Asociacion Argentina AMCL

de Mecanica Computacional

Mecéanica Computacional Vol XXVII, pags. 1225-1236 (articulo completo)
Alberto Cardona, Mario Storti, Carlos Zuppa. (Eds.)
San Luis, Argentina, 10-13 Noviembre 2008

MODELING OF STRAIN LOCALIZATION VIAATW  O-SCALE
FORMULATION.

Sebastian D’hers® and Eduardo N. Dvorkin°.

% Instituto Tecnoldgico de Buenos Aires. Av. E. étaB399 C1106ACD, Buenos Aires, Argentina.
sdhers@itba.edu.ar
® Engineering School University of Buenos Airesaviats and Structures Laboratory
Av. Las Heras 2214 C1127AAR, Buenos Aires, rirge
edvorkin@fi.uba.ar

Key Words: plasticity, localization, shear band, fractureoisgy discontinuity, multiple scale
formulation.

Abstract. Strain localization phenomena usually precedefdilare of different materials. A two-
scale finite element formulation was developed riowdeling localization processes in J2 plane
elastoplastic deformation processes. The formulai® based on the use of embedded strong
discontinuity modes which are triggered using asstrbased criterion. The new formulation does not
require a specific mesh refinement to model theallgation phenomena and provides mesh
independent results. The shear bands constitughevior is derived from the continuum properties
without the introduction of any ad hoc physical law
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1 INTRODUCTION.

The process of mechanical failure in most casesce®mpanied by a localization stage
where the strains tend to concentrate in smalloreggiof the domain. This localization
behavior impacts on the subsequent failure stageélse case of brittle materials like concrete,
strain localization leads to material fracture ardck openingln ductile materials like
metals, under certain stress/strain conditionserg marrow localized zone of intense plastic
deformation —named shear band- can appear, leadimgense material degradation and
failure. Thus the modeling of a solid body up tuttimate loading in such cases requires the
capability of modeling the strain localization pbarena.

The difficulty in modeling strain localization ph@mena using standard finite element
formulations lies in the different scales that néedbe used for the description of the global
deformation in the continuum and the localized defttion along zero width lines. The use
of standard finite element formulations for modglbrittle fracture or shear banding imposes
the width of the localized zone to be in the eletaesize scale; hence the results are mesh-
dependent.

For modeling the fracture of brittle materials lik@ncrete, rocks and ceramics, the fracture
initiation is defined by a tensile stress largearntha threshold value and during fracture
propagation. Softening is observed in the loadidgment response, but since a local
constitutive relation showing strain softening wasoved to be thermodynamically
unacceptable, the phenomenon is modeled introdicirgctomechanics concept: the fracture
energy, which has been shown to be a material pyop&he different finite element
methodologies that were developed for modelingftheture process in brittle materials are:
the smeared crack approacte(Borst and Nauta 1985the discrete crack approach
(Hillerborg et al. 1975 embedded discontinuous strain fieldSrt{z et al. 198y and
embedded discontinuous displacement fielddsofkin et al 1990 and 1991

Regarding ductile materials, many techniques haeenbproposed for shear band
modeling: enhanced strain fiel@itiz et al. 198Y, extended finite element methdddes et
al. 1999, unfitted finite elements techniquedldrgheim et al. 2005 and embedded
localization modes¥ hers and Dvorkin 2008

In the present work developments DByorkin et al. (1990, 1991are adapted for shear
band localizations as presentedOihers and Dvorkin (2008and the development initially
implemented for QMITC elementDyorkin et al. 199% is extended to mixed elements
(Bathe 199%h These embedded localization modes techniquesbeaadlassified under the
category of two-scale formulations, in which a fiseale is used to model the localization
phenomena (fracture in brittle materials and shaading in ductile materials). The article is
organized as follows: the triggering criteria isalissed in section 2, the localization mode is
presented in section 3, and the finite element emgntation is shown in section 4, some
results are plotted in section 5 and at last iti@@® conclusions are stated.

2 SHEAR BAND INCEPTION CRITERION.

We assume a J2 material model subject to elastapl@esformations, thus the following
equations apply in a Cartesian coordinate systemirffinitesimal strains and isotropic
hardeningDvorkin and Goldsmith (2005)
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Were‘oij are the components of the Cauchy stress tensione{configuration) thﬁkl are

the components of the fourth order elastic cortstiutensor,'e, are the components of the
deformation tensor; €, are the components of the plastic deformation ten'sy are the

components of the deviatoric part of the Cauchgssttensor.f is the yield function andoy

is the yield stress.
For plane geometry, a shear band can be charaxidniz a line with normaln and the

direction of the displacement jumM, which we call‘'mand a scalar bandwidth d as

proposed byttosen and Runesson (19@hdLarsson et al. (1993)

It has been shown bRice (1976)that the band orientation can be determined froen t
singularity of the acoustic stress tensor, sineevidmishing of the determinant of the acoustic
tensor at any point in the elastoplastic continudicates the fulfillment of the necessary
bifurcation condition. The elastoplastic constitatitensor(Simo and Hughes 19973, for
perfect plasticity,

thPZ(K_ZGjtg t9+2(3t!4—2(3t t (2)

where's is the deviatoric stress tenserthe elastic bulk modulus, G the elastic tangential

modulus, and | the symmetric fourth order identd@gsor. We indicate the tensorial product
between two tensors a and b as ab.

The acoustic tensor in a directiomis defined as,

tQEP :tn G%EP Dtn (3)

To investigate the stress state that producesdbessary localization condition we define
a new Cartesian coordinate system, with ‘X, in the ‘n-direction and'%, in the ‘m-
direction. In this system we state the conditiomsthe vanishing of the determinant of the
acoustic tensor and after some algebra we get,
~ )1, (3 -2G) 8% + (3 +4G) '82, + (3 + 4G) '8Z, + (6k +8G) 8?2
t — 2 —_
det( ij)_ge 11 2t2é .té 33 23 — O (4)

It has been shown iB’hers and Dvorkin (2008fhat for the fulfillment of the localization
condition the following must hold:8% # Oor 'S2, #0, and 'S’ ='§3,='82,='8>. = O
Therefore, for J2 plasticity, the localization eritt based on stress components is that:

a) Stress tensdg must be able to fulfill the above conditions foraientationx .
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b) The localization condition only depends on theent stress state in J2 plasticity.
c) The localization direction will lie in a planetlbogonal to one of the stress principal

axes, sincks;,='65,= 0

d) The necessary condition for localization aldmg directions X is: '6,,+'6,, =2 '6.,

e) The sufficient conditions for localization arendition (d) together with?, # 0
or'éZ, # 0.

If localization is not reached at plasticity ongbg stress conditions may be fulfilled later
on the deformation path.

3 LOCALIZATION MODE

The basis of the formulation is that when within element the localization indicator
triggers the inception of a shear band, the elemisplacement interpolation field is enriched
with a strong discontinuity, sdevorkin et al. (1990, 1991)long the predicted shear band
direction. If the strong discontinuity in the shdi direction is used as proposed for cohesive
frictional materials, element volume is not preserand J2 incompressibility condition is not
fulfilled, seefigure 1

Sliding line

Sliding line -

= Element geometry — Implied geometry

Figure 1. Volume change for sliding strong discoumties.

Instead we introduce a displacement mode that radtiel local scale of the shear bands
and preserves element volume to avoid such kinenmatonsistency. For this purpose we
decompose the displacements into continuous $£3le and localized scalg,. ,

Q =U + Qloc (5)

—=cont

Localized displacements are determined using tltaindisplacements corresponding to
the localized mode and a scalar value which isqfatte problem unknowns.

uloc = V Q (6)

To build @, we consider that linear quadrilateral undistoeiments have 8 eigenmodes,
which can be decomposed into: 3 rigid body modegldme change mode, 2 pure bending
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modes and 2 pure shear modes. We use the 2 paersbdes to build a base of pure shear
modes in the isoparametric natural element spasg 40 a pure shear eigenmode in any
desired direction can be obtained as a linear coatioin of this "shear base". However, in the
case of a distorted element, the resultant stya@ices has non zero volume change; hence we
enhance the "shear base" with the volume changenmigde, to enforce the plastic
incompressibility. As result the vectd® is determined so as to produce the maximum shear
at a direction coincident with the band direction @Zero volume change. The three modes, in
particular for 4 node elements are showriignire 2 andtable 1 being: ' ®,constant tensile
strain in one direction and constant compressivairstin the orthogonal direction;
'®, constant shear strain an@, constant volumetric strain. Modes extension tchéig
order elements is straightforward.

L PEPERRRES oll ol 32 8 -l
I ' 2 ”"T ' ‘
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Figure 2: Deformation Modes.

tq)l tq)i tq)rZ tq)g tq)f Iq)i th4 th4

® (05| 15| -05 15| -0 -1b 05 -15

‘®, | 1.5| 15| -05 05 -15 -15 05 -05
‘®, | 1.5| 15| -1.5/ 15 -15 -15 15 -15
Table 1: Deformation modes nodal coordinates.
The corresponding node displacements are,
= () - e, [0k ). - ste, (7)
in the equation above(r,s) are the isoparametric natural coordinat@,,gs) are
orthonormal base vectors along those directiong s$hbindex A=I..llIl indicates the

deformation mode and the upper index k=1...numbabdes, indicates the node.
Displacements inside elements are interpolatedhe usual manner using the shape
functionsh,,

¥, =h ¥, (8)

The combined strains induced by the localizatiordenare calculated using the strain-
displacements matrix calculated at the eIementeceB(b(O,yo) and a linear combination of
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the defined displacement modes with paramefgri( i),
§sb = B(XO’yO)(BIEI + BIIEII + BIII!III) (9)

The evaluation is carried out at element centeali®e the element volume can be exactly
integrated using one point Gauss quadrature.
Stating the element incompressibility constraintoight notation requests,

(81 +82)sb = O
1
(e, +¢, +e,), =0 (10

for plane stress /plane strain and axisymmetribleras respectively.
If B(xo,yo)(z,) and B(xo,yo)(i,l) are incompressible modes th@gs¥0 is adopted as no

volume correction is needed; elpg=1l. The maximum distortion condition at an angle
defined by the shear band direction, leads to,

& = tan(2a +gj (11)

(81 ~€)s

Solving the Egns.10) and (L1) the parameter$(p;) are determined.

4 VARIATIONAL FORMULATION

To determine the equilibrium equations we consttlat within the continua the band has
been triggered and we seek the equilibrium conditjoin for time t +At, via the principle of
virtual work, see figure 3.

S5 H—ﬂtm

51

t+ At

Figure 3: Localized body configuration.

We assume a geometrically linear analysis,

J3(econ )" Ooom v + 8(U, ) UE,, = [ouTp,ds + Jou™"p,ds  (12)

V,+V, S S,

The vector " F_ components are the nodal forces generated by hiear sband
localization modes. From egn$) @nd @) we get,
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u =cont H (U Y ®)

COI"It _B(U YQ) (13)

where H is the displacements interpolation maBixs the displacements-strains matrix, U
the nodal incremental displacements andhe generalized band parameter. The stress
increment is evaluated at the continuum scale,

t+AL _ +LCEP
0 COI"It 0 = cont g gcont

(14)

To establish the band forces evolution along aremental step we relate the continuum
scale to the shear band scale postulating thaintremental localized strains equal the
incremental continuum strains produced by the Ipedldisplacement mode,

€4, =BYO (15)

Hence, the relation between the incremental eqemigblastic deformatiOI(E) and the
localized strains{y) is,

2 _2 p p

e =26l e] =2eLAc, = VO'BTAB Oy = 2V’ (16)

were A is the matrix required to preserve the dyaginsorial product in Voight notation.
The equivalent plastic strain and band parametearreinents are "™ g='E+¢
and**y="y+y. We model the behavior of the band as rigid-ptastius being active only in

loading. As we keep the shear band direction cah$ta every localized element e®) has
to be fulfilled along every incremental deformatistep, therefore the stress tensor has to
evolve radially,

"o, =k'o, , k=21 (17)

I] 1

During the deformation process, the material resyainthe plastic range, hence its yield
stress evolves radially,

"o, =k o, (18)
As a consequence of these radial evolutions barddavolve radially; hence,
"Ey =k 'Fq (19)
and so witHH the hardening at time t,
+ ‘H
‘ “Esb:tEsb[HMj (20)
o
y

Replacing eqns1@), (14) and @O) into eq. (2) and solving fordU and dy we get,

_®TIK
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where,

u 2
Vi+V,

t+AtB — J’HT HmEdV (22)

S1+S,

IET tg dv
$1+S,

tK — J’BTHAthdeV

'F

Since the above eq2l) corresponds to the linearized step we haveetai¢ for solving
the incremental step using Newton iterations (seekampleBathe 199%.

5 NUMERICAL RESULTS

To test the new formulation we present a planarstiaidirectional extension specimen
using J2 plasticity for an elastic/ perfectly piashaterial model, see figure 4. In the examples
we consider a material with E=200GRas 0.3,0y = 600MPa. The localization is induced by
a reduction of 50% in the yield stress of the coalement.

L Sym

11t

- Bym

Figure 4: Plane strain test

In figure 5, 6 and 7 we present convergence stuidieshe elements Q1P0, Q2P1 and
QMITC using undistorted elements which display aoellent convergence when the mesh is
refined without showing mesh dependency. The plastergy dissipated by the continuum,
which as expected decreases for localized elenvdmts the mesh is refined and the plastic
energy dissipated by the localization modes, wlishtexpected increases when the mesh is
refined. In figure 8 results for the 16x24 mesh@atted for regular and distorted meshes for
element QMITC.
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Figure 5: Element Q1P0 convergence studies
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Figure 6: Element Q2P1 convergence studies
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Figure 7: Element QMITC convergence studies
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Continuurmn Equivalent Plastic Strain Band Equivalent Flastic Strain
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Figure 8: Equivalent plastic stain for element QI&Iih distorted and undistorted meshes

For the sake of completeness, we present resulfigune 9 for material with softening
plastic behavior with ET = ~E/f@nd E = 200GPa;, = 0.3 and’sy = 600MPa. We present,
the results obtained in simple traction using tia@dard QMITC element formulation and the
element enhanced with localization modes. The stahtbrmulation provides a very mesh
dependent post-yielding result; however, the rgsudtiuced by our new formulation is quite
mesh independent.

Load - Displacement QMITC Localized Load - Displacement QMITC

B000 - G000 -

5000 - a000 -

4000 - 4000 ¢
= =
= 3000 - 3000 F
[1d [ud
5 5

2, QMITC LOC Bx12 2 aMITC 8212

— QMITC LOC 16x24 — OMITC 16x24
(o, ——— QMITC LOC 32x48 (Ll — OMITC 37:4E
D 1 1 1 1 1 1 1 D 1 1 1 1 1 1 ]
0 0.m 0.0z 0.03 0.04 005 006 0.07 ] 0.0$1 0.02 0.03 0.04 0.05 0.08 0.07
Displacement [mm)] Displacement [mrm]

Figure 9: Localization response to material softgni
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6 CONCLUSIONS

A two-scale finite element formulation for modelisgear band localizations in J2 plastic
deformation processes based on the use of embstided discontinuity modes triggered via
a stress based criterion has been discussed. frhal&tion has been implemented in QMITC,
Q1P0 and Q2P1 elements with similar results.

From the physical point of view, the new formulatidoes not require the definition of
non-physical strain softening stress/strain refetiand does not use material properties like
fracture energy, which have not been defined nasueed in the environment of J2 plasticity.

Regarding mesh aspects, it does not require afgpecesh refinement to model the
localization phenomena, provides mesh independEnilts even if a softening stress/strain
relation is used and results are quite insensitivedement distortions.

Implementation is quite straight forward as thealmation algorithm lives at element
level, uses the same integration rules and schasdise standard elements and localization
parameters appear at element level and can be meedieut before assembly.
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