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Abstract. A 2D model for plain concrete that considers @ige cracks is here proposed. Zero
thickness cohesive surface elements are introdoeedeen all adjacent finite elements. Mixed-mode
rupture can be captured using a modified Couloras The classical zero thickness cohesive model
was here modified in order to partially eliminatesh dependency.

In this work, some well-known Mode | post-peak ddosve equations used in discrete fracture
methodologies for concrete, are implemented indbleesive surface method. The shape of these
equations changes overall results and is linket thi¢ development of the process zone. Pre-peak of
the equations was modified in order to reduce maspendency. On the other side, Mode Il
constitutive equations and properties are not kredwn or defined in general. This issue is addigsse
here and a modified Coulomb’s law is proposed tal déth mixed mode cases. The methodology is
simple and, besides pure Mode | fracture propertezguires only the definition of a coupling factor
between Mode | and Il. An elastic-predictor andspiacorrect type of algorithm is used to define
cohesive surface tractions. Results presenteddanerenly preliminary but show that the methodology
is able to capture correctly crack morphology at agpeak load in a simple 4 point double notched
beam.
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1 INTRODUCTION

One of the most used methods in recent past tolaienaoncrete rupture is the smeared
method (Rashid, 1968; Cedolin and Dei Poli, 197@zdht and Cedolin, 1979, Rots and
Blaauwendraad, 1989; Oliver, 1989; etc), where dgntaused by fracture is considered only
in the volumetric constitutive law of the materidlthough overall results are satisfactory,
cracks are not explicitly considered. The so-caethedded methods introduce cracks as a
discontinuity of strains or displacements and arecl@ser representations of the real
discontinuity (Grootenboer et al., 1981; Ortiz ket 8987; Belytschko et al., 1988; Dvorkin et
al., 1990, Dominguez et al., 2004, Brisotto et 2008, etc.). However, they are also
approximations because the crack tip (and correipgrstress/strain field) is not considered.
These methods in general work better in reinforcedcrete, where, in most of the cases,
there is not a predominant crack and the crackireppmena can be considered a volumetric
damage.

Fracture of plain concrete, where dominant cracksnally emerge, is better approximated
by discrete methods in general, such as the adaptiethods (Wawrzynek and Ingraffea,
1987, Potyondy et al., 1995, etc.) and cohesiveaseirmethods (Xu and Needleman, 1994,
Camacho and Ortiz, 1996, etc.). In the first, a rmeack surface is added to the boundary
representation, when maximal stress exceeds a [irhg method requires that a fully new
mesh be created in this case. In the second, aghesifaces are placed between all finite
elements. When maximal traction at the surface exk@elimit, a new crack surface is then
created by separation of finite element nodes. Ma¢hod is obviously simpler, but may
induce a mesh dependency on results. Recentlysdhealled X-FEM or extended finite
element method by Belytschko et al. (1999, 200Mjickvis an adaptive methods that insert
cohesive elements as the crack travels, was prd@ssan alternative.

The constitutive model for the cohesive surfacesesented by a function of the tractions
in terms of separation distances between finitenetd faces, which corresponds to crack
opening (Hillerborg et al., 1976, CEB-FIP Model €@pd993 and Xu, 1999, etc.). Due to the
process zone, constitutive model for concrete ind&d presents a softening curve after
traction strength is reached.

Considering mixed mode (I and Il) fracture, Bocdaak (1990), Cervenka (1994) and
Galvez et al. (2002) concluded that Mode Il prapsrthave little influence on results,
suggesting that crack propagation is predominavitige | propagation, even when a global
mixed mode loading is applied. Jenq and Shah (1%8&)cia et al. (2000) and Di Prisco et al.
(2000) also share the idea that Mode Il is notrapartant fracture mechanism in concrete.
Other studies indicate that Mode Il energy is mhigher than Mode | (Bazant and Pfeiffer,
1985, Rots, 1988 and Swartz et al., 1988). A playsggplanation for an increase in Mode I
energy comes from aggregate action (friction, lnotdr action, etc.) that practically eliminates
the possibility of sliding inside the concrete. Tiherease found by Carpinteri et al. (1993) for
Mode Il energy was more modest than others, fromol83% greater than Mode | energy.
Actually they believe that Mode Il energy is nopperty in concrete and depends on the
loading, shape and size of the body.

Even considering that rupture in Mode Il is localigt feasable, interactions between
normal and tangential tractions must be consideledhis work a cracking surface was
created in order to define the combination of iihing cracking. The surface chosen was a
modified Coulomb law, where strength in tensiorassidered an adhesion. Besides Mode |
properties, shear strength and an effective opemngt be defined. However, numerical
experimentation has shown that the last two pra@sehave only a marginal effect on results.
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It will be seen that this approach can be consitlagea lower-bound for the cracking surface.
Works that consider a coupling only through anaife opening, as in Basche et al. (2007),
can be considered an upper-bound for the crackimface. Constitutive laws used in this
work for Mode | are presented and described ini@@@; mixed mode considerations are
made in section 3; section 4 shows applicationth@fmethodology for four-points bending,
mixed mode propagation. Concluding remarks andudsons are done in section 5.
Implementation in a finite element (FE) contextriework is described in Lens et al. (2007).

2 CONSTITUTIVE LAW FOR MODE |

To represent crack behavior is necessary to eskahlrelationship between normal traction
(0) and normal openingn) of the surfaces. It is known that when surfadest $0 separate
from each other, traction increases reaching a pedlle (Omnay. Afterwards, traction
decreases until reach a zero value for crescentirmgpeFor this opening, the surfaces are
considered fractured. This behavior occurs in diffé scales, from separation of atomic
planes to macro-scale at the crack tips. Dependimdghe scale or on the material being
represented by separation of the surfaces, diffgreak tractions and final openings are used.
A vast collection of such values can be found im@ira et al. (2002). In the case of concrete,
the constitutive law of cohesive surfaces is sdpdra two parts: the post-peak and the pre-
peak parts as follows.

2.1 Post-peak of the Constitutive Law

Three shapes of post-peak constitutive laws amesepted below: Hillerborg et al. (1976),
CEB-FIP Model Code (1993) and Xu (1999). Thesetimlahips are implemented in the
present work in the cohesive surface context aadiepicted in Figure 1.

B
max
Hillethorg (1976
Traction — - — .« = CEB-FIP (1983)
= = = = Xu (1509
*-..": e .
- - -~ B R .
We Crack Opan{w)

Figure 1: Post-peak cohesive traction (normal imaatr versus normal opening) for pure Mode |.

The shape of post-peak traction-opening seems lioked with the development of the so
called process zone where many complex phenomena sach as micro-cracking, interlock
bridging, friction between surfaces and agregatts, The area under the curve is considered
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the Mode | fracture energyG(c) and the maximal tractionogay is related to the tensile
strength. The shape of post-peak has an impomnéoence on results (such as the maximum
load achieved), as seen in Lens et al (2006). Tahsresome practical indications that this
curve should be steeper for smaller openings, duaténse micro-cracking, and much less
steep for large openings due to bridging or intdleffects (Rots, 1988).

According to Xu (1999),Gic depends mostly orcm and dmax (fem is the average
compression strength,, - 8 MPa = fg, wherefyis the characteristic compressive strength;
dnax IS the maximum aggregate diameter of the concref&en, when experimental
information about fracture energy is not availal@dg, can be determined by equation (1) as
follows (see Xu,1999)

d 095 f 0.7
G,. =0.0204+ 0.0056—m&x | <M (1)
' 8 | 10

wherednax is in mm andfcy, is in MPa. Based on previous studies (Lens et2807), Onax
should range from 1 to 3 times the average tessiength of the concret&;,. Actually this
range was also used by Carpinteri et al. (2003¢0Ating to these authors the relatigRxX
fim, depend on the size of the bo@y,ax=fim for large specimens angh,x=3 X fm for small
specimens).

2.2 Pre-peak of the Constitutive Law

In the curves showed in Figure 1, the pre-peakigois not depicted (crack opening from
zero towg). This part of the curve is a non-dissipative ttapart of the surface opening.
According to Rots (1988W. should be a small value in order that the eladgformation of
the cohesive surface is negligible compared to icooin elastic deformation. More
important, we believene, should be a size dependent dimension, in ordeavimd the
introduction of an undesirable size effect. We psmphere that,

o

W, = a?lc (2)
wheredmax/E is the elastic deformation of the continuum atgkak load (in Mode |) and is
its characteristic lengtlu should be a small value (in genewad< 1). In a FE contextl. is
taken as the characteristic length of the FE afrdeture zone. The use of a constaptvalue
would introduce an undesirable mesh dependencesuits when cohesive surfaces are used
between all FE. In a successive remeshing prottessum of alw, can be greater than the
elastic volumetric displacements, which does nokemsense. This effect can lead to a fake
brittle (rather than quasi-brittle) behavior.

3 MIXED FRACTURE MODE

3.1 Preliminary Considerations

Damage curves for pure Mode IlI, tangential tractfgnversus sliding ¥), can be also
defined, although experimentally difficult to obtaiMode Il energy G,c) is then the area
under the curve. The drop of normal (see Figurant) tangential tractions after peak, in the
presence of a mixed mode, must be a function amabation of both normal opening and
sliding, through an effective opening. It can bérdl as:
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ueff :VW2+IBV2 (3)

S ranges from 0 to 1. If no other coupling is inmodd between Mode | and Il, admissible
space for tractions, when concrete is damaged &yupture process, shrinks according to
Figure 2 fmaxrepresents maximal pure tangential traction, witldamage).

damage
direction

Tmax

Omax

______________

Figure 2: Evolution of traction space under tension

Increasing damage, admissible region for tractesreases, until it becomes a point at
the origin of traction space. This point correspotalfracture. The surfaces represented above
can be also seen as an yield/cracking surface aatbgies with plasticity can be built.
According to the postulate of convexity of Druck#re surfaces above can be seen as an
upper bound limit in tension for a concrete cragksurface. A lower bound in tension is
defined by the Coulomb’s law with adherence, beidberence initiallyomax This case is
depicted in Figure 3.
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Figure 3: Possible cracking surfaces.
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Besides giving a lower bound to cracking surfacéeimsion, the use of Coulomb’s law
permits to have a model to deal with compressivenabtractions, as pointed out by Galvez
et al. (2002). In this case, shear resistance asee with compression, as expected.
Considering total rupture (see Figure 3), origi@alulomb’s law is retrieved, meaning that
tangential resistance is only possible under cosgwa. Friction anglegpermits to determine
maximal shear traction in pure Mode 1§y, once maximal normal traction in pure Mode |
(dmax) is known. Experiments indicate that this angleshihe greater than 25

3.2 Modified Coulomb’s Law
Yield/cracking surface F in this case is defined as
F =[] +tango - f,)=0 (4)
wheref; = omax for undamage concrete (updating procesd: fisr discussed below). Féi<0
tractions are elastic and fB=0 damage or cracking is occurring.

In cases where F>0, stresses must return to tHacsurAn elastic-predictor, plastic-
corrector type of algorithm is used. Elastic-prémlics given by equations (5) and (6).

o® =K, w (5)
r® =K (6)

whereK,, andK; are the normal and tangential elastic stiffnesthefinterface, respectively.
Their values are defined below:

Q

K, =—max (7)
We
Tmax

K, = (8)
Vv

e

where, I, IS the tangential elastic opening. As its norna@lrgerpart (equation 2), it is also a
function of the characteristic length of the mestnda:

=), ©)
U

L is the concrete shear modulus. Incremantadlgndw can be also divided in an elastic and
an irreversible part. This can be written as:

HENEN &

Plastic corrector can be written according to &d):(

(=l .
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A non-associated plasticity will be used here, Wwhiteans that irreversible displacements are
not normal to cracking surfade Instead they are normal to a modified crackindese F*.
The irreversible displacements are calculated lésafs:

{\i.\/i}z/]-{alz’;/aa} 12)
V, oF /or

F* is seen in Figure 4, comparedipand has two parts.

o

el el
T

el el

Figure 4: Cracking surface F and modified cracldnfface F*.

For compressive normal tractions, only slidings @mesidered dissipativev( = 0), which
is the usual hypothesis for friction (see for ins& Bittencourt and Creus, 1998). In concrete,
this hypothesis is valid only microscopically besaumacroscopically, due to irregularities on
crack surfaces, normal dissipative displacementsalso occur (this effect is sometimes
referred as dilatancy). For tensile normal tractjatissipative displacements will be assumed
to occur in the direction of the origin of the sespace. This assumption was also used by
Galvez et al. (2002) with good results.

Directions of irreversible displacements will bensmlered constant during integration
process, so final stresses can be calculated as:

Ml
r re K,] |0F /ot

A= j Adt (14)

where
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The value of/1 can be obtained replacing eq. (13) into (4). P&Etve displacements;

and v can be calculated from:
W .
1. aF* |00 A (15)
V, oF /or

and tractions updated from equation (13).

Hilletborz { 1976)
— = = - = CERB-FIP (1983}
- = = = Xu (1999)

- bt R
= " ——
L
o s
e =

0 Irreversible EffectiveaCk Opening (W)

Figure 5: Post-peak normal cohesive traction astfon of the irreversible effective crack opening.

As dissipative damage occurfg,must be also updated.This is done using the curves
defined in Figure 5. Actually the procedure is #ame used to updatein pure Mode |
(Figure 1), except thatw is replaced by the irreversible effective craclemipg uies , as

defined below.
Ui =W + BV (18)

Finally, it can be seen that Mode Il energy dodsember explicitly on the formulation, but
indirectly through shear peak stremzgx and S. For instance, if peak stress for Mode | and
Mode Il are the same, in this caSg: will be always greater than or equalGg: for S=1,
Gic=Gic; for =0, Gjc=co.

4 NUMERICAL EXPERIMENTATION
4.1 Pure Mode | Propagation

In this section a three-point bending test is usederify the behavior of the methodology
in pure Mode I. The size and boundary conditiors @efined in the Figure 6. Concrete
properties are: Young modul&s23340 MPaf,=25.2 MPa and Poisson coefficiert0.20.
Cohesive surface properties d@g =100 N/m, 0ma=1.8 MPa anda=0.333. The post-peak
part of cohesive surface constitutive law does havémportant effect not only in the post-
peak behavior of the load x crack opening curvedisn on the peak load itself. In all cases,
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Hilleborg et al. (1976) induce a somewhat moretlbribehavior, with greater peak load and
more abrupt drop overall (see Figure 7).
j/P

e

= =
i
= N a=25 mm

— 305 mm
12 mm

— Temm___|

12 mm
Figure 6: Geometry and boundary conditions.

The more brittle behavior induced by Hilleborg dt &976) when compared to
experiments, can be associated to the absenceedfyefracture for large openings, when
bridging and interlock play an important effect.eTEREB-FIP Model Code (1990) and Xu
(1999) present a greater toughness, especialbrge lopenings. In general Xu's constitutive
law fits better experimental results.

0.9 )
Y
08 >,
Y o Experimental (Jeng and Shah, 1985).
07 A — = = - This work gcurve ofCEB-FIP, 1993
: 1 This work (curve oXu, 1999.
Y ———— - This work (curve oHilleborg et al., 1976

0.6

0.5

Load P (kN)

[=]
3]

0 0.05 01 015 0.2 0.25
Crack Opening (mm)

Figure 7: Various post-peak behaviors compared

Effects of the FE mesh was analyzed by the preseiitors for this case in Lens et al.
(2007). It was shown that the present methodology & smaller mesh dependency than

classical cohesive surface methods.
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4.2 Mixed Mode Propagation

To test the formulation in mixed mode propagatianfour-point double-notched shear
beam, analyzed experimentally by Bocca et al. (1,998s here used. The FE mesh used and
dimensions is depicted in Figure 8. Prescribed laicgments are applied as indicated
(application points are 20 mm apart from the beantar). Thickness is 100 mm. The Mode |
energy was fixed irGc= 100 N/m. Mechanical properties are: Young modz27000
MPa; Poisson coefficient=0.2.

_ a=10 mm ﬁi
N

— 50 mm ——

Tﬂ N a=10mm

200 mm

F—a=10 mm —

Wy =1 mm

Figure 8: FE mesh with dimensions for the doubleshed beam in mixed mode. Notch detail is also show

Figures 9a,b shows crack propagation at differements of the cracking process (in this
caseoma=2.7MPa; tang= 3.33; 4= 1) and Figure 9c shows experimental fracturettary
after total rupture of the beam. It can be notieaecmarkable similarity between numerical
and experimental trajectory, with cracks changragettory at the beam edges. It is interesting
to note that crack morphology was captured eveh thigt coarse mesh used.
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(@)

Figure 9: Crack trajectory at the beginning of gagation (a), at the final stage (b) and centrel gfethe
experimental beam after rupture (Bocca et al., 1980.

Figure 10 shows a plot of applied load (at the ldisgment points — see Figure 8) versus
corresponding displacement for different Mode bpgerties (tanpandf) with fixed Mode |
properties Gic = 100N/m, gma=2.7 MPa). A peak load ranging from 11.8 to 12.4 #ss
obtained, in very good agreement with the expertalgesult (12.2 KN). It is remarkable that
Mode Il properties have very little influence orsults. On the other side, increasing maximal
cohesion in Mode ldnay to 3.7 MPa a significant increase in the peald laas observed
(16.0 KN). Then it can be concluded that only pMade | properties need to be known to
provide a good fitting with experiments. This tremds also observed by Bocca et al. (1990),
Galvez et al. (2002), among others.
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| T R L B = B I ]

J —————— tan =333, p=0.5
o - _ tan §=1.60, =1
o tan =333, =1

1E-05 2E-05 3E-05 4E-05 SE-05
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Figure 10: Influence of Mode Il properties on leadisplacement curvegg,=2.7 MPa;G,c=100 N/m).

5 CONCLUSIONS

In this paper, a new formulation to deal with mixedde fracture in plain concrete is
presented. The model is based on a modified Coutotaty. Comparing with pure Mode |
algorithm, two new parameters need to be knowatidm angle (or cohesion in pure Mode 1)
and a coupling factor.

In an exploratory example of a four-point doubleehed beam, it was observed that
properties necessary to consider Mode Il practioddl not change results. It was observed
also that Mode | properties are determinant tongefieak load and post-peak behavior. A
coarse mesh was used and even in this case, tbdttalg was able to reproduce crack
trajectory with remarkable details. Tests with maned meshes need to be done to confirm
this trend.
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