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Abstract. Shaped Metal Deposition (SMD) is a novel technology to build near-net shaped pieces by
weld deposition. The pieces we are interested in are aerospace components made of Titanium alloys.
Given such expensive material, the reduction of scraps thanks to near-net shaping is crucial. Although
already operational, the process still requires a great deal of manual intervention and control. Our re-
search focus then on developing computational models of the physical phenomena involved in SMD as
a first step to its automatic control.

This work deals with the modelling of the thermal field developed during SMD, which is basically a
multi-pass TIG-welding process. The problem to be solved is the transient heat conduction induced by a
highly concentrated heat source representing the welding arc. Being a multi-pass welding problem, we
have to deal with cyclic temperature variations, including successive melting and solidification.

The problem is solved using linear triangular finite elements, with the phase change terms evaluated
using the discontinuous integration technique developed by the authors in a previous work.
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1 INTRODUCTION

This paper describes the numerical procedure implemented to calculate the space and time
temperatures distribution during the Shaped Metal Deposition (SMD) process.

We start describing the theoretical basis of the heat transfer problem during welding, and the
way in which phase change is taken into account.

Afterwards, the parametrization of the bead geometry is described, both for the single layer
and for the multilayer cases.

The heat source model is next given, and an example is developed for the single layer depo-
sition case, with calibration with results from experiences.

Then, a multilayer case is treated, and finally the case of three-dimensional representation of
the shape metal deposition process is analyzed.

2 SOLUTION OF THE HEAT TRANSFER PROBLEM IN SMD

We aim to determine the evolution of the temperature inside the deposited bead and the
substrate, which constitute together the domain of analysis, sayΩ. Let us note the domainΩ
increases with each welding pass: at the beginning,Ω consists only of the substrate.

The temperatureT (x, y, z, t) at any point(x, y, z) ∈ Ω at the instantt is given by the solution
of the transient heat conduction equation

∂H

∂t
− div (κ grad T ) = q ∀(x, y, z) ∈ Ω, t < 0 (1)

whereH is the enthalpy,k is the thermal conductivity tensor andq is the heat source, pro-
duced by the welding torch. The heat transfer problem is completed by specifying the initial
temperature of the substrate (that constitutes the domain of analysis at the initial time instant
t = 0):

T (x, y, z, 0) = T0(x, y, z) ∀(x, y, z) ∈ Ω (2)

and the conditions imposed on the boundaryΓ of Ω:

• the prescribed temperature at the portionΓT of Γ:

T (x, y, z, t) = T̄ (x, y, z, t) ∀(x, y, z) ∈ ΓT , t > 0 (3)

• convection and/or radiation through the portionΓcr of Γ:

− κ grad T · n = h(T − Tcr) ∀(x, y, z) ∈ Γcr, t > 0 (4)

wheren denotes the outer normal toΓ, h the convection/radiation coefficient (in general,
dependent of temperature), andTcr is either the temperature of the environment or that of
the radiant body.

In order to make the heat conduction equation depend only on the temperature, we introduce
the enthalpy function defined as follows

H(T ) =

∫ T

0

ρcp(τ) dτ + ρLfl(T ) (5)
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whereρcp is the heat capacity,L the latent heat of solidification andfl the volume fraction of
liquid, which is assumed to vary linearly with temperature between the solidus temperatureTsol

and the liquidus temperatureTliq, i.e.:

fl =





0 for T < Tsol
T−Tsol

Tliq−Tsol
for Tsol ≤ T ≤ Tliq

1 for T > Tliq

(6)

Enthalpy should also account for the latent heat involved in solid phase transformations, but
this is negligible compared to the latent heat of fusion.

The computational solution of the heat conduction equation (1) requires its discretization,
i.e., to convert it to an approximate algebraic form. Spatial discretization is achieved using
the finite element method (FEM). Specifically, we use the linear triangular finite elements with
discontinuous integration proposed byFachinotti et al.(1999), which allows an improved rep-
resentation of solidification problems. For time integration, the fully implicit backward-Euler
scheme is used.

In the case of processes like welding, casting, etc., which involve melting and solidification,
the heat transfer problem is highly non-linear due to the steep variation of the enthalpy in the
solidification range. The temperature dependence of thermal properties like the thermal con-
ductivity, the heat capacity and the heat convection/radiation coefficient also contributes to the
non-linearity of the problem. In this work, we solve the discretized non-linear transient heat
conduction equation in an iterative way using the Newton-Raphson method, which ensures a
quadratic convergence rate to the desired solution.

3 A-PRIORI DEFINITION OF THE BEAD GEOMETRY

Before modelling any problem, we need to define the domain of analysis. In our case, it
consists of the substrate and the bead. While the dimensions of the substrate are known prior
to deposition, the bead is created along the process and its geometry depends on the combined
effects of arc pressure, droplet impact, weld pool gravity, and surface tension. Predicting the
bead geometry on the base of these effects is out of the scope of the present work. Therefore, by
making some empirical assumptions, we will define the bead geometry as accurate as possible
using the available information.

First, neglecting the density variations between the solid and liquid phases of the filler ma-
terial, the cross section areaAi of the beadi can be determined in terms of known variables
like the welding velocityVw, the diameterφf of the wire, and the wire feed rateVf using the
formula:

Ai =
π

4
φ2

f

Vf

Vw

(7)

OnceAi is known,Wu et al.(2007) proposed to assimilate the cross section of a single-pass
bead to a parabolic sector. Under this assumption, it remains only one unknown, either the
width wi or the heighthi of the bead, or equivalently the flatness ratioαi = wi/hi.

Unfortunately, the single-pass bead geometry can be more complicated than a parabolic sec-
tor, as shown in Figure1 where splines were used to fit accurately the surface of the bead,
leaving multiple unknowns.

Further complexity arises when dealing with multi-pass welds, like the one shown in Figure
2.
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Spline

Spline

Figure 1:Single bead whose cross sectional geometry can not be represented by a parabolic sector (Tham, 2008).

Figure 2:Etched cross section of specimen 05 obtained by SMD.

In either case, an accuratea-priori estimate of geometric unknowns can be made by applying
neural networks or regression analysis from experimental measurements (Gunaraj and Muru-
gan, 2000; Lee and Um, 2000; Kim et al., 1995). To this end, a large-enough database must be
built, containing the values of the parameters needed to define the bead geometry in terms of the
control variables of the process (welding velocity, wire feed rate, wire diameter, wire material,
amperage, voltage, etc.). This task is currently in progress in the project. Meanwhile, we make
some further assumptions to be able to go on with computations.

Let us consider for instance the bead 05 depicted in Figure2, obtained by SMD with 35
deposition layers. First, we will assume the widthw of the bead to be known. Then, we define
the generic layeri as the sector lying between the curvesyi−1(x) andyi(x), as shown in Figure
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3. We assume both curves defined by the parabolic laws:

yi−1(x) = ymax
i−1 − 4

∆yi−1

w2
x2 (8)

yi(x) = ymax
i − 4

∆yi

w2
x2 (9)

with y0(x) ≡ 0 as the lower boundary of the first layer, and−w/2 ≤ x ≤ w/2.

Layer i

yi

max

ºDy1

y xi( )

y xi-1( )

x

y

w

Layer 1

y x1( )

Dyi

y1

max

Figure 3:Schema of the first and thei-th deposition layers.

The area of thei-th layer is

Ai = w

(
ymax

i − ∆yi

3

)
−

i−1∑
j=1

Aj (10)

Above formula also accounts for the first layer, which can be assimilated to a parabolic single-
pass bead withymax

i = ∆yi = 0 andA0 = 0.
By equating equations (7) and (10), and by introducing the flatness ratioαi = w/∆yi, we

obtain the equation

w

(
ymax

i − w

3αi

)
−

i−1∑
j=1

Aj =
π

4
φ2

f

Vf

Vw

(11)

with αi andymax
i as unknowns. Then, as done byWu et al.(2007) with a single-pass bead,

we can adopta priori a value for the flatness ratioαi on the base of experimental observations.
From Figure1 it is possible to estimate the final flatness ratioαN ≈ 2.81, with the subscript
N referring to the total number of deposition layers. On the other hand, the flatness of the first
layer, assumed to be a parabolic sector, is given by

α1 =
2

3

w2

A1

=
8

3

w2

πφ2
f

(12)
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We assume now a law for the variation of the flatness ratioαi from the first to the last layer.
Until having enough data to define this law on the base of observations, we will assume the
flatness of thei-th layer defined by the linear law

αi = α1 +
αN − α1

N − 1
(i− 1) (13)

From equation (11), we obtain

ymax
i =

1

w

(
π

4
φ2

f

Vf

Vw

+
i−1∑
j=1

Aj

)
+

w

3αi

(14)

Knowing φf = 12 mm, Vw = 0.3 m/min, andVf = 2.513 m/min, these assumptions
produce the multi-layered geometry depicted in Figure4. The computed total height is about
33.1 mm, i.e., 6.4% greater than the measured one, which is considered as a satisfactory fitting
considering the limited available information.

29.4 mm

10.4 mm

3.7 mm

Figure 4:A-priori estimation of the multi-layered geometry of bead 05.

4 ARC-WELDING HEAT SOURCE MODEL

In this work, we use one of the most cited heat source models for welding, proposed by
Goldak et al.(1984), which is defined as

q(x̃, ỹ, z̃, t) =
6
√

3Q

π
√

πab
×





ff

cf
exp

[
−3 x̃2

a2 − 3 ỹ2

b2
− 3 (z̃)2

c2f

]
, for z̃ > 0,

fr

cr
exp

[
−3 x̃2

a2 − 3 ỹ2

b2
− 3 (z̃)2

c2r

]
, for z̃ < 0.

(15)
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whereÕ-x̃ỹz̃ is a moving orthogonal system of coordinates with originÕ coincident with the
trace of the torch onto the surface of the weld,Q is the total heat input rate,ff (resp.fr = 2−ff )
is the fraction of the heat deposited in the front (resp. rear) quadrant, anda, b, andcf (resp.cr)
are the radii of the ellipsoid in the front (resp. rear) quadrant (see Figure5 for details). This law
describes a Gaussian distribution of heat power density inside a double-ellipsoidal volume.

Let us note that equation (15) was developed assuming the weld piece to be the semi-infinite
bodyy ≥ 0 such that

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
q(x, y, z) dx dy dz = Q (16)

If the volumeΩ whereQ is spread consists not only of the substrate but also of the deposited
bead,Ω can not longer be assimilated to a semi-infinite body, and then

χ =
1

Q

∫

Ω

q(x, y, z) dΩ 6= 1 (17)

In this case, equation (15) must be corrected by dividing the r.h.s. byχ in order to ensure that
the total heat input rate remains effectivelyQ.

O

y

zº
welding dire

ctio
n

F

~
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BR

Torch
position

x ~

~

Figure 5:Double-ellipsoidal heat source (Goldak et al., 1984).

The rate of heat induced by an arc welding source can be computed as

Q = ηV I (18)

whereη is the efficiency,V is the voltage andI the intensity of current.

4.1 Calibration of the heat source

Another important step prior to simulate a particular welding process like SMD for instance,
is the calibration of the heat source. The calibration of the double-ellipsoidal heat source model
implies to determine the value of the unknown parameters in equation (15) which are ordered
in the vector

c = [η V a b cf cr ff ] (19)
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For each choice ofc, we can compute numerically the temperature field and derive from it the
liquidus isotherm enclosing the fusion zone (FZ). These results are ordered in the vector

g(c) = [wFZ dFZ T (x1, y1, z1, t1) . . . T (xi, yi, zi, tj) . . . ] (20)

wherewFZ anddFZ are respectively the width and the depth of the FZ, andT (xi, yi, zi, tj) is
the temperature at the point(xi, yi, zi) at the time instanttj.

All these data are susceptible to be determined experimentally. Assuming that we know the
experimental counterpart of the vectorg, saygexp, we must find the set of parametersc that
minimizes the differencegexp − g(c) with respect to a certain norm. This yields a nonlinear
optimization problem that can be solved using an appropriate optimization solver.

4.1.1 Example

Let us consider the single bead whose micrograph is shown in Figure6, where we observe
that wFZ = 9.62 mm anddFZ = 1.75 mm. There is not information about the temperature
evolution along the process of deposition of this bead. Then, we will aim to make numerical
results fit the measured width and depth of the FZ only.

9.62 mm

1.75 mm
Fusion zone

Figure 6:Etched cross sections of a single-pass bead evidencing the extension of the fusion zone.

Further, all the data is restricted to one section of the weld normal to the bead. Such reduced
information has obliged us to introduce additional assumptions concerning the distribution of
heat ahead and behind the welding arc. First, we will assumecr = 4cf , as suggested byGoldak
et al.(1984). Then, by requiring the continuity of the functionq given by equation (15) at z̃ = 0
(interface between the front and rear quadrants) as suggested byNguyen et al.(1999), we have

ff = 2
cf

cf + cr

= 0.4 (21)

Further reduction of the number of variables is achieved by grouping efficiency and voltage in
one single variableVred = ηV . Then, the vector of parameters to be calibrated takes the form

c = [Vred a b cf ] (22)

and the calibration problem can be stated as: findccal such that
∥∥∥∥

wFZ(ccal)− wexp
FZ

dFZ(ccal)− dexp
FZ

∥∥∥∥ = min
c

∥∥∥∥
wFZ(c)− wexp

FZ

dFZ(c)− dexp
FZ

∥∥∥∥ (23)

where‖v‖ denotes theL2-norm of the vectorv. The valueswFZ(c) anddFZ(c) are computed
for each choice ofc on the base of the temperature field obtained as output of the heat transfer
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Figure 7:Finite element mesh used in the analysis.

finite element analysis. We use the mesh of linear triangular finite elements depicted in Figure
7.

Solving problem (23), we obtainwFZ(ccal) = 8.65 mm, anddFZ(ccal) = 1.59 mm (i.e.,
a maximum relative error of 10.04%), for the following set of calibrated values:Vred = 7.99
V, a = 10.34 mm, b = 1.85 mm, cf = 0.64 mm. Figure8 shows the estimated extension
of the FZ as well as the heat power density distribution. Let us remark that the extension of
the double ellipsoid predicted here is not comparable to the extension of the FZ, contradicting
Goldak et al.(1984). Anyway, more experimental data, especially temperature measurements
in different cross sections, will be needed to assert this conclusion.

52

200

400

600

800

1060

Power density
distribution
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3

Numerical

Liquidus isotherm

Experimental

Figure 8:Calibration results
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5 APPLICATION

Having defined the geometry of the bead and calibrated the heat source model, we can ac-
complish the heat transfer analysis. Let us consider the square hollow cylinder made of Ti-6Al-
V alloy, schematized in Figure9. Each cylinder wall is approximately 140 mm long, 10.4 mm
wide and 31 mm tall. There were needed 35 deposition passes to obtain this piece, following
the path shown on the right of Figure9.

Analized
cross section

SUBSTRATE

BEAD
Layer

0
z

y

x

A3

D2

C2

A1

B1

D1

C1

Torch path: A1B C D -A B C D -...1 1 1 2 2 2 2

Layer 2Layer 1

A2

B2

Figure 9:Schema of a hollow square cylinder produced by SMD. On the right, path of the welding torch.

The aim of this work is to determine the thermal field at a cross section located in the middle
of the wall. The micrograph of the top 22.5 mm of this section is that shown in Figure2. Since
such section is located far enough from the corners, it can be approximated as belonging to an
indefinitely long straight bead, neglecting 3D effects. The so-obtained 2D model takes further
advantage of the almost symmetric geometry of the cross section with respect to is center plane.
The resulting numerical model is shown in Figure10.
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Figure 10:2D model of the deposited wall and the substrate. The dashed region of the wall corresponds to half of
the section.

Thermal properties of Ti-6Al-4V as a function of temperature were obtained from Material
Property Database (MPDB) (Jahm Software Inc., 2009).
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Following Goldak et al.(1984, 1986); Bonifaz (2000); Fan and Kovacevic(2004); Wu and
Yan (2004); Wu et al.(2004), combined convection and radiation are prescribed as boundary
conditions, defining a convection-radiation heat transfer coefficient

hcr = 2.41× 10−4εT 1.61 (24)

whereT must be entered in K, andε = 0.9 is the surface emissivity.
The welding velocity is 0.3 m/min, so that each deposition layer is completed after 112 sec.

Once a layer is completed, the mesh is increased by the subsequent layer. The 35th (last) layer
is completed at 3920 sec. Then, the torch is moved away, and the weld begins to cool in the
SMD chamber atmosphere.

Analysis is extended 2240 sec during this period. A time step of 0.5 sec is adopted, so that
12320 time steps are needed to cover the whole time interval of interest (this fact was relevant
to choose a 2D model).

Figure11 shows the thermal state of the bead from the first moment the temperature falls
down the liquidus temperature until the moment when no more phase transformations are ex-
pected.

6 CONCLUSIONS

This work gives a first insight of the complex thermal phenomena that take place in the
Shaped Metal Deposition (SMD) process. The three step to treat the problem were considered:
a-priori definition of the geometry, calibration of the heat source and simulation.

Concerning the geometry, emphasis was put on defining the geometry of the multi-layered
bead as accurate as possible with the available data. In the future, we expect to survey enough
data to estimate more complex geometries that appear when the control parameters (welding
speed and direction, wire feed rate, wire diameter, heat input, etc.) vary along the process.

An algorithm for calibration of the heat source model was also developed. Once calibrated,
the numerical model was able to fit the geometry of the FZ with enough accuracy. The geometry
of the double-ellipsoid was found to be not close to that of the FZ, contrary to other authors’s
observations. However, more experimental information is needed to confirm current results.

Finally, the numerical simulation of the problem was performed using a 2D cross-section
finite element model. The use of a 2D model allows to consider the whole time interval of
interest (about 2 hours) using a quite fine time step (0.5 sec) for accuracy reasons.
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Figure 11:Temperature field and location of the isotherm of 950oC (β-transus) immediately after the complete
solidification of the bead.
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