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Abstract: A general multidomain boundary element analy$ithe thee-dimensional interface crack
problem for dissimilar transversely isotropic méatky is presented in the present publication. The
Energy Domain Integral (EDI) methodology is use@odmpute the J-integral. Different examples are
solved to demonstrate the capability of the metl8mine of them are benchmark examples that were
used to validate the BEM code and the other oregxamples that are considered interesting by the
authors for their technological application.
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1 INTRODUCTION

Composites usage for structural porpoise in engimgeand civil applications has been
growth in a very high rate in the last 15 yearse Thain reason of this statement is the
property of these materials to offer “customized®haviors and the improvement of
composite manufacture.

Fracture-Mechanics should be able to predict areway of behavior during the material
life time, in order to achieve minimum levels ofetg and reliability and to be of massive
use.

Transversely isotropic materials are those witla@s of symmetry such that all directions
perpendicular to the axis is a plane of isotropynylfiber-reinforced composites show this
kind of behavior from a macroscopic point of viemong others, fracture mechanical
characterization of three dimensional transversayropic materials was reported Byez,
Ariza and Dominguez (1998nd byAriza and Dominguez (2003)

Interface Crack propagation between dissimilar melteis a typical failure mechanisms in
composites. For example, the macroscopic behaviowrodirectional fiber-reinforced-
composite materials is strongly dependent on trength of the fiber/matrix adhesion. The
stress concentrations around the fibers lead tooati@ck initiation, which will grow along a
ply to become a complete transverse crack.

Once cracking initiation has arisen, preventingckrgrowth (propagation) is the variable
to control in order the keep the material in aatgie condition.

One of the most widely used parameters to chaiaetacture-mechanical behavior is the
J-integral, developed byice (1968).It characterizes the crack driving force for two-
dimensional problems. Therefore, for general tltiegensional cases involving cracks of
arbitrary shape an alternative form for thimtegral is needed.

Being an energy approach, théntegral eliminates the need to solve local cragKields
accurately, since if the integration domain is aledi over a relatively large portion of the
mesh, an accurate modeling of the crack tip is cesgary because the crack tip fields
contribution to J are not significant.

Three basic schemes have evolved for the numearicaputation of the J-integral in three
dimensions: virtual crack extension methodsellen, T.K, 1975; Parks, D.M, 19)4
generalization of Rice’s contour integrélgrpenter W.C., Read D.T. and Dodds R.H., 1986
and domain integral methodsl¢ran B. and Shih C.F, 198 WNikishkov G.P. and Atluri S.N,
1987; Saliva R., Vénere M.J., Padra C., Taroco E. anpp&&., 2000.

Domain integrals are equivalent to the virtual kraxtension technique and are better
suited for numerical analysis than contour integnathods (it is difficult to evaluate stresses
and strains along a vanishing small contour). reviwork by one of the authors of this
paper has proved the versatility and efficiencytted EDI in the three-dimensional BEM
analysis of isotropic cracked bodigSigilino A.P., Aliabadi M.H., and Otegui J.L , 1998
Cisilino A.P. and Aliabadi M.H 1999This works aims to be a continuation of that dbge
Cisilino and Ortiz (2005)being more general allowing the bimaterial to badm of
transversely isotropic solids.

The EDI, which is derived applying the divergentedrem to Rice's-integral, was
chosen for this work. It produces an integral dedirover a finite volume enclosing some
portion of the crack front.

In this work, the EDI computation for an interfao@ck for dissimilar three-dimensional
transversely isotropic materials is presentedait be shown that the EDI is independent of
the integration volume, analogous to Rickiategral, and it can be interpreted as the energy
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released per unit of segment of crack advancedléguhe potential energy diminution. To
develop the domain integral, the EDI incorporatasaaxiliary functiong, which can be
interpreted as a virtual crack-front advance, lag the advantage that only one computer run
IS necessary to evaluate the point-wise energgseleate along the complete crack front.

The implementation of the EDI requires nodal valwéstension, displacements and
displacements gradients within the integration gontthat enclosures each segment of the
crack front. The Boundary Element Method (BEM) ie@hnique that permits the computing
of the forenamed unknowns. The BEM is particulaffjcient for crack problems due to its
ability to model high stress gradients like thosEuwring near the crack tip. As BEM
produces more accurate stresses and strains atahfints (compared to other numerical
techniques), better results for EDI can be achieved

In this case, it has been used the multi-region Bidt considers the problem of a multi-
material domain. Quadrilateral Lagrange element$ wine nodes were used to mesh the
contour, except in the bimaterial interface surfadeere one and two semi-discontinues side
elements were implemented to avoid common nod#eeibimaterial intersection.

Once the multi-region BEM analysis has been dohe,rtodal analytical values at the
interior points are known, computed using formalasi that relates the boundary solutions to
source points at the domain.

The contour mesh of the body surface with bounédegnents around the crack front has
been design in a “spider-web” shape. This was domeder to build the integration volumes
to compute the EDI, adopting the shape of cylindeexh one made of cells. The cells are
similar to the three-dimensional finite elements 23t nodes and are implemented in an
isoparametric interpolation scheme, being theiresdtie internal points of the BEM analysis.
Values of stress, strains and displacements griadiegre approximated at the cells using the
information known for these internal points.

The EDI computation was repeated for every positibthe crack front in order to know
how it varies over the crack front.

Finally, several benchmark examples were testedrater to validate the tool and
afterwards other problems of industrial and R&Demest were solved.

2 TRANSVERSELY ISOTROPIC MATERIALS

It is worth reviewing the basic relations governithg behavior of a transversely isotropic
material Love, A.E.H.A, 1944T. C. T. Ting, 199%

The equilibrium equation for a general linearlystiamaterial with no body forces in three
dimensions are:

g;,;=0 (1)

Under small displacements, the strains can beenrifts the Cauchy infinitesimal strain
tensor:

1
£ :E(ui,j +Uj,i) (2)
The strain-displacemergquation 2represents a system of six independent equations
relating the six strain components to the threpldcement components.
The stress-strain relationship is
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0; = Ciyséis (3)
Cixs are the elastic constants. There are 81 possinistants irequation 3out only 21 are
independent. This is the case of an anisotropiemnadt For transversely isotropic materials in

which the axis of symmetry coincides with a Cadrsaxis, for example, the axis, the
stress-strain relation can be written in termsiwé independent constants in the following

matrix form:

o, C11 C12 C13 0 0 0 &

O, C12 C11 C13 0 0 0 Ess

O3, _ C13 C13 C33 0 0 0 €33
o, 0O 0 O @ 0 0 (]2, (4)

O3 0O 0 O 0 Ces O | |26

[P 0O 0 O 0 0 Cgl 282

Being:
_E(n-v?). _E(m+v?_ . _EV. _E@-v). o
11— /](1_'_[/) 1 12 T /](1_'_[/) 1 13 T 1 1C33_ P ’Ces_:u (5)
.o E

A=n@l-v)-2v ;n:E, (6)

Where

1. E andE" are the Young’'s moduli in the plane of isotropydan the directions
normal to it, respectively.

2. v is the Poisson’s ratio that represents the stesponse in the plane of isotropy
due to an action parallel to it. Besidesrepresents the lateral strain response for
the planes normal to the plane of isotropy.

3. W is the shear modulus for the planes normal tgpléwes of transverse isotropy.

Cj; are the elastic constants in a condensed notatiterms of only two subindices.
Isotropic materials are a particular case of trarsely isotropic materials. It can be
observe by replacing the following valuesemuation 4:

Cu=Cyu=A+21;C, =C3=A,Cy =Cy = (7)

3 THE ENERGY DOMAIN INTEGRAL (EDI)

Consider a three-dimensional crack front with aticmously turning tangent as depicted in
Figure 1a Define a local coordinate systemat positions, where the crack energy release
rate is evaluated, given by normal to the crack fronk, normal to the crack plane, and
tangemxz* to the crack front
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(b)

Figure 1: (a) Definition of the local orthogonalr@&ssian coordinates at pointon the crack front, (b) Virtual
crack front advance.

Following Natha and Moran (1993}the general crack-tip contour integral along ¢hre
dimensional crack front takes the forRigure J

()= m ), (s, ~ojui e ®)

wherew is the strain energy densitzyi,-*and U« are Cartesian components of stress and
displacement derivatives expressed in the locaesys ,dl is the local crack extension, is
the unit vector normal to the contoGr (which lies in thex; -x, plane), anddC(y) is the
differential of the arc lengtl® (Figure 1 & It is worth noting that, althougiquation 8comes
from a two-dimensional analysis, it applies for theee-dimensional case, as in the limit as
C-0, plain strain conditions prevail so that thremeinsional fields approach the plane
problem.

In order to derive the equivalent domain repregemtaof equation 8ve consider a small
segment of the crack front that lies in the local-x; plane as shown iRigure 1 b Next
we assume that the segment undergoes a virtudd ath@nce in the plane of the crack, and
we define the magnitude of the advance at eacht goasAa(7;). We note thata(s) varies
continuously alond.;. and vanishes at each end of the segment. Now let:

=] tmamdy (©)

wherel(7) is the integral defined iaquation 8Whenl(7) belongs to the point-wise energy
release rategquation 9gives the total energy released when the finitgreastL. undergoes
the virtual crack advance.

The appropriate domain form of the pointwise crpkeontour integral can be obtained
from equation %y considering a tubular domaihsurrounding the crack segmehtgure 3.
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crack front

Figure 2: Tubular domain surrounding a segment@fcrack front

As shown inFigure 2 the surface§ is formed by translating the contoGr along the
segmentL;, and S, stands for the outer surface dfincluding the ends. Next an auxiliary
functionq is introduced, which is sufficiently smoothVhand it is defined on the surfaces of
V as follows:

o= {Aa(n)m(n) on § (10)

0 on S,.

Finally, in the limit as the tubular surfageis shrunk onto the crack segmeégtand in the
absence of crack face tractions, we obtain the domeegral:

I= jv (a;u?‘k - W3, )qyi dv. (11)

In the evaluation of the energy release rate, énalbsence of body forces the integral given
by equation 1llreduces to the domain representation of the familintegral. A simple
relationship betweed(r) and the point-wise crack-tip integrigly) can be obtained if it is
assumed thd{ ) is constant along the segmégt It follows directly fromequation 9 that:

|
1) T —_— (12)
|  Ba(p)dr

4 BOUNDARY ELEMENT ANALYSIS

The computation of thd-integral was implemented in the BEM code as a postessing
procedure, and so it could be applied to the redrdin a particular model at a later stage. In
order to account for the different material projsrtat both sides of the crack, a multiple
domain BEM formulation was used, as shownFigure 3 The BEM formulation follows
standard procedures, for which the equilibrium aadtinuity conditions are enforced at the
common interface between the domaiBeepbia C.A., Telles J.L.F, and Wrobel, L.C, 1284
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Figure 3: Schematic representation of the multidartechnique for a non-homogeneous body.

The solution of a unit point force applied at theerior of an infinite transversely isotropic
three-dimensional material was studied by many aathThe solutions provided have the
deficiency of being expressed in a different wagedeling on the conditions satisfied by the
elastic constants. HoweveY,.C Pan and T.W Chou (1976)nlike previous publications,
obtained ‘a unified solution which is applicable &l stable transversely isotropic materials’.
NeverthelessM. Loloi (2000) found that these solutions had never been repondtie
literature. Later, he found that they were not sudable form for use in the boundary integral
equation technique. He provided the suitable fofth® fundamental solutions convenient for
use in the boundary integral equation method (Sg®endi¥. This approach is used in the
present work.

4.1 Displacement derivatives, stresses and strains
4.1.1 Internal Points

As has been stated in Section 3, the computatidhend-integral requires the stress and
displacement derivative fields; and i, to be known within the integration volumé
Although these quantities must be expressed ifoitad crack-front coordinate system in
this work, and for the sake of simplicity, they Mok firstly computed in the global system
and later transformed to the local systemBearing this in mind, and in order to integrate t
computation of thel-integral into the BEM formulation, derivatives thfe displacements at
internal pointsX” are obtained from their boundary integral repregens. The integral
equation for the displacement derivatives resuibenfthe analytical differentiation of the
well-known displacement boundary integral equationa point X' located in the model
domain

U ()= [ U5 (X 0R0)A (09 = [ T3 (X" X)) (13)

and T,

ij,m

where the termdJ

ij,m

and tractionTij* solutions, and the boundarycorresponds to that of the zone where the point

are the derivatives of the fundamental displacénkn

X' lies on. The corresponding expressions for theldumental squtioni;J; and Tij* are the
same obtained by Pan and Chou and are given igpendix.
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Once the displacement derivatives, are known, stresses; and strainsg; can be
computed using the basic continuum mechanics oalstips ¢quation Zandequation 3)

4.1.2 Boundary Points

Figure 4: Local Cartesian system for boundary stoagculation.

Displacement partial derivatives,,, at boundary nodes could be obtained frequation

13 by taking the limit as poinX’ moves to the boundary.e. X’ - Xx'. However, this
procedure is computationally expensive because haf occurrence of hypersingular
integrands. In order to avoid this difficulty, stses and strains, as well as the displacements
on the model surface are evaluated in this worknfrine boundary displacements and
tractions, following a procedure similar to thaedsn FEM computations. Consider with this
purpose a local Cartesian systemy,&5,xJ) such thatx{ is the unit vector in the normal
direction to the boundary element (d&igure 4. Ifu?, &), o) andt{are the displacements,
strains, stresses and tractions in the local syss¢rass components in the normal direction
can be written as:
O-i% = tio, i:l, 2, 3. (14)
The remaining stress tensor componeris, o and g9, can be expressed in termst§fand the

tangential strain tensor componesfts £ and £2,.

J101 = t?? + (C101 - C103) l—_‘flol + (Cloz - C103) @32 + (C103 - C??s) @3?3 (15)
ng = te(,) + (Cloz - C103) l—_‘flol + (C101 - Clos) @gz + (C103 - C??s) @3?3 (16)
0102 = (C101 - Cloz) l—_‘tloz (17)

t;) B (Clos D?:I?l + C102 ngz
Ca

£ = (18)
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Strain components';i? can be found usingquation 2 now applied in the local coordinate

system.

It is worth nothing that displacement derivativ@gquation 2are initially evaluated in the
intrinsic element directionsé{, &), since as it usual in BEM, boundary displacememés
given in terms of the piecewise parametric repredim (shape functions) of intrinsic
coordinates:

N

0 (6.6)= 20" (6.6 (19)

n=1

where ®" are the shape functions, are the nodal values of the displacements,Nuisl
the number of element nodes. Frequation 19t follows

06, S 0¢

Finally, the derivatives of the displacements ie tjlobal system are computed. Using
chain differentiation, derivatives of the displa@ets in the global system, can be related

N n
ou :zatb n (20)

to the derivatives of the displacements in thensic boundary element directiorzfisl,/ag‘j as
follows:
ou _ 0y ox,
o0&, ox, 0f,

where 0x,, /0| is the Jacobian matrix of the transformation. Theercomponents of the

(21)

displacement derivatives , can be retrieved by solving for each case a sysfegguations

constructed usingquation 21 For further details the reader is referred te works by
Cisilino A.P. and Aliabadi M.H(1999)r Cisilino A.P. and Ortiz J.E (2005)

4.2 Implementation

As has been stated in Sectioneguation 12allows the computation af-integral at any
positions on the crack front. The evaluation of a volumegnal within a domain enclosing a
segment of the crack froht is required. A natural choice here is to mgkeoincident with
the element nodes on the crack front, whileis taken as the element or element sides at
which pointss lies (seeFigure 5. The portion of the model domain in which the urak
integrals are evaluated is discretized using 27%&daddoparametric (brick) cells, over which
stresses, strains and displacements derivativegppreximated by products of the cell shape
functions W' and the nodal values af;,&;and u; ;. Nodal values of these variables are

computed following the procedures introduced inti®as 4.2, depending on whether the
node is internal or lies on the model boundary.uvfté discretization is designed to have
web-style geometry around the crack front, while thtegration volumes are taken to
coincide with the different rings of cells. Thisilisistrated inFigure § where the frontal face
of the model has been partially removed to showcthek and the integration domains.
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virtual crack
extensiorm

M-2 M M+2
corner node
crack front mid-side node

surface nod

Figure 5: Schematic representation of the voluntls @ethe crack front region illustrating the rtual crack
extensions for a corner node, a mid-node and aseiriode.

As depicted irFigure 5 three different cases need to be consideredndepgeon whether
the node of interedt! is in the middle of an element side (mid-node)sishared by two
elements (corner node), or it is located coincideitih the external surface (surface node). If
the nodeM is a mid-node or surface nodeg, (the segment of the crack front over which the
Ms-integral is computed) spans over one element, exdimg nodesvi-1, M, andM+1 and
nodesM-2, M-1 andM, respectively. On the other handMfis a corner nodd,; spans over
two elements, connecting nodes fr2 to M+2.

The auxiliary functiong was introduced in Section 3 in order to model \thiual crack
front advance. Since the virtual crack advance adapt any arbitrary shape, the only
requirement for function is to be sufficiently smooth within the integratigolumeV as the
evaluation of the EDI requires of its differentaati Moran B. and Shih C.F, 1987In this
work q is defined to vary quadratically in the directiclamgential and normal to the crack
front. Within this approach, and considering tlmet eévaluation poing is at the middle of the
crack front segmerit;, andrg is the radius of the integration domain, the fiorcy is written
as:

a0 ) =1 L’; 2 {1—@0)2]. (22)
2

wherer is the distance from the crack front in the- x, plane as depicted Figure 1
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Figure 6: (a) Problem geometry, (b) Boundary Elendéstretization, (c) Integration domains

Although Moran and Shih [7] have shown that for &#@l the computed value af is
insensitive to the selection of thdunction, it has been found that the shape ofjthenction
is relevant for the accuracy of the computationsteNthat in contrast the path independent
integrals, the EDI requires of the computation wéufities at crack front vicinity to calculate
the domain integral. It is well known that accuradycomputed quantities at these points is
lower than at those far from the crack front. Tleg keature for the excellent performance of
the EDI under these circumstances is the behavitreoauxiliary functiong in the crack tip
vicinity. Note that for the definition af given inequation 22the gradienty; tends to zero as
r tends to zero (i.e. in the vicinity of the cracirit), resulting that the contribution doof the
crack front fields is not significant (semjuation 1L As a consequence, the zone of the
integration domain with the lowest accuracy in tesults has a marginal contribution to the
value ofJ. This fact also allows avoiding the use of quap@nt or special crack tip elements
to enhance the accuracy of the results in this.zohe bi-quadratic definition aj has been
employed with excellent results in the computatmmEDI for cracks in homogeneous
materials in a previous work by one co-author @ graper. Further details and discussion on
the selection of the functiogp can be found in a recent work by two co-authorthsf paper
(Cisilino A.P. and Ortiz J.E., 2004

Functionq is specified at all nodes within the integratioslumes. Consistent with the
isoparametric formulation, thegevalues are given by:

27
q=> ¥'q. (23)
i=1
where W' are the shape functions defined within each voleeieandQ are the nodal
values for théth node. From the definition af (seeequation 1§ Q' = 0 if theith node is on

S, while for nodes insid¥, Q' are given by interpolating between the nodal \aimel; and
S. Following standard manipulations:
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: 27 3 aqy% :
V2 2ag o, O -

where ¢, are the coordinates in the cell isoparametric sgzambx, /0¢; is the Jacobian

matrix of the transformation.
If Gaussian integration is used, the discretizaanféor the J-integral inequation 11is
given by:

cellsinV p=1

T S * o * * % OXJ
=2 2 (aiiuj,k‘aijfu%)q,i de o, [ e (25)
k
p
wherem s the number of Gaussian points per cell, \@pdre their weighting factors.

5 APPLICATION EXAMPLES: THICK CENTRE-CRACKED PANEL SP ECIMEN

In this section the accuracy of BEM formulation aAdtegral computation are assessed by
considering a number of examples. The first exarhpke two-dimensional characteristics or
deal with homogeneous materials (namely the cemtreked panel (CCP)) in order to allow
comparisons with results from the bibliography. Neke CCP with transversely isotropic
properties is shown, in a variety of orientatiorfstlee fibers. The former examples are
compared with an ABAQUS finite element model inartb show the validity of the results,
having no literature reference to compare with.

The problems analyzed possess symmetry in theimgeg configuration but not in
material properties, due to the transversely igdtronaterial nature. As a result, it was not
possible to analyze only the symmetric portion fvé tlomain by prescribing appropriate
symmetry boundary conditions along the geometsgahmetry plane. Therefore, the whole
model has been discretized in order to pale thesyormetric nature of the transversely
isotropic materials.

The thick CCP-specimen under Pure Mode-| soligtatvas calculated. The geometry of
the specimen isimilar to that depicted ifrigure 7. Crack length ia=10 mm, the width
b=2a andthe specimen thicknesstis3a.

Model discretization is depicted Figure 6 It consists of 658 elements and 2855 nodes.
Eighteen elements are placed along the crack famut,a total of 126 elements are used in the
crack discretization. Four rings of cells with fiada equal to 0.1, 0.15, 0.22 and 0.32 are
accommodated around the crack front Jocomputations. With this purpose 648 cells and
6438 modes are employed.

The fracture mechanical behavior of the specimen aemputed for several configurations
of material properties and relative zone’s rotation

First, isotropic properties were assigned to bathes (seé-igure 3. Material properties
are Young’'s Modulus E=100.000 MPa and a Poissatie v=0.3.Besides, the algorithm was
run in two different possible ways, the isotroprafch and the transversely isotropic branch
of the code (although isotropic material propertiesre consider) in order to prove the
accuracy of both branches. Exactly equal resulte vebtained from both branches of the
code.
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Figure 7:(a) Schematic representation of the thick tensiorephath a centre interface cradk) Model
dimensions

The computed results are compared with those from bibliograpiny shown inFigure 8
Results are reported over the crack front. Ref@®mnmalues are those reportedRgju, I.S.
and Newman, J.C (197@nd byCisilino (2000).Besides, a 2D FEM analysis was introduced
in the comparisonAll results are normalized with respect to thealue corresponding to the
CCP specimen in plane strain condition accordingada H., Paris P.C. and Irwin G.R
(2000) TheJd value was obtained from the appli€d/alue using the following expressions:

K=oJmF(l,). (26)
J:Eﬂ (27)

. E
E-EZFT. (28)

In equation 26F(a/b) is the correction factor fd€. The use of is justified in the fact that
a plane strain condition is expected to prevaihglmost of the crack front within the domain.
On the other hand, near the boundary it is expetttada thin layer will behave in a plane
stress condition based on the free surface effetEaE. Thus, thel reference value at the

free surface is computed considering both cases.
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Figure 8: Normalized/J, sirsin Values for the thick CCP specimen

Computed results and the reference values are ftiuhdve a good agreement throughout
the specimen thickness as showifrigure 8

Second, transversely isotropic properties weregaedi to the bimaterial. Several
configurations were adopted in order to show tlifeidince in the behavior of the specimen
with the orientation of the fibers, and the inflaenof the relative orientation between the
zones. Material properties used were those of gosite laminate as follows:

5320 1.340 3.350 0 0 0
1340 5320 3350 0 0 0
3350 3350 251168 O 0 0

C =
i 0 0 0 1990 O 0 - (29)
0 0 0 0 5000 O
0 0 0 0O 0 5000

Again, the results were normalized. In this cdsesin Was obtained by replacing in
equation 2@he Young’'s Modulus of the plane of isotrof;{=C,,=5.320 MPa.). Irequation
29, Cs3 represents the material strength over the perpeladicirection to the plane of
isotropy. For fiber-matrix composites, the commdrd@ection is that of the fibers. Assigning
a rotation to the matrixC; we are able to rotate the plane of isotropy anagéahe fibers
direction. InFigure 9the convention used to distinguish the direct@irees for the rotation of
Cj in each zones is shown. As example);#172, a 1= 0, =0 and6,=0, a =172 =0, then
the fibers are pointing in theaxis in Zone 1 and theaxis in Zone 2.
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Figure 9: Director Cosines nomenclature for thedtarial

In Figure 1Q we compared the different orientations of therfhin both zone${= 6,=6, a
1= a =0, and @=@=¢). Assuming the global axis convention and the lgoadfiguration
showed inFigure 7 we calculated/J, sirain fOr the cases where the fibers coinciding with the
direction of the three global axis. The examplescamtrasted with a Finite Element Analysis,
just to prove the accuracy of the model and todeddi the formulation implemented.

As it can bee seen froffigure 10andTable 1 good agreement with the FEM analysis is
demonstrated and path independency is confirm. ddmnisbe observed ifable 1 in which for
every different/a value,J/J, siain takes practically the same value, keefigonstant

J/Jp.strai
n
z/t r'a Average FEM Diff. %
0,1 0,15 0,22 0,32

0 1,1159 11,1468 1,1649 11,1870 11,1537 1,1647 -0,94%
0,017 1,1360 1,1558 1,1651 1,1697 1,1566 1,1653 -0,75%
0,033 1,1347 1,1444 1,1459 11,1402 1,1413 1,1657 -2,10%
0,458 1,1292 11,1356 1,1336 1,1242 1,1307 1,1686 -3,24%
0,5 1,1292 11,1356 11,1336 1,1242 1,1307 1,1687 -3,25%
0,542 1,1292 11,1356 11,1336 1,1242 1,1307 1,1689 -3,27%
0,583 11,1294 11,1357 11,1339 1,1247 1,1310 11,1690 -3,26%
0,95 1,1205 11,1269 1,1255 1,1175 1,1226 1,1704 -4,09%
0,967 11,1169 11,1271 1,1283 1,1212 1,1234 1,1705 -4,02%
0,983 1,1164 11,1422 1,1532 1,1507 11,1406 1,1707 -2,57%
1 1,0893 1,1377 11,1648 1,1743 1,1415 1,1712 -2,53%

Table 1: Normalized/Jp.strainresults for the CCP specimen witkr 6,=0, a ;= a ;=0 and@;=@,=0.

At this point, it has been demonstrated that thenfdation implemented can accurately
model interface crack problems in transverselyognt bimaterial.
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Figure 10: Variation ofl/J, swain With the orientation of the fibers for the thick EGpecimen

An increasingly complex problem is proposed nexffellent orientations to the fibers
were assigned to each of the zones of the specifiem.three-dimensional transversely
isotropic bimaterial computation of the EDI alog tcrack front, to the author’'s knowledge,
Is not reported in the bibliography using BEM.

Table 2indicates the director cosines for the differeases considered arieigure 11
introduces howl/J, srainsvaries for three different cases of fiber-matrijeatation.

Zone 1l Zone 2
01 of} O 0 a2 @
Case l 0 W2 0 0 0 0
Case 2 0 W2 0 72 0 0
Case 3 4 0 0 0 72 0

Table 2: Directive cosines for three different dgafations of bimaterial

Consequently, in Case 1 the fibers in Zone 1 amkZdare oriented in theaxis andz-
axis direction, respectively. Zone 1 in Case 2geat as in Case 1.However, the fibers in
Zone 2 are oriented in theaxis. In Case 3, the fibers of Zone 1 are pointoga direction
that forms an angle d=174 with respect to the-axis. Zone 2 fibers are oriented yraxis

direction.
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Figure 11:3/J, srain along the crack front for various bimaterial cgufiations

Figure 11lexposes interesting results according to the velatrientation mentioned before.
Case 1 and Case 2 configuration exhibits a symeoadtresponse along the crack front. Case
3, in contrast, shows a non-symmetrical output asrsequence of the rotation of the fibers
of Zone 1 an angle ofv4 with respect to thg-axis.

6 CONCLUSIONS

In this paper, a boundary element analysis of thmeeensional interface cracks in
transversely isotropic bimaterials has been presefihe interface crack analysis is addressed
using a multidomain BEM formulation in order to aaat for the different material properties
at both sides of the crack. Thentegral is computed along the crack front using Energy
Domain Integral methodology. This is implementecagsost-processing technique, and so it
can be applied to the results from a particular @hatla later stage. The implementation takes
advantage of the efficiency of the boundary integguation to directly obtain the required
displacement derivatives, stress and strain fiets their boundary integral representations.

The devised numerical tool is employed to analyme groblem of thick centre cracked
panel (CCP) under pure mode | loading in order. TRH was submitted to many different
material properties configurations and contrastetibliography, were it was possible, and
with an ABAQUS Finite Element analysis, where thekl of references was the case.

Finally, more complex configurations were computedrder to show the versatility of the
tool.
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7 APPENDIX

In this appendix the fundamental solutions impletaénin this code are given. These
fundamental solutions, as explained above, areetbb¥—C. Pan and T-W. Chou corrected

by M. Loloi.

* 3 . .
U,=2a’F"  forij=1.2 (A1)
=1
* 2 - .
U.,.=D.al?F®  forij=123 (A.2)
n=1
U,=U, forij=123 (A.3)
Where
2
F = L dz*z (A.4)
Ry ReR
1 df
F3(22) = R; - R3|1Q;2 (A.5)
R =R = —;31252 (A.6)
i 1
alV = (A.7)
4w ,Cqy

The rest of the functions and constants are surzethin the following tables for the cases
whenvl #v2 (Table 3 and for the degenerate casalfle 9.

Functions Constants
o, dd. 2
FO =2 -—F (i) — _ i) = Ces = Cad
" "R RR? ol = ==
Vn
d, d
12) _ 21)
PP =F® =22 g = —g3 = Cis +Cge
R;R; 1 T T = H
1 2
33) — —
R == 33 :M

@3 — _
a;” =—-a, U H
n

Table 3: Functions and constants in the genial dtenfor fundamentals solutions of transverseliraguc
materials whew; . v,
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Functions Constants
) o. dd.
@ =% _ 49 >
F, R R? o = CesVs —Cyy
v,M
2
e 29 4 L
2 * *2 (ij) —
R RR a,’ =———
4ﬂVlC66
o dody?
(i3) — M Y3V
= 3 i3 _ V1(Ci3 = Cg)
R a =Y1(Cs = Ce)
M
(i3) — (33 —
Fi9 =0 af =0
Fe = L ,
! R ey _ Vi(Cy +CoeVr)
! M
dzv?
@ _ U3y )
F9 ==L al® =-a

R

Table 4: Functions and constants in the generaidtae for fundamentals solutions of transverselrapic
materials for degenerate case whérrv2 (i, j=1,2)

H andM are define as follows
H = 47C,Ce4 (V5 — V1) (A.8)

M =87C,,C,, (A.9)
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