongzy, =h, (50)
whereI'(t) is the prescribed shear. In the constrained layer problemesteict attention to
monotonic loading, so that the prescribed shear rate sdfifie 0.

In addition, all field quantities are required to be periodic:; with periodw; for exam-
ple, u;(x1,x2) = u;(x1 + jw, x2) for any integerj. For the local theory and for the discrete
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lp~——
0.9 f—
0.8f—
0.7F
B ‘1
0.6 h/l =1.25 - rate deper‘#dent
- - — — — — local - rate dependent
DO0SFE —— h/l = 125 - rate dependent
- h/l = 1.25 - rate independent
04F . h/l = 125 - rate independent
o.3f— H
0.2k |
0.1 f—
0 : - | | |
0 0.01 0.02 0.03

Figure 3: Shear strain distributions witih = 0 (no dissipative hardening) comparing the present rateuiggnt
results with corresponding rate-independent results€Biourt et al., 2003) dt = 0.0218.

dislocation calculations, the only boundary conditiors @q. 60) and periodicity. However,
for the nonlocal theory microscopic boundary conditioresr@quired. Here we specify micro-
free boundary conditions on the sides and micro-clampeddemy conditions on the top and
bottom of the region analyzed, i.e.

¢® = E(ﬂ)ni =0 alongr; = +w (51)

i

7® =0 alongz, =0,h (52)

where = 1, 2.

The slip plane orientation is specified by the argjfé = +6, as shown in Figuré. For the
nonlocal theory, field quantities in the solution to this plenshearing boundary value problem
are independent af, and macro-equilibrium requires, to be spatially uniform and it is the
only non-vanishing in-plane stress component.

In order to facilitate comparison with the discrete distoma results in Bittencourét al.
(2003), stress quantities in this Section are normalizea t@ference value..; = 50 MPa. Slip
systems are oriented @t" = +60°. The value of the shear modulusiis= 5267, Poisson’s
ratio is taken to be = 0.33 and the flow strength is specified by = 0.3097,.¢. Various values
of the dissipative hardening parametémare used. The influence of rate-dependent parameters
of the constitutive law, /. anda) is also studied. When not mentioned their valuesiare 0.04
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Figure 4: Shear strain distribution with various valueshef dissipative hardening atI = 0.0218.

(which is higher than realistic for a ducile metal crystalam temperature) and= 0.001s~.
Latent hardening was not considergd= 0).

Overall shear stress-shear strain curves for the symrallyridouble slipping crystal are
shown in Figure2 for two values of the characteristic lengtiwith no dissipative hardening,
i.e. H = 0. The rate of shearing was set equal to the reference rate of sheatirg0.001s".

Varying h/¢ by a factor of 100 shows that a small increase of the overadldrang with de-
creasing size is predicted also by the rate-dependentcalrtleeory. The results here are similar
to the rate-independent case in Bittencourt et al. (2008Fidgure2, in the rate-independent
case, a sharp transition occurs from elastic to plasticeamipile in the rate-dependent case,
the stress-strain curve in this region has a smooth transithich is a rate sensitivity effect,
that here is relatively highnf = 0.04).

Figure3 shows the shear straita;, = du;/dz, distribution for crystals again witlf = 0.
The rate-independent numerical solution (see Figurecoincident with the analytical solution
given in Bittencouret al. (2003), which gives a quadratic plastic slip profile. Nuroakisolu-
tions for a rate dependent crystal using the present aktgorére also shown in Figui@ The
results are very close to the rate-independent resultdémga characteristic length/¢ = 1.25.
However, forh/¢ = 125 the shear strain is essentially uniform across most of theravith
boundary layers at the edges. Thus, in contrast to the mdependent results fdf = 0, for a
rate dependent crystal a boundary layer profile can deveiibpiv= 0.

Three values of the dissipative hardening paramé&tevere consideredH /r,of = 0.2,2
and20. The effect of non-zero dissipative hardenifgat fixed size /¢ = 1.25) is shown
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0.3

0.8
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0.7F _——
- T _ hi=12s
0.6 '
0.5F
|—-e B
%\N 0.4 rate dependent
o - — = rate independent

0.2

0.1

1 1 1 |
0 0.005 0.01 0.015 0.02

Figure 5: Shear stress-shear strain relations With,..; = 0.2, comparing the present rate-dependent results with
corresponding rate-independent results (Bittencourit €2@03).

in Figure4 atI" = 0.0218. Dissipative hardening tends to change the shape of shaam st
distribution, from parabolic to nearly constant in the ¢ay$ulk with boundary layers at the
edges, forH sufficiently large. HoweverH does not have as strong an effect on the strain
distribution as in the rate-independent case, at leashéprtoperties here studied. The tendency
to decrease the thickness of the boundary layer with incrgd$ seen for a rate-independent
crystal (Bittencourt et al., 2003) is also observed herewél@r, a much larger value @ is
necessary in the rate-dependent cases to have the sam#festa® for the rate independent
cases. This tendency apparently depends on the layer sagad, since, the effect of strain
hardening on the strain distribution practically vanisfeesh/¢ = 125. In this case, the strain
distribution is nearly uniform over most of the layer redass the value off.

Effects of dissipative hardening on the overall shear stef®ar strain curves are shown in
figure5. The results are similar to the rate-independent case,strigigses only slightly higher
due to the aforementioned effect of rate sensitivity.

The effect of the rate parameteérandm on the overall stress-strain curves and on the strain
distribution are shown in Figureg 7 and8. For these calculations, the rate of sheadingas
taken equal td' = 0.1s". In all cases in these figurég ¢ = 1.25.

These parameters only change the initial flow stress in teggnt calculations. No signif-
icant change in strain distribution was observed (see Eigur Fora = 0.1, the initial flow
stress is similar to that for the rate-independent casehitncase the value af is coincident
with the overall rate of shearin@“) imposed. As seen in Figuiethe effect of the rated(or
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1
0.9F -
0.8 N
0.7F
06k m=0.04, Ht =2
t’e E — — — — da/dt=0.001
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o F ——— ~ da/dt=1
0.4
0.3H
0.2F
0.1
0 ] [ [ [ [
0 0.005 0.01 0.015 0.02

Figure 6: Shear stress-shear strain relations With,..; = 2; (h/¢ = 1.25).

a), decreases with the value of the rate sensitivity expongrats expected.

6 CONCLUDING REMARKS

A finite element implementation of the crystal plasticitgtny of Gurtin (2002), considering
material rate-dependence has been presened. The imp&ioemas used to solve the problem
of a crystal with two symmetric slip systems subject to siegitear. The results show that, as
for a rate independent crystal, the theory of Gurtin (20823)le to capture size effects as seen
in the discrete dislocation calculations of Shu et al. (90These effects cannot be captured by
a local crystal plasticity theory.

The consideration of rate effects does not substantiaiiyngh the overall stress-strain re-
sponse when compared to the rate-independent case {Imegqual to the prescribed displace-
ment ratel’, see eq. ). The shear distribution throughout the crystal also dusschange
substantially for large values of the characteristic larfgand for low or vanishing dissipative
hardeningH, i.e., the shear distribution is essentially paraboli@ardiess the rate effects. How-
ever, a much larger dissipative value of hardening is necg$s produce boundary layers for a
rate-dependent crystal for large characteristic lend@@hsthe most noteable difference between
the two constitutive descriptions occurs when the charstielength is decreased. In contrast
to the rate-independent prediction, boundary layers deapwhen dissipative hardening is
absent, i.e. whei/ = 0.

The rate-dependent algorithm developed here is equivedghe conventional forward gra-
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N
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5 I ——— - m=0.04
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0 ] [ [ [ [
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Figure 7: Shear stress-shear strain relations With,..; = 2; (h/¢ = 1.25).

dient method when the nonlocal terms are absent. This #hgohas stability advantages when
compared to a pure Euler algorthm, since an estimation oslipevalues is used in the next
time-step, in place of the previous time step values. Therdlgn also gains in simplicity
when compared to that for rate-independent plasticitygesadl Gauss points are visco-plastic
and the strong form, eq4), of the microscopic balance does not need to be computadnEx
tions of the implemention presented here to more than twossistems and to more complex
boundary value problems are being undertaken.
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