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authors for their technological application. 
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1 INTRODUCTION 

Composites usage for structural porpoise in engineering and civil applications has been 
growth in a very high rate in the last 15 years. The main reason of this statement is the 
property of these materials to offer “customized” behaviors and the improvement of 
composite manufacture.  

Fracture-Mechanics should be able to predict a certain way of behavior during the material 
life time, in order to achieve minimum levels of safety and reliability and to be of massive 
use. 

Transversely isotropic materials are those with an axis of symmetry such that all directions 
perpendicular to the axis is a plane of isotropy. Many fiber-reinforced composites show this 
kind of behavior from a macroscopic point of view. Among others, fracture mechanical 
characterization of three dimensional transversely isotropic materials was reported by Sáez, 
Ariza and Dominguez (1997) and by Ariza and Dominguez (2003) . 

Interface Crack propagation between dissimilar materials is a typical failure mechanisms in 
composites. For example, the macroscopic behavior of unidirectional fiber-reinforced-
composite materials is strongly dependent on the strength of the fiber/matrix adhesion. The 
stress concentrations around the fibers lead to micro-crack initiation, which will grow along a 
ply to become a complete transverse crack. 

Once cracking initiation has arisen, preventing crack growth (propagation) is the variable 
to control in order the keep the material in a reliable condition. 

One of the most widely used parameters to characterize fracture-mechanical behavior is the 
J-integral, developed by Rice (1968). It characterizes the crack driving force for two-
dimensional problems. Therefore, for general three-dimensional cases involving cracks of 
arbitrary shape an alternative form for the J-integral is needed. 

Being an energy approach, the J-integral eliminates the need to solve local crack tip fields 
accurately, since if the integration domain is defined over a relatively large portion of the 
mesh, an accurate modeling of the crack tip is unnecessary because the crack tip fields 
contribution to J are not significant.  

Three basic schemes have evolved for the numerical computation of the J-integral in three 
dimensions: virtual crack extension methods (Hellen, T.K, 1975; Parks, D.M, 1974), 
generalization of Rice’s contour integral (Carpenter W.C., Read D.T. and Dodds R.H., 1986), 
and domain integral methods (Moran B. and Shih C.F, 1987 ; Nikishkov G.P. and Atluri S.N, 
1987 ; Saliva R., Vénere M.J., Padra C., Taroco E. and Feijoo R., 2000). 

Domain integrals are equivalent to the virtual crack extension technique and are better 
suited for numerical analysis than contour integral methods (it is difficult to evaluate stresses 
and strains along a vanishing small contour). Previous work by one of the authors of this 
paper has proved the versatility and efficiency of the EDI in the three-dimensional BEM 
analysis of isotropic cracked bodies (Cisilino A.P., Aliabadi M.H., and Otegui J.L , 1998 ; 
Cisilino A.P. and Aliabadi M.H 1999).This works aims to be a continuation of that done by 
Cisilino and Ortiz (2005) being more general allowing the bimaterial to be made of 
transversely isotropic solids. 

The EDI, which is derived applying the divergence theorem to Rice's J-integral, was 
chosen for this work. It produces an integral defined over a finite volume enclosing some 
portion of the crack front.  

In this work, the EDI computation for an interface crack for dissimilar three-dimensional 
transversely isotropic materials is presented. It can be shown that the EDI is independent of 
the integration volume, analogous to Rice's J-integral, and it can be interpreted as the energy 
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released per unit of segment of crack advanced, equal to the potential energy diminution. To 
develop the domain integral, the EDI incorporates an auxiliary function q, which can be 
interpreted as a virtual crack-front advance, but has the advantage that only one computer run 
is necessary to evaluate the point-wise energy release rate along the complete crack front. 

The implementation of the EDI requires nodal values of tension, displacements and 
displacements gradients within the integration contour that enclosures each segment of the 
crack front. The Boundary Element Method (BEM) is a technique that permits the computing 
of the forenamed unknowns. The BEM is particularly efficient for crack problems due to its 
ability to model high stress gradients like those occurring near the crack tip.  As BEM 
produces more accurate stresses and strains at internal points (compared to other numerical 
techniques), better results for EDI can be achieved.  

In this case, it has been used the multi-region BEM, that considers the problem of a multi-
material domain. Quadrilateral Lagrange elements with nine nodes were used to mesh the 
contour, except in the bimaterial interface surface, where one and two semi-discontinues side 
elements were implemented to avoid common nodes in the bimaterial intersection. 

Once the multi-region BEM analysis has been done, the nodal analytical values at the 
interior points are known, computed using formulations that relates the boundary solutions to 
source points at the domain.  

The contour mesh of the body surface with boundary elements around the crack front has 
been design in a “spider-web” shape. This was done in order to build the integration volumes 
to compute the EDI, adopting the shape of cylinders, each one made of cells. The cells are 
similar to the three-dimensional finite elements of 27 nodes and are implemented in an 
isoparametric interpolation scheme, being their nodes the internal points of the BEM analysis. 
Values of stress, strains and displacements gradients were approximated at the cells using the 
information known for these internal points. 

The EDI computation was repeated for every position of the crack front in order to know 
how it varies over the crack front. 

Finally, several benchmark examples were tested in order to validate the tool and 
afterwards other problems of industrial and R&D interest were solved. 

2 TRANSVERSELY ISOTROPIC MATERIALS 

It is worth reviewing the basic relations governing the behavior of a transversely isotropic 
material (Love, A.E.H.A, 1944; T. C. T. Ting, 1996). 

The equilibrium equation for a general linearly elastic material with no body forces in three 
dimensions are: 

 0, =jijσ  (1) 

Under small displacements, the strains can be written as the Cauchy infinitesimal strain 
tensor:  

 

 ( )ijjiij uu ,,2

1 +=ε  (2) 

The strain-displacement equation 2 represents a system of six independent equations 
relating the six strain components to the three displacement components. 

The stress-strain relationship is 
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 ksijksij C εσ =  (3) 

Cijks are the elastic constants. There are 81 possible constants in equation 3 but only 21 are 
independent. This is the case of an anisotropic material. For transversely isotropic materials in 
which the axis of symmetry coincides with a Cartesian axis, for example, the x3 axis, the 
stress-strain relation can be written in terms of five independent constants in the following 
matrix form: 
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Where 

1. E and E  ́ are the Young’s moduli in the plane of isotropy and in the directions 
normal to it, respectively. 

2. ν is the Poisson’s ratio that represents the strain response in the plane of isotropy 
due to an action parallel to it. Besides, ν´ represents the lateral strain response for 
the planes normal to the plane of isotropy. 

3. µ  ́is the shear modulus for the planes normal to the planes of transverse isotropy.  
 
Cij are the elastic constants in a condensed notation in terms of only two subindices. 
Isotropic materials are a particular case of transversely isotropic materials. It can be 

observe by replacing the following values in equation 4: 

 ;23311 µλ +== CC ;1312 λ== CC µ== 6644 CC  (7) 

3 THE ENERGY DOMAIN INTEGRAL (EDI) 

Consider a three-dimensional crack front with a continuously turning tangent as depicted in 
Figure 1a. Define a local coordinate system x* at position η, where the crack energy release 
rate is evaluated, given by x1

* normal to the crack front, x2
* normal to the crack plane, and 

tangent x2
* to the crack front 
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Figure 1: (a) Definition of the local orthogonal Cartesian coordinates at point η on the crack front, (b) Virtual 

crack front advance. 

Following Natha and Moran (1993), the general crack-tip contour integral along three-
dimensional crack front takes the form (Figure 1) 

 

 ( ) ( ) ( )
( )∫ −⋅=

→ η
σδηδη

C
jkiijkj

C
dCnuwlI *

,
*

0
lim  (8) 

where w is the strain energy density, σij
*and ui,k

*are Cartesian components of stress and 
displacement derivatives expressed in the local system x*,δl is the local crack extension, nj is 
the unit vector normal to the contour C (which lies in the x1

*-x2
* plane), and dC(η) is the 

differential of the arc length C (Figure 1 a). It is worth noting that, although equation 8 comes 
from a two-dimensional analysis, it applies for the three-dimensional case, as in the limit as 
C→0, plain strain conditions prevail so that three-dimensional fields approach the plane 
problem. 

In order to derive the equivalent domain representation of equation 8 we consider a small 
segment Lc of the crack front that lies in the local x1

*-x3
* plane as shown in Figure 1 b. Next 

we assume that the segment undergoes a virtual crack advance in the plane of the crack, and 
we define the magnitude of the advance at each point η as ∆a(η). We note that ∆a(η) varies 
continuously along Lc and vanishes at each end of the segment. Now let: 

 ∫ ∆=
CL

daII ηηη )()(  (9) 

where I(η) is the integral defined in equation 8.When I(η) belongs to the point-wise energy 
release rate, equation 9 gives the total energy released when the finite segment Lc undergoes 
the virtual crack advance.  

The appropriate domain form of the pointwise crack-tip contour integral can be obtained 
from equation 9 by considering a tubular domain V surrounding the crack segment (Figure 2). 
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Figure 2: Tubular domain surrounding a segment of the crack front 

As shown in Figure 2, the surface St is formed by translating the contour C along the 
segment Lc, and So stands for the outer surface of V including the ends. Next an auxiliary 
function q is introduced, which is sufficiently smooth in V and it is defined on the surfaces of 
V as follows: 

 
( ) ( )
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 (10) 

Finally, in the limit as the tubular surface St  is shrunk onto the crack segment Lc; and in the 
absence of crack face tractions, we obtain the domain integral: 

 ( )∫ −=
V

ikikjij dVqwuI .,
*
,

* δσ  (11) 

In the evaluation of the energy release rate, in the absence of body forces the integral given 
by equation 11 reduces to the domain representation of the familiar J-integral. A simple 
relationship between J(η) and the point-wise crack-tip integral I(η) can be obtained if it is 
assumed that I(η) is constant along the segment Lc. It follows directly from equation 9) that: 

 
∫ ∆

=

C
L

da

I
J

ηη
η

)(
)(  (12) 

4 BOUNDARY ELEMENT ANALYSIS  

The computation of the J-integral was implemented in the BEM code as a post-processing 
procedure, and so it could be applied to the results from a particular model at a later stage. In 
order to account for the different material properties at both sides of the crack, a multiple 
domain BEM formulation was used, as shown in Figure 3. The BEM formulation follows 
standard procedures, for which the equilibrium and continuity conditions are enforced at the 
common interface between the domains (Brebbia C.A., Telles J.L.F, and Wrobel, L.C, 1984).  
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Figure 3: Schematic representation of the multidomain technique for a non-homogeneous body. 

The solution of a unit point force applied at the interior of an infinite transversely isotropic 
three-dimensional material was studied by many authors. The solutions provided have the 
deficiency of being expressed in a different way depending on the conditions satisfied by the 
elastic constants. However, Y.C Pan and T.W Chou (1976), unlike previous publications, 
obtained ‘a unified solution which is applicable for all stable transversely isotropic materials’. 
Nevertheless, M. Loloi (2000) found that these solutions had never been reported in the 
literature. Later, he found that they were not in a suitable form for use in the boundary integral 
equation technique. He provided the suitable form of the fundamental solutions convenient for 
use in the boundary integral equation method (See Appendix). This approach is used in the 
present work.  

4.1 Displacement derivatives, stresses and strains 

4.1.1 Internal Points 
 
As has been stated in Section 3, the computation of the J-integral requires the stress and 

displacement derivative fields σij
*and ui,k

*to be known within the integration volume V. 
Although these quantities must be expressed in the local crack-front coordinate system x*, in 
this work, and for the sake of simplicity, they will be firstly computed in the global system x 
and later transformed to the local system x*. Bearing this in mind, and in order to integrate the 
computation of the J-integral into the BEM formulation, derivatives of the displacements at 
internal points X  ́ are obtained from their boundary integral representations. The integral 
equation for the displacement derivatives results from the analytical differentiation of the 
well-known displacement boundary integral equation for a point X’ located in the model 
domain 

 ( ) ( ) ( ) ( ) ( )∫∫ ΓΓ
Γ−Γ= )(,')(,'' *

,
*
,, xdxuxXTxdxtxXUXu mijmijmi  (13) 

where the terms *
,mijU  and *

,mijT  are the derivatives of the fundamental displacement *
ijU , 

and traction *
ijT solutions, and the boundary Γ corresponds to that of the zone where the point 

X’ lies on. The corresponding expressions for the fundamental solutions *
ijU  and *

ijT  are the 

same obtained by Pan and Chou and are given in the Appendix. 
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Once the displacement derivatives miu ,  are known, stresses ijσ and strains ijε  can be 

computed using the basic continuum mechanics relationships (equation 2 and equation 3) 
 
4.1.2 Boundary Points 
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Figure 4: Local Cartesian system for boundary stress calculation. 

 
Displacement partial derivatives miu ,  at boundary nodes could be obtained from equation 

13 by taking the limit as point X’ moves to the boundary, i.e. X’ → x’. However, this 
procedure is computationally expensive because of the occurrence of hypersingular 
integrands. In order to avoid this difficulty, stresses and strains, as well as the displacements 
on the model surface are evaluated in this work from the boundary displacements and 
tractions, following a procedure similar to that used in FEM computations. Consider with this 
purpose a local Cartesian system, (0

1x , 0
2x , 0

3x ) such that 0
3x  is the unit vector in the normal 

direction to the boundary element (see Figure 4). If 0
ju , 0

ijε , 0
ijσ  and 0

jt are the displacements, 

strains, stresses and tractions in the local system, stress components in the normal direction 
can be written as: 

00
3 ii t=σ ,       i=1, 2, 3. (14) 

The remaining stress tensor components,0
11σ , 0

12σ  and 0
22σ  can be expressed in terms of 0

3t  and the 

tangential strain tensor components0
11ε , 0

12ε  and 0
22ε .  
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Strain components 0ijε  can be found using equation 2, now applied in the local coordinate 

system. 
 It is worth nothing that displacement derivatives in equation 2 are initially evaluated in the 

intrinsic element directions (ξ1, ξ2), since as it usual in BEM, boundary displacements are 
given in terms of the piecewise parametric representation (shape functions) of intrinsic 
coordinates: 

 ( ) ( )1 2 1 2
1

, ,
N

n n
i i

n

u uξ ξ ξ ξ
=

= Φ∑  (19) 

where nΦ  are the shape functions, niu  are the nodal values of the displacements, and N is 

the number of element nodes. From equation 19 it follows 

 
1

nN
ni
i

nj j

u
u

ξ ξ=

∂ ∂Φ=
∂ ∂∑ . (20) 

Finally, the derivatives of the displacements in the global system are computed. Using 
chain differentiation, derivatives of the displacements in the global system,,i mu  can be related 

to the derivatives of the displacements in the intrinsic boundary element directions,i ju ξ∂ ∂  as 

follows: 

 i i m

j m j

u u x

xξ ξ
∂ ∂ ∂=
∂ ∂ ∂

. (21) 

where m jx ξ∂ ∂ is the Jacobian matrix of the transformation. The nine components of the 

displacement derivatives ,i mu  can be retrieved by solving for each case a system of equations 

constructed using equation 21.  For further details the reader is referred to the works by 
Cisilino A.P. and Aliabadi M.H(1999) or Cisilino A.P. and Ortiz J.E (2005) 

4.2 Implementation 

As has been stated in Section 3, equation 12 allows the computation of J-integral at any 
position η on the crack front. The evaluation of a volume integral within a domain enclosing a 
segment of the crack front Lc is required. A natural choice here is to make η coincident with 
the element nodes on the crack front, while Lc is taken as the element or element sides at 
which points η lies (see Figure 5). The portion of the model domain in which the volume 
integrals are evaluated is discretized using 27-noded isoparametric (brick) cells, over which 
stresses, strains and displacements derivatives are approximated by products of the cell shape 
functions iΨ  and the nodal values of ijσ , ijε and jiu , . Nodal values of these variables are 

computed following the procedures introduced in Sections 4.2, depending on whether the 
node is internal or lies on the model boundary. Volume discretization is designed to have 
web-style geometry around the crack front, while the integration volumes are taken to 
coincide with the different rings of cells. This is illustrated in Figure 6, where the frontal face 
of the model has been partially removed to show the crack and the integration domains. 

Mecánica Computacional Vol XXVII, págs. 1305-1324 (2008) 1313

Copyright © 2008 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 Virtual crack
extension q

Crack front

MM-2

Lc

M+2

Lc

M-1 M
M+1

M-2
M

Lc
crack front 

corner node 

mid-side node 

surface node 

virtual crack 
extension q 

 
Figure 5: Schematic representation of the volume cells in the crack front region illustrating the   virtual crack 

extensions for a corner node, a mid-node and a surface node. 

As depicted in Figure 5, three different cases need to be considered, depending on whether 
the node of interest M is in the middle of an element side (mid-node), it is shared by two 
elements (corner node), or it is located coincident with the external surface (surface node). If 
the node M is a mid-node or surface node, Lc (the segment of the crack front over which the 
M1-integral is computed) spans over one element, connecting nodes M-1, M, and M+1 and 
nodes M-2, M-1 and M, respectively. On the other hand, if M is a corner node, Lc spans over 
two elements, connecting nodes from M-2 to M+2. 

The auxiliary function q was introduced in Section 3 in order to model the virtual crack 
front advance. Since the virtual crack advance can adopt any arbitrary shape, the only 
requirement for function q is to be sufficiently smooth within the integration volume V as the 
evaluation of the EDI requires of its differentiation (Moran B. and Shih C.F, 1987). In this 
work q is defined to vary quadratically in the directions tangential and normal to the crack 
front. Within this approach, and considering that the evaluation point η is at the middle of the 
crack front segment Lc, and r0 is the radius of the integration domain, the function q is written 
as: 
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where r is the distance from the crack front in the *
2

*
1 xx −  plane as depicted in Figure 1.  
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Figure 6: (a) Problem geometry, (b) Boundary Element discretization, (c) Integration domains 

Although Moran and Shih [7] have shown that for the EDI the computed value of J is 
insensitive to the selection of the q function, it has been found that the shape of the q function 
is relevant for the accuracy of the computations. Note that in contrast the path independent 
integrals, the EDI requires of the computation of quantities at crack front vicinity to calculate 
the domain integral. It is well known that accuracy of computed quantities at these points is 
lower than at those far from the crack front. The key feature for the excellent performance of 
the EDI under these circumstances is the behavior of the auxiliary function q in the crack tip 
vicinity. Note that for the definition of q given in equation 22, the gradient q,i tends to zero as 
r tends to zero (i.e. in the vicinity of the crack front), resulting that the contribution to J of the 
crack front fields is not significant (see equation 11). As a consequence, the zone of the 
integration domain with the lowest accuracy in the results has a marginal contribution to the 
value of J. This fact also allows avoiding the use of quarter point or special crack tip elements 
to enhance the accuracy of the results in this zone. The bi-quadratic definition of q has been 
employed with excellent results in the computation of EDI for cracks in homogeneous 
materials in a previous work by one co-author of this paper. Further details and discussion on 
the selection of the function q can be found in a recent work by two co-authors of this paper 
(Cisilino A.P. and Ortiz J.E., 2004). 

Function q is specified at all nodes within the integration volumes. Consistent with the 
isoparametric formulation, these q-values are given by: 

 
27

1

i i

i

q Q
=

= Ψ∑ . (23) 

where iΨ  are the shape functions defined within each volume cell and Qi are the nodal 
values for the ith node. From the definition of q (see equation 10), Qi = 0 if the ith node is on 
S0, while for nodes inside V, Qi are given by interpolating between the nodal values on Lc and 
S0. Following standard manipulations: 
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where kζ are the coordinates in the cell isoparametric space and jkx ξ∂∂ is the Jacobian 

matrix of the transformation. 
If Gaussian integration is used, the discretized form for the J-integral in equation 11 is 

given by:  
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where m is the number of Gaussian points per cell, and wp are their weighting factors. 

5 APPLICATION EXAMPLES: THICK CENTRE-CRACKED PANEL SP ECIMEN 

In this section the accuracy of BEM formulation and J-integral computation are assessed by 
considering a number of examples. The first example has two-dimensional characteristics or 
deal with homogeneous materials (namely the centre cracked panel (CCP)) in order to allow 
comparisons with results from the bibliography. Next, the CCP with transversely isotropic 
properties is shown, in a variety of orientations of the fibers. The former examples are 
compared with an ABAQUS finite element model in order to show the validity of the results, 
having no literature reference to compare with. 

The problems analyzed possess symmetry in their geometric configuration but not in 
material properties, due to the transversely isotropic material nature. As a result, it was not 
possible to analyze only the symmetric portion of the domain by prescribing appropriate 
symmetry boundary conditions along the geometrical symmetry plane. Therefore, the whole 
model has been discretized in order to pale the non-symmetric nature of the transversely 
isotropic materials.  

The thick CCP-specimen under Pure Mode-I solicitation was calculated. The geometry of 
the specimen is similar to that depicted in Figure 7 . Crack length is a=10 mm, the width 
b=2a and the specimen thickness is t=3a.  

Model discretization is depicted in Figure 6. It consists of 658 elements and 2855 nodes. 
Eighteen elements are placed along the crack front, and a total of 126 elements are used in the 
crack discretization. Four rings of cells with radii r/a equal to 0.1, 0.15, 0.22 and 0.32 are 
accommodated around the crack front for J computations. With this purpose 648 cells and 
6438 modes are employed. 

The fracture mechanical behavior of the specimen was computed for several configurations 
of material properties and relative zone’s rotation.  

First, isotropic properties were assigned to both zones (see Figure 7). Material properties 
are Young’s Modulus E=100.000 MPa and a Poisson’s ratio ν=0.3.Besides, the algorithm was 
run in two different possible ways, the isotropic branch and the transversely isotropic branch 
of the code (although isotropic material properties were consider) in order to prove the 
accuracy of both branches. Exactly equal results were obtained from both branches of the 
code.  
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Figure 7: (a) Schematic representation of the thick tension plate with a centre interface crack, (b) Model 
dimensions  

The computed J results are compared with those from bibliography and shown in Figure 8. 
Results are reported over the crack front. References values are those reported by Raju, I.S. 
and Newman, J.C (1977) and by Cisilino (2000). Besides, a 2D FEM analysis was introduced 
in the comparison. All results are normalized with respect to the J value corresponding to the 
CCP specimen in plane strain condition according to Tada H., Paris P.C. and Irwin G.R 
(2000). The J value was obtained from the applied K value using the following expressions: 

 

 )/( b
aFaK ⋅= πσ . (26) 

 

 
´

2

E

K
J = . (27) 

 
)1(

´
2ν−

= E
E . (28) 

In equation 26, F(a/b) is the correction factor for K. The use of E´ is justified in the fact that 
a plane strain condition is expected to prevail along most of the crack front within the domain. 
On the other hand, near the boundary it is expected that a thin layer will behave in a plane 
stress condition based on the free surface effect and E´=E. Thus, the J reference value at the 
free surface is computed considering both cases. 
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Figure 8: Normalized J/Jp.strain values for the thick CCP specimen 

Computed results and the reference values are found to have a good agreement throughout 
the specimen thickness as shown in Figure 8. 

Second, transversely isotropic properties were assigned to the bimaterial. Several 
configurations were adopted in order to show the difference in the behavior of the specimen 
with the orientation of the fibers, and the influence of the relative orientation between the 
zones. Material properties used were those of a composite laminate as follows: 
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Again, the results were normalized. In this case Jp.strain was obtained by replacing in 
equation 26 the Young’s Modulus of the plane of isotropy (C11=C22=5.320 MPa.). In equation 
29, C33 represents the material strength over the perpendicular direction to the plane of 
isotropy. For fiber-matrix composites, the commented direction is that of the fibers. Assigning 
a rotation to the matrix Cij we are able to rotate the plane of isotropy and change the fibers 
direction. In Figure 9 the convention used to distinguish the director cosines for the rotation of 
Cij in each zones is shown. As example, if θ1=π/2, α 1= 0, φ1=0 and θ2=0, α 1=π/2 φ2=0, then 
the fibers are pointing in the x axis in Zone 1 and the y axis in Zone 2. 
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Figure 9: Director Cosines nomenclature for the bimaterial 

In Figure 10, we compared the different orientations of the fibers in both zones (θ1= θ2=θ, α 

1= α 2=α, and φ1=φ2=φ). Assuming the global axis convention and the load configuration 
showed in Figure 7, we calculated J/Jp.strain for the cases where the fibers coinciding with the 
direction of the three global axis. The examples are contrasted with a Finite Element Analysis, 
just to prove the accuracy of the model and to validate the formulation implemented. 

As it can bee seen from Figure 10 and Table 1, good agreement with the FEM analysis is 
demonstrated and path independency is confirm. This can be observed in Table 1, in which for 
every different r/a value, J/Jp.strain takes practically the same value, keeping z/t constant  

 

 
J/Jp.strai

n 
           

z/t r/a Average FEM Diff. % 
 0,1 0,15 0,22 0,32    

0 1,1159 1,1468 1,1649 1,1870 1,1537 1,1647 -0,94% 
0,017 1,1360 1,1558 1,1651 1,1697 1,1566 1,1653 -0,75% 
0,033 1,1347 1,1444 1,1459 1,1402 1,1413 1,1657 -2,10% 
0,458 1,1292 1,1356 1,1336 1,1242 1,1307 1,1686 -3,24% 

0,5 1,1292 1,1356 1,1336 1,1242 1,1307 1,1687 -3,25% 
0,542 1,1292 1,1356 1,1336 1,1242 1,1307 1,1689 -3,27% 
0,583 1,1294 1,1357 1,1339 1,1247 1,1310 1,1690 -3,26% 
0,95 1,1205 1,1269 1,1255 1,1175 1,1226 1,1704 -4,09% 

0,967 1,1169 1,1271 1,1283 1,1212 1,1234 1,1705 -4,02% 
0,983 1,1164 1,1422 1,1532 1,1507 1,1406 1,1707 -2,57% 

1 1,0893 1,1377 1,1648 1,1743 1,1415 1,1712 -2,53% 

Table 1: Normalized J/Jp.strain results for the CCP specimen when θ1= θ2=0, α 1= α 2=0 and φ1=φ2=0. 

At this point, it has been demonstrated that the formulation implemented can accurately 
model interface crack problems in transversely isotropic bimaterial. 
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Figure 10: Variation of  J/Jp.strain  with the orientation of the fibers for the thick CCP specimen 

An increasingly complex problem is proposed next. Different orientations to the fibers 
were assigned to each of the zones of the specimen. The three-dimensional transversely 
isotropic bimaterial computation of the EDI along the crack front, to the author’s knowledge, 
is not reported in the bibliography using BEM.  

Table 2 indicates the director cosines for the different cases considered and Figure 11 
introduces how J/Jp.strains varies for three different cases of fiber-matrix orientation. 

 
 Zone 1 Zone 2 
 θ1 α1 φ1 θ2 α2 φ2 

Case 1 0 π/2 0 0 0 0 
Case 2 0 π/2 0 π/2 0 0 
Case 3 π/4 0 0 0 π/2 0 

Table 2: Directive cosines for three different configurations of bimaterial 

Consequently, in Case 1 the fibers in Zone 1 and Zone 2 are oriented in the y-axis and z-
axis direction, respectively. Zone 1 in Case 2 is equal as in Case 1.However, the fibers in 
Zone 2 are oriented in the x-axis. In Case 3, the fibers of Zone 1 are pointing out a direction 
that forms an angle of θ=π/4 with respect to the z-axis. Zone 2 fibers are oriented in y-axis 
direction. 
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Figure 11: J/Jp.strain along the crack front for various bimaterial configurations 

Figure 11 exposes interesting results according to the relative orientation mentioned before. 
Case 1 and Case 2 configuration exhibits a symmetrical response along the crack front. Case 
3, in contrast, shows a non-symmetrical output as a consequence of the rotation of the fibers 
of Zone 1 an angle of  π/4 with respect to the y-axis. 

  

6 CONCLUSIONS 

In this paper, a boundary element analysis of three-dimensional interface cracks in 
transversely isotropic bimaterials has been presented. The interface crack analysis is addressed 
using a multidomain BEM formulation in order to account for the different material properties 
at both sides of the crack. The J-integral is computed along the crack front using the Energy 
Domain Integral methodology. This is implemented as a post-processing technique, and so it 
can be applied to the results from a particular model at a later stage. The implementation takes 
advantage of the efficiency of the boundary integral equation to directly obtain the required 
displacement derivatives, stress and strain fields from their boundary integral representations. 

The devised numerical tool is employed to analyze the problem of thick centre cracked 
panel (CCP) under pure mode I loading in order. The CCP was submitted to many different 
material properties configurations and contrasted to bibliography, were it was possible, and 
with an ABAQUS Finite Element analysis, where the lack of references was the case. 

Finally, more complex configurations were computed in order to show the versatility of the 
tool. 
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7 APPENDIX 

In this appendix the fundamental solutions implemented in this code are given. These 
fundamental solutions, as explained above, are those of Y–C. Pan and T–W. Chou corrected 
by M. Loloi.  

 ∑
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The rest of the functions and constants are summarized in the following tables for the cases 
when ν1 ≠ ν2 (Table 3) and for the degenerate case (Table 4).  
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Table 3: Functions and constants in the genial formulae for fundamentals solutions of transversely isotropic 
materials when ν1 ≠ ν2 
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Table 4: Functions and constants in the general formulae for fundamentals solutions of transversely isotropic 
materials for degenerate case when ν1 = ν2 (i, j=1,2)  

H and M  are define as follows 
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