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Abstract. This paper presents a thermomechanical-microstructural formulation for the analysis of the 
solidification process of nodular cast irons of eutectic composition. This formulation is defined in a 
finite strain thermoplasticity framework considering microstructure-based liquid-solid phase-change 
effects. The performance of this model is evaluated in the analysis of a solidification test, for which 
laboratory measurements are compared with the corresponding numerical results. 
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1 INTRODUCTION 

The numerical simulation of the nodular (or spheroidal-graphite, S.G.) cast iron 
solidification and the subsequent cooling processes is still nowadays an active research area, 
mainly due to the different and complex phenomena involved in the analysis. Among the 
several factors that directly affect the final soundness of the castings, it is possible to identify 
the microstructure evolution, the presence of residual stresses, and the geometrical changes 
caused by thermal contraction and metallurgical transformations. 

Several thermomechanical models, aimed at predicting thermal residual stresses and final 
shapes in castings in order to prevent macroscopic defects and/or to optimize operational 
conditions, have been developed during the last two decades; see e.g. Celentano et al. (1999) 
and references therein. On the other hand, relevant efforts have been done to couple heat flow 
calculations performed at the macroscopic level to related microscopic phenomena such as 
phase appearance, morphology and grain size with the sake of determining the ultimate 
mechanical properties of the solidified product; see e.g. Rappaz (1989) and references therein. 
More recently, some of these microstructural concepts have been considered in 
thermomechanical simulations of solidification and cooling processes of different alloys 
where microscopic models of microstructure formation are coupled to macroscopic 
thermomechanical computations to assess the influence of the evolution of both micro and 
macro features on the full response of the materials involved in the casting system (Celentano, 
2001; Celentano, 2002). In this last context, in sharp contrast to purely thermomechanical 
models, phase-change effects are assumed to depend not only on temperature but also on 
temperature rate by means of other appropriate microscopic variables to simulate in a more 
realistic form the complex phenomena associated with the phase transformation. However, it 
should be noted that this phenomenological approach includes the definition of evolution laws 
for the phase-change variables assumed to govern the average microstructure formation 
occurring in a certain (preferably small) volume at the macroscopic level and, hence, 
precludes a microscopic scale modelling of the micromechanisms developed during the 
process which, with the present computer power, is in most cases an impossible task. 

This work presents a thermomechanical-microstructural formulation for the analysis of the 
solidification process of nodular cast irons with eutectic composition. This formulation, 
defined within the thermoplasticity context (Celentano, 2002), includes large strains effects, 
phase-change volumetric deformations, temperature-dependent material properties and 
microstructure evolution governed by a multinodular-based eutectic solidification model 
(Dardati et al., 2006). 

The thermomechanical formulation is presented in Section 2. Section 3 includes the elasto-
plastic constitutive model assumed to describe the behaviour of all the materials involved in 
the casting system and, in particular, the liquid, mushy and solid phases that take place during 
the solidification and cooling of the alloy. Thermoplasticity theory has been chosen for the 
constitutive description of the whole casting system since little rate-sensitiveness is expected 
in the material response due to the rapid evolution of the solidification and cooling processes. 
Moreover, this assumption is additionally supported by the fact that very similar 
thermomechanical behaviours have been obtained by using plastic and viscoplastic (with a 
relatively large range of viscosity values) models in the numerical simulation of casting 
problems (Celentano, 2002). Furthermore, the microstructure model of the eutectic nodular 
cast iron is described in Section 4. The microstructure mechanisms encompass kinetic-based 
nucleation and growth laws for both the dendritic austenite and graphite nodules. 

This thermomechanical-microstructural model is discretized and solved in the context of 
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the finite element method; see Celentano (2002) for further details. Finally, the analysis of a 
solidification test is performed in Section 5 with the aim of comparing some available 
experimental measurements with the numerical results obtained using this proposed 
formulation. 

2 THERMOMECHANICAL FORMULATION 

In a general thermomechanical context, the local governing equations describing the 
evolution of a process can be expressed by the continuity equation, the equation of motion, the 
energy balance and the dissipation inequality (all of them valid in Ωxϒ, where Ω is the spatial 
configuration of a body and ϒ denotes the time interval of interest with t∈ϒ) respectively 
written in a Lagrangian description as: 

0ρρ =J  (1) 

ub &&ρρ =+⋅ fσσσσ∇∇∇∇  (2) 

0: =+−+⋅−− intrTrTc ρρρ dq ββββ∇∇∇∇&  (3) 

0≥+⋅− intDT∇∇∇∇q  (4) 

together with appropriate boundary and initial conditions and adequate constitutive relations 
for the Cauchy stress tensor σσσσ (which is symmetric for the non polar case adopted in this 
work), the tangent specific heat capacity c, the heat flux vector q, the tangent conjugate of the 
thermal dilatation tensor ββββ, the specific internal heat source r int and the internal dissipation 
Dint. In these equations, ∇∇∇∇ is the spatial gradient operator, the superposed dot indicates time 
derivative and the subscript 0 applied to a variable denotes its value at the initial configuration 
Ω0. Moreover, ρ is the density, u is the displacement vector, J is the determinant of the 
deformation gradient tensor F ( u1F ×−= ∇∇∇∇1- , with 1 being the unity tensor), bf is the specific 
body force vector, T is the temperature, r is the specific heat source and d is the rate-of-
deformation tensor ( )(2/1 ∇∇∇∇∇∇∇∇ ×+×= vvd , where uv &=  is the velocity vector). In this 

framework, a specific Helmholtz free energy function ψ, assumed to describe the material 
behaviour during the thermomechanical process, can be defined in terms of some 
thermodynamic state variables chosen in this work as the Almansi strain tensor e 
( )(21 1--T-/ FF1e ⋅= , where T is the transpose symbol), the temperature and a set of nint 

phenomenological internal variables ααααk (usually governed by rate equations with int,...,1 nk = ) 

accounting for the non-reversible effects (Lubliner, 1990). This free energy definition is only 
valid for small elastic strains and isotropic material response, both assumptions being 
normally accepted for metals and other materials. Invoking the Coleman’s method, the 

following relationships are obtained: e∂
∂= ψρσσσσ , T∂

∂−= ψη  is the specific entropy function, 
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k
k αααα∂

∂−= ψρq  are the conjugate variables of ααααk and, according 

to the nature of each internal variable, the symbols ∗ and D(⋅)/Dt appearing in the previous 
expressions respectively indicate an appropriate multiplication and a time derivative satisfying 
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the principle of material frame-indifference  (Lubliner, 1990; Simo, 1995). Furthermore, the 
heat flux vector at the spatial configuration is assumed to be given by the Fourier’s law 
written as Tk∇∇∇∇−=q  where k is the conductivity coefficient. Additionally, a more restrictive 

dissipative assumption than that stated in equation (4) reads: 0≥⋅ T- ∇∇∇∇q  and 0int ≥D . The 

first condition is automatically fulfilled for k≥0 while the second imposes restrictions over the 
constitutive model definition. 

It is seen that the definitions of ψ=ψ(e,ααααk,T) and Dααααk/Dt are crucial features of the 
formulation in order to derive the constitutive equations presented above. To this end, the 
following split is proposed (Celentano et al., 1999): pc

int
p
intint nnn += , where p

intn  and pc
intn  refer 

to the number of internal variables related to plastic (non-reversible that may occur in every 
material of the casting system) and phase-change (only existing in the solidifying alloy) 
effects, respectively. Accordingly, this assumption leads to pc

int
p

intint rrr +=  and 
pc

int
p

intint DDD += . Details of the elasto-plastic and microstructure models are given below. 

3 ELASTO-PLASTIC CONSTITUTIVE MODEL 

In this work, the material behaviour in the mushy zone is assumed to be governed by a 
mixed rule that weights the responses of the liquid (l) and solid (s) phases according to their 
respective volumetric fractions f. Thus, any mixed variable can be defined as: 

ssll
slcp

cpcpmx
fff χχχχ +== ∑

= ,

 (5) 

such that 1
,

=+=∑
=

sl
slcp

cp fff . 

The internal variables and their corresponding evolution equations are defined in this work 
within the associate rate-independent thermoplasticity theory context (Lubliner, 1990; Simo, 
1995). A possible choice is given by the plastic Almansi strain tensor ep and the effective 
plastic deformation pe  related to the isotropic strain hardening effect (i.e., 2n p

int =  with αααα1= 

ep and α2=
pe ). The evolution equations for such plastic variables are written as: 

σλ ∂
∂= FL p

v
&)(e                   

C
Fe p

∂
∂−= λ&&  (6) 

where Lv is the well-known Lie (frame-indifferent) derivative, λ&  is the plastic consistency 
parameter computed according to classical concepts of the plasticity theory, C is the plastic 
isotropic hardening function and F=F(σσσσ, pe ,T) is the yield function governing the plastic 
behaviour of the solid such that no plastic evolutions occur when F<0. A Von Mises yield 
function is adopted: 

mxy2 C3JF −=  
      
(7) 

where J2 is the second invariant of the deviatoric part of σσσσ ( 2eq 3J=σ  is the so-called 

equivalent or Von Mises stress) and the yield strength function 
cpyC  is adopted in this work 

as: 

CCC
cpycpy 0

+=  
      
(8) 
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with )(TCC
cpycpy 00

=  being the yield strength defining the initial material elastic bound. In 

general, 
cpy0

C  decreases with temperature and, hence, it accounts for the thermal softening 

phenomenon, which is an important effect to be considered in casting processes where 
materials undergoing large temperature variations are involved. For the liquid phase, in 

particular, 0=
ly0

C  is assumed. 

Assuming a stress-free initial state (σσσσ0=0), the following specific free energy function 

mx
ψψ =  is proposed such that ),,( Te pp

cpcp
ee −=ψψ  is expressed as (Celentano, 2001; 

Celentano, 2002): 
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    (9)  

where 
cp

sC  is the secant isotropic elastic constitutive tensor, 
cp

pA  and 
cp

pn  are the 

parameters aimed at characterising the isotropic hardening behaviour of the material,  
cp

sc  is 

the secant specific heat and sL  is the secant specific latent heat. It should be noted that the 
deviatoric response of the liquid phase is neglected by assuming a purely volumetric elastic 
constitutive tensor in this phase. Furthermore, 

cp

the  and pce  are the thermal and phase-change 

Almansi strain tensors, respectively given by: 

[ ]1e 3/2)1(1
2

1
cpthcp

th a−−=  

          
     
(10) 

[ ]( ) 1e 3/23/2 1)1(1
2

1
thpc

pc aa −−−=  

          
     
(11) 

where ( ) ( )refcp

s
threfcp

s
thcpth TTTTa −−−= 00

αα  with 
cp

s
thα  being the secant volumetric thermal 

dilatation coefficient and cp
s
pcpc fa δ=  with s

pcδ  being the secant phase-change volumetric 

deformation. 
As mentioned above, the proposed definition of ψ allows the derivation, including 

coupled thermoelastic, thermoplastic and phase-change effects, of all the constitutive 
equations and internal dissipation by means of the expressions given in Section 2; see 
Celentano (2001) and Celentano (2002). 

4 MICROSTRUCTURAL MODEL 

The eutectic nodular cast iron microstructure model adopted in this work corresponds to 
that proposed by Dardati et al., (2006). In this model, the phase-change internal variables are 
the austenite and graphite volumetric fractions together with their respective grain/nodule 
density and radius (i.e., 6n pc

int = ). Only a brief description of this model is presented below. 
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4.1 Solid fraction 

Figure 1.a shows a schematic representation of an equiaxial dendrite grain and spherical 
graphite nodules. The total grain radius RT is computed at the instant of instantaneous 
nucleation. The radius Rg corresponds to a spherical surface at the tip of the main dendrites 
and grows during the solidification until it reaches the value RT. Three spherical symmetric 
zones are identified in Figure 1.b in order to produce a simplified description of the solute 
concentration (Rappaz and Thévoz, 1987). Zone 1, defined as a sphere with radius Rn, shows 
the evolution of the solute contents in the solid phase and covers the volumetric fraction 
corresponding to the total solid volume of the grain. Zone 2 shows a uniform distribution of 
solute in the interdendritic liquid while Zone 3 exhibits a variation of solute concentration in 
the intergranular region. In this context, the solid fraction is written as: 

grs fff += γ  
    
(12) 

where γf  and grf  are the austenite and graphite volumetric fraction respectively given by: 

1

3

Z
gr

T

n f
R

R
f −








=γ  

    
(13) 

∑
=

=
3

1i

Z
grgr

iff      
(14) 

such that the graphite volumetric fraction of graphite associated to zone Zi is: 
3

13

4
i

j

i

j

i Z
gr

k

j

Z
gr

Z
gr RNf ∑

=

= π      
(15) 

where i

j

Z
grN  is the number of graphite nodules per unit volume of total grain of zone Zi with 

radius i

j

Z
grR , the subscript j denotes the nodule group related to a specific nucleation time and k 

stands for the total number of nodule groups. 
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Figure 1: a) Schematic representation of an equiaxial dendrite grain and spherical graphite nodules, and b) 
spherical solute concentration (spherical symmetry is assumed). 

4.2 Nucleation and growth of austenite 

Nucleation of the austenite is assumed to occur as soon as the eutectic temperature TE is 
reached. The following instantaneous nucleation law is adopted: 

TAN &
γγ =  

    
(16) 

where γN  is the density of austenite grains and γA  is a parameter that depends on the 

characteristics of liquid such as composition, superheating and holding time. 
Based on the number of austenite grains that nucleate per unit volume, the total radius RT is 

simply computed as: 

3
4

3

γπ N
RT =      

(17) 

The growth of the dendrite tips is assumed to be controlled by the diffusion of solute while 
the influence of the thermal undercooling is neglected because the temperature is considered 
as constant for the whole grain. The evolution of Rg is given by: 

( )
2

0

/

2
0

1 






 −
−Γ

= ∞

C

CC

k

CmD
R

l

p

l
c

g

γ

π
&      

(18) 

where l
cD  is the coefficient of carbon diffusion in liquid, m is the slope of the austenite 

liquidus curve, 0C  is the initial concentration of carbon, Γ  is the Gibbs-Thompson 

coefficient, kp is the partition coefficient, γ/lC  is the carbon concentration of the liquid in 
contact with austenite (at temperature T and at equilibrium) and ∞C  is the carbon 
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concentration of the intergranular liquid away from the dendrite tip. 
Moreover, the radius of the spherical Zone 1 is evaluated by equating its volume to the sum 

of the eutectic austenite volume plus the volume of nodules that have already been surrounded 
by this phase and that do not continue growing according to this model. Thus, 

( ) ( )
( ) 2/

/33/2

13

3

np
l

l
ngg

l
g

n
RkC

CRRRCCR
R

−
−+−

= ∞
γ

γγ &&
&  

    
(19) 

4.3 Nucleation and growth of graphite 

Graphite nucleation is modeled as a continuous process that occurs in Zones 2 and 3 
according to the following law: 

( )ii

j

Z
s

gr
gr

Z
gr f

T

c
TbN −









∆
−∆= 1exp&      

(20) 

where bgr and cgr are nucleation parameters that depend on the composition and liquid 
treatment and ∆T is the undercooling. 

Graphite nodules grow in both the interdendritic and intergranular liquids, but with 
different rates because Zones 2 and 3 have different carbon concentrations, named γ/lC  and 

∞C , respectively. The growth of graphite nodules due to diffusion is modeled here using 
Zener’s equation for a spherical isolated particle in a matrix with low saturation: 

( )
( )grl
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−
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= ∞

ρ
ρ

&  

    
(21) 

where grlC /  is the carbon concentration of the liquid in contact with graphite (at temperature 
T and at equilibrium) and Cgr is the carbon concentration of graphite (i.e., 100%). 

5 SOLIDIFICATION TEST 

The analysis of a cylindrical casting specimen of S.G. cast iron (diameter=70mm and 
height=140mm) in a green sand mould surrounded by a steel shell (internal diameter=185mm, 
thickness=30mm and height=260mm) is performed. This problem has been extensively 
studied using simplified infinitesimal strains constitutive models for the materials involved 
(Celentano et al., 1995; Celentano, 1997) and, more recently, involved large strains and 
microstructural effects (Celentano, 2001). The experimental apparatus is schematically shown 
in Figure 2. Both temperature and radial displacement evolutions have been measured during 
solidification and cooling approximately at the midheight of the specimen (Celentano, 2001). 
Thermocouples were placed on three radial directions at 0º, 120º and 240º, starting from the 
cylinder central axis to the surrounding sand mould in order to visualize the thermal gradient 
evolution. Radial displacements were measured at the same directions on the cylinder external 
skin using silica rods. 
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Figure 2: Experimental apparatus. 

The material thermomechanical properties for the S.G. cast iron and green sand can be 
respectively found in Celentano (2001) and Midea and Shah (2002). The constants involved in 
the microstructural model for the S.G. cast iron are those reported in Dardati et al. (2006). 

The axisymmetric numerical computation used 540 four-noded isoparametric elements and 
a time step of 50 s. The analysis starts with the mould cavity completely filled with molten 
metal at rest at 1250 ºC (i.e., instantaneous filling is assumed) and 22 ºC for the sand and steel 
moulds. The mould is simply supported at the bottom and convection-radiation conditions 
have been considered between the external face of the mould and the environment. The 
boundary conditions and the finite element mesh used are plotted in Figure 3. Mechanical 
frictionless contact conditions are adopted for the casting-sand interface. 
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Figure 3: Boundary conditions and finite element mesh. 

The experimental temperature evolutions in the casting for different radial positions at 
height 105 mm are plotted in Figure 4. The numerical results obtained with the proposed 
formulation are also included for comparison. A good overall agreement can be observed 
where, more specifically, the liquid-solid and solid-solid phase-changes are reasonably well 
described. 

Experimental and computed temperature evolutions in the sand for different radial 
positions at height 105 mm are plotted in Figure 5 where, once again, a good fitting can be 
appreciated. 

Moreover, the experimental and numerical radial displacement evolutions at height 85 mm 
of the casting-mould interface are shown in Figure 6. The different expansion/contraction 
behaviours related to the phase-changes occurring during the process can clearly be seen: a) 
contraction till the beginning of the solidification, b) expansion during solidification (graphite 
precipitation), c) contraction from the end of the solidification up to the beginning of the 
eutectoid transformation, d) contraction arrest during the eutectoid transformation and e) final 
contraction to room temperature. Almost identical behaviours have been experimentally 
observed for the three directions mentioned above and, therefore, an average curve has been 
included in Figure 6. Although the numerical fitting is only qualitative, the response provided 
by the S.G. model proposed in this work correctly reproduces the distinct behaviours observed 
at different stages of the process. 

Figure 7 depicts the deformed configurations at four times of the analysis. It is seen that the 
differential vertical dilatation between the casting and sand mould that develops during the 
cooling process makes the measurement tasks difficult since the silica rods can be potentially 
broken as a consequence of the action of an unacceptable shear force. 

The volumetric fractions evolutions in the casting for two radial distances at height 105 
mm of the specimen are plotted in Figures 8 and 9. It is seen that the final graphite content is 
nearly independent of the temperature rate. 
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Figure 4: Temperature evolutions in the casting for different radial positions at height 105 mm of the specimen. 

 
Figure 5: Temperature evolutions in the sand for different radial positions at height 105 mm of the specimen. 
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Figure 6: Radial displacement evolutions at height 85 mm of the casting-sand interface. 

 

Figure 7: Deformed configurations at times a) 200 s, b) 500 s, c) 1000 s and d) 3500 s (amplification factor=10). 
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Figure 8: Volumetric fractions evolutions in the casting for radius 0 mm at height 105 mm of the specimen. 

 
Figure 9: Volumetric fractions evolutions in the casting for radius 30 mm at height 105 mm of the specimen. 
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6 CONCLUSIONS 

A large strain thermoplastic formulation for the analysis of the solidification process of 
nodular cast irons of eutectic composition has been presented. This formulation accounts for 
thermomechanical as well as microstructural behaviours of these materials in a unified 
framework allowing, therefore, to analyze the different coupled phenomena occurring in 
complex casting problems. 

This formulation has been used in the analysis of a solidification test of nodular cast iron in 
a green sand mould. The model has been partially validated with some available experimental 
measurements where reasonable agreement between numerical and experimental results can 
be observed. However, the difficulties associated to the full material characterization lead to a 
further research in the thermomechanical/microstructural simulation of solidification 
processes with the sake of constituting a robust tool for casting design. 
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