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Abstract. Strain localization phenomena usually precede the failure of different materials. A two-
scale finite element formulation was developed for modeling localization processes in J2 plane 
elastoplastic deformation processes. The formulation is based on the use of embedded strong 
discontinuity modes which are triggered using a stress based criterion. The new formulation does not 
require a specific mesh refinement to model the localization phenomena and provides mesh 
independent results. The shear bands constitutive behavior is derived from the continuum properties 
without the introduction of any ad hoc physical law. 
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1 INTRODUCTION. 

The process of mechanical failure in most cases is accompanied by a localization stage 
where the strains tend to concentrate in small regions of the domain. This localization 
behavior impacts on the subsequent failure stages. In the case of brittle materials like concrete, 
strain localization leads to material fracture and crack opening. In ductile materials like 
metals, under certain stress/strain conditions, a very narrow localized zone of intense plastic 
deformation –named shear band– can appear, leading to intense material degradation and 
failure. Thus the modeling of a solid body up to its ultimate loading in such cases requires the 
capability of modeling the strain localization phenomena.  

The difficulty in modeling strain localization phenomena using standard finite element 
formulations lies in the different scales that need to be used for the description of the global 
deformation in the continuum and the localized deformation along zero width lines. The use 
of standard finite element formulations for modeling brittle fracture or shear banding imposes 
 the width of the localized zone to be in the elements size scale; hence the results are mesh-
dependent. 

For modeling the fracture of brittle materials like concrete, rocks and ceramics, the fracture 
initiation is defined by a tensile stress larger than a threshold value and during fracture 
propagation. Softening is observed in the load-displacement response, but since a local 
constitutive relation showing strain softening was proved to be thermodynamically 
unacceptable, the phenomenon is modeled introducing a fractomechanics concept: the fracture 
energy, which has been shown to be a material property. The different finite element 
methodologies that were developed for modeling the fracture process in brittle materials are: 
the smeared crack approach (de Borst and Nauta 1985), the discrete crack approach 
(Hillerborg et al. 1976), embedded discontinuous strain fields (Ortiz et al. 1987) and 
embedded discontinuous displacement fields (Dvorkin et al 1990 and 1991). 

Regarding ductile materials, many techniques have been proposed for shear band 
modeling: enhanced strain field (Ortiz et al. 1987), extended finite element method (Möes et 
al. 1999), unfitted finite elements techniques (Mergheim et al. 2005) and embedded 
localization modes (D´hers and Dvorkin 2008). 

In the present work developments by Dvorkin et al. (1990, 1991) are adapted for shear 
band localizations as presented in D´hers and Dvorkin (2008), and the development initially 
implemented for QMITC elements (Dvorkin et al. 1996) is extended to mixed elements 
(Bathe 1996). These embedded localization modes techniques can be classified under the 
category of two-scale formulations, in which a fine scale is used to model the localization 
phenomena (fracture in brittle materials and shear banding in ductile materials). The article is 
organized as follows: the triggering criteria is discussed in section 2, the localization mode is 
presented in section 3, and the finite element implementation is shown in section 4, some 
results are plotted in section 5 and at last in section 6 conclusions are stated. 

2 SHEAR BAND INCEPTION CRITERION. 

We assume a J2 material model subject to elastoplastic deformations, thus the following 
equations apply in a Cartesian coordinate system for infinitesimal strains and isotropic 
hardening, Dvorkin and Goldsmith (2005) 
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Were ij
t σ  are the components of the Cauchy stress tensor at time (configuration) t, E

ijkl
t C are 

the components of the fourth order elastic constitutive tensor, kl
t ε are the components of the 

deformation tensor, P
kl

t ε are the components of the plastic deformation tensor, ij
t s  are the 

components of the deviatoric part of the Cauchy stress tensor, ft  is the yield function and y
t σ  

is the yield stress. 

For plane geometry, a shear band can be characterized by a line with normal nt  and the 

direction of the displacement jump [ ][ ]ut , which we call mt and a scalar bandwidth d as 

proposed by Ottosen and Runesson (1991) and Larsson et al. (1993).  
It has been shown by Rice (1976) that the band orientation can be determined from the 

singularity of the acoustic stress tensor, since the vanishing of the determinant of the acoustic 
tensor at any point in the elastoplastic continua indicates the fulfillment of the necessary 
bifurcation condition. The elastoplastic constitutive tensor (Simo and Hughes 1997) is, for 
perfect plasticity, 
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where st  is the deviatoric stress tensor, κ the elastic bulk modulus, G the elastic tangential 

modulus, and I the symmetric fourth order identity tensor. We indicate the tensorial product 
between two tensors a and b as ab. 

The acoustic tensor in a direction nt is defined as, 

 nCnQ tEPttEPt ⋅⋅=  (3) 

 To investigate the stress state that produces the necessary localization condition we define 

a new Cartesian coordinate system i
t x̂ , with 1x̂t  in the nt -direction and 2x̂t  in the mt -

direction. In this system we state the conditions for the vanishing of the determinant of the 
acoustic tensor and after some algebra we get,  
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It has been shown in D’hers and Dvorkin (2008) that for the fulfillment of the localization 
condition the following must hold: 02

12 ≠ŝt  or 02
13 ≠ŝt , and 02

23
2
33

2
22

2
11 ==== ŝŝŝŝ tttt . 

Therefore, for J2 plasticity, the localization criteria based on stress components is that: 

a) Stress tensor σt  must be able to fulfill the above conditions for an orientation x̂t . 
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b) The localization condition only depends on the current stress state in J2 plasticity. 
c) The localization direction will lie in a plane orthogonal to one of the stress principal 

axes, since 02
23

2
23 =σ= ˆŝ tt . 

d) The necessary condition for localization along the directions x̂t  is:  332211 2 σ=σ+σ ˆˆˆ ttt  

e) The sufficient conditions for localization are condition (d) together with 02
12 ≠σ̂t  

or 02
13 ≠σ̂t . 

If localization is not reached at plasticity onset, the stress conditions may be fulfilled later 
on the deformation path.     

3 LOCALIZATION MODE 

The basis of the formulation is that when within an element the localization indicator 
triggers the inception of a shear band, the element displacement interpolation field is enriched 
with a strong discontinuity, see Dvorkin et al. (1990, 1991), along the predicted shear band 
direction. If the strong discontinuity in the sliding direction is used as proposed for cohesive 
frictional materials, element volume is not preserved and J2 incompressibility condition is not 
fulfilled, see figure 1.  

 
Figure 1. Volume change for sliding strong discontinuities. 

Instead we introduce a displacement mode that models the local scale of the shear bands 
and preserves element volume to avoid such kinematic inconsistency. For this purpose we 
decompose the displacements into continuous scale contU   and localized scale locU , 

 loccont UUU +=  (5) 

Localized displacements are determined using the nodal displacements corresponding to 
the localized mode and a scalar value which is part of the problem unknowns. 

 Θγ=locU  (6) 

To buildΘ , we consider that linear quadrilateral undistorted elements have 8 eigenmodes, 
which can be decomposed into: 3 rigid body modes, 1 volume change mode, 2 pure bending 
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modes and 2 pure shear modes. We use the 2 pure shear modes to build a base of pure shear 
modes in the isoparametric natural element space (r,s) so a pure shear eigenmode in any 
desired direction can be obtained as a linear combination of this "shear base". However, in the 
case of a distorted element, the resultant strain space has non zero volume change; hence we 
enhance the "shear base" with the volume change eigenmode, to enforce the plastic 
incompressibility. As result the vector Θ  is determined so as to produce the maximum shear 
at a direction coincident with the band direction and zero volume change. The three modes, in 

particular for 4 node elements are shown in figure 2 and table 1, being: I
t
Φ constant tensile 

strain in one direction and constant compressive strain in the orthogonal direction; 

II
t
Φ constant shear strain and III

t
Φ  constant volumetric strain. Modes extension to higher 

order elements is straightforward. 

 
Figure 2: Deformation Modes. 
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I
t
Φ  0.5 1.5 -0.5 1.5 -0.5 -1.5 0.5 -1.5 

II
t
Φ  1.5 1.5 -0.5 0.5 -1.5 -1.5 0.5 -0.5 

III
t
Φ  1.5 1.5 -1.5 1.5 -1.5 -1.5 1.5 -1.5 

Table 1: Deformation modes nodal coordinates. 

The corresponding node displacements are, 

 ( )[ ] ( )[ ] s
k

s
k
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t
r

k
r

k
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t eser −Φ+−Φ=Ψ  (7) 

in the equation above ( )s,r  are the isoparametric natural coordinates, ( )sr e,e  are 

orthonormal base vectors along those directions; the subindex A=I...III indicates the 
deformation mode and the upper index k=1...number of nodes, indicates the node. 

Displacements inside elements are interpolated in the usual manner using the shape 
functions kh , 

 k
A

t
kA

t h ΨΨ =  (8) 

The combined strains induced by the localization mode are calculated using the strain-
displacements matrix calculated at the element center ( )00 y,xB  and a linear combination of 
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the defined displacement modes with parameters (βI, βII, βIII), 

 ( )( )IIIIIIIIIIIIsb y,xB ΨΨΨε β+β+β= 00   (9) 

The evaluation is carried out at element center because the element volume can be exactly 
integrated using one point Gauss quadrature.  

Stating the element incompressibility constraint in Voight notation requests,  
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for plane stress /plane strain and axisymmetric problems respectively.  
If ( )( )Iy,xB Ψ00  and ( )( )IIy,xB Ψ00  are incompressible modes then β3=0 is adopted as no 

volume correction is needed; else β3=1. The maximum distortion condition at an angle α, 
defined by the shear band direction, leads to, 
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Solving the Eqns. (10) and (11) the parameters (βI,βII) are determined. 

4 VARIATIONAL FORMULATION 

To determine the equilibrium equations we consider that within the continua the band has 
been triggered and we seek the equilibrium configuration for time t + ∆t, via the principle of 
virtual work, see figure 3.  

 
Figure 3: Localized body configuration. 

We assume a geometrically linear analysis,  

 ( ) ( ) ∫∫∫
+++
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2121

21
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The vector sb
∆tt F+  components are the nodal forces generated by the shear band 

localization modes. From eqns. (5) and (6) we get,  
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where H is the displacements interpolation matrix, B is the displacements-strains matrix, U 
the nodal incremental displacements and γ the generalized band parameter. The stress 
increment is evaluated at the continuum scale, 

 cont
EPt

cont
t

cont
∆tt

εCσσ +=+  (14) 

To establish the band forces evolution along an incremental step we relate the continuum 
scale to the shear band scale postulating that the incremental localized strains equal the 
incremental continuum strains produced by the localized displacement mode, 

 Θγ=ε Bsb  (15) 

Hence, the relation between the incremental equivalent plastic deformation ( )ε  and the 

localized strains ( )γ  is, 
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were A is the matrix required to preserve the dyadic tensorial product in Voight notation. 
The equivalent plastic strain and band parameter increments are ε+ε=ε∆+ ttt  

and γ+γ=γ∆+ ttt . We model the behavior of the band as rigid-plastic, thus being active only in 
loading. As we keep the shear band direction constant for every localized element eq. (9) has 
to be fulfilled along every incremental deformation step, therefore the stress tensor has to 
evolve radially,  

 1≥=+ k,σkσ ij
t

ij
∆tt   (17) 

During the deformation process, the material remains in the plastic range, hence its yield 
stress evolves radially, 

 y
t

y
∆tt σkσ =+  (18) 

As a consequence of these radial evolutions band forces evolve radially; hence, 
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and so with tH the hardening at time t, 
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Replacing eqns. (13), (14) and (20) into eq. (12) and solving for δUand γδ we get,  

 ( )







−
−=





































 ϕ
+−

−

+

+

sb
t

sb
∆ttT

t∆tt

y
t

t

sb
tT

u
tT

u
tT

u
t

u
t

FF

FRU

σ

γH
FKK

KK

ΘγΘΘΘΘ

Θ

3
2  (21) 

Mecánica Computacional Vol XXVII, págs. 1225-1236 (2008) 1231

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



where, 
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Since the above eq. (21)  corresponds to the linearized step we have to iterate for solving 
the incremental step using Newton iterations (see for example Bathe 1996). 

5 NUMERICAL RESULTS 

To test the new formulation we present a plane strain unidirectional extension specimen 
using J2 plasticity for an elastic/ perfectly plastic material model, see figure 4. In the examples 
we consider a material with E=200GPa, ν = 0.3, σy = 600MPa. The localization is induced by 
a reduction of 50% in the yield stress of the corner element.  

 
Figure 4: Plane strain test 

In figure 5, 6 and 7 we present convergence studies for the elements Q1P0, Q2P1 and 
QMITC using undistorted elements which display an excellent convergence when the mesh is 
refined without showing mesh dependency. The plastic energy dissipated by the continuum, 
which as expected decreases for localized elements when the mesh is refined and the plastic 
energy dissipated by the localization modes, which as expected increases when the mesh is 
refined. In figure 8 results for the 16×24 mesh are plotted for regular and distorted meshes for 
element QMITC. 
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Figure 5: Element Q1P0 convergence studies 

 
Figure 6: Element Q2P1 convergence studies 

 

Figure 7: Element QMITC convergence studies   
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Figure 8: Equivalent plastic stain for element QMITC in distorted and undistorted meshes 

For the sake of completeness, we present results in figure 9 for material with softening 
plastic behavior with ET = −E/102 and E = 200GPa, ν = 0.3 and oσy = 600MPa. We present, 
the results obtained in simple traction using the standard QMITC element formulation and the 
element enhanced with localization modes. The standard formulation provides a very mesh 
dependent post-yielding result; however, the result produced by our new formulation is quite 
mesh independent. 

 
Figure 9: Localization response to material softening 
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6 CONCLUSIONS 

A two-scale finite element formulation for modeling shear band localizations in J2 plastic 
deformation processes based on the use of embedded strong discontinuity modes triggered  via 
a stress based criterion has been discussed. The formulation has been implemented in QMITC, 
Q1P0 and Q2P1 elements with similar results. 

From the physical point of view, the new formulation does not require the definition of 
non-physical strain softening stress/strain relations and does not use material properties like 
fracture energy, which have not been defined nor measured in the environment of J2 plasticity. 

Regarding mesh aspects, it does not require a specific mesh refinement to model the 
localization phenomena, provides mesh independent results even if a softening stress/strain 
relation is used and results are quite insensitive to element distortions. 

Implementation is quite straight forward as the localization algorithm lives at element 
level, uses the same integration rules and schemes as the standard elements and localization 
parameters appear at element level and can be condensed out before assembly. 
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