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Abstract. This paper describes the method of lines with event location applied to one-dimensional
Stefan problem. Stefan problems arise in many physical processes, such as, freezing and thawing of
foods, solidification of steel and chemical reaction. Mathematically, those problems are special cases of
moving boundary problems. The solution of such problems requires solving the transient heat conduction
equation in a unknown region which has to be determined as part of the solution. The model experiences
structural changes in the definition of the ordinary differential equation. To overcome these difficulties,
the model was implemented in MATLAB and the event-function in the Ordinary Differential Equation
(ODE) solver was activated. To validate the present method, the results for a test case with known
analytical solution are compared. The results for a wide spectrum of Stefan numbers indicate that the
method of lines with event location is able to accurately track the moving liquid-solid interface and
temperature history.
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1 INTRODUCTION

Phase-change problems, also known as Stefan problem, occur naturally in many physical
and engineering processes, such as casting, melting and solidification of alloys, production of
ice, freezing and thawing of foods and storage of energy. In this class of problems the unknown
boundaries need to be tracked or located as part of the solution. Two conditions are required in
order to solve phase-change problems, one to determine the unknown boundary and the solution
of energy equation. The simplest of such problems is the melting of ice that was first treated
by Stefan (Stefan, 1889). The main goal of the present work is to develop a numerical method
based on the Method of lines on a fixed grid that is efficient and accurate for phase change
problems. This technique and its variations have been implemented successfully in a wide
range of conduction-convection problems (Campo et al., 1996; Salazar et al., 2000).

Liquid Solid
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Figure 1: Schematic diagram showing problem description.

2 PROBLEM DESCRIPTION

A semi-infinite system subjected to prescribed temperature was considered. Initially, the full
solid was a the phase change temperature Tm , wich was scaled to be zero. The temperature at
x = 0 was suddenly raised to To = 1 at time t = 0 at maintained at that temperature for all times
t > 0. The schematic diagram showing boundary condition, coordinates and nomenclature is
given in Figure 1. Once the boundary condition was imposed, melting began at the surface
x = 0 and proceeded into the solid as the discrete liquid-solid interface moved in the positive x
direction.

3 MATHEMATICAL MODEL

The model is based on the heat conduction equation.

∂T

∂t
= αl

∂2T

∂x2
, 0 < x < s(t), t > 0 (1)

subject to boundary conditions

T (x = 0, t) = 1, T (x = s(t), t) = 0 (2)
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and initial condition
T (x, t = 0) = Tm (3)

at the interface the energy balance yields:

ρL
ds

dt
= −kl

∂T

∂x
(4)

where T is the temperature, s(t) is the position of the moving front and L is the latent heat of
phase change, αl is the thermal diffusivity, ρ is the density and kl is the thermal conductivity.

4 ANALYTICAL SOLUTION

For comparisons purposes we present the analytical solution taken from (Ozisik, 1980). The
dimensionless temperature distribution has the form

T ∗ =
T − Tm

To − Tm

= 1− erf
(
x∗/2

√
t∗

)

erf(λ)
(5)

and the dimensionless displacement of the melt interface is given by

S∗ = 2λ
√

t∗ (6)

where λ are solutions to the transcendental eq. 7

λ exp(λ2)erfc(λ) = St/
√

π (7)

The Stefan number, St, is defined as

St = ρc(To − Tm)/L (8)

and the dimensionless x∗ variable and time are defined by

x∗ =
x

l
, t∗ =

αlt

l2
(9)

where l is a characteristic length.

5 NUMERICAL METHOD

The partial differential Eq. (1) is solved numerically by the method of lines for the time
derivative and finite difference for the space derivative. This hybrid numerical methodology
reduces the partial differential equation to a system of first order ordinary differential equations,
which is then solved using an ODE solver algorithm. The discretization method is mainly taken
from (Chun and Park, 2000; Furenes and Lie, 2006). The spatial domain is divided into N − 1
uniform grid cells, ∆x. With the interface located between nodes i and i + 1, as showed in Fig.
2, the nodal temperatures are given by

dTk

dt
= αl

Tk+1 − 2Tk + Tk−1

(∆x)2
, for k = 2, ...i− 1 (10)

dTi

dt
= αl

Tm − 2Ti + Ti−1

(∆x)2
+

αl

kl

(1− δ)ρL

∆x

ds

dt
(11)
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Figure 2: Discretization scheme.

where δ = (s − i∆x)/∆x is the dimensionless distance from the nodal point i to the in-
terface. The location of i can be found by comparing the nodal temperature with the melting
temperature, Tm

i = max(Tk ≥ Tm), k = 1, ..., N − 1. (12)

ds

dt
= − kl

ρL

∂T

∂x

∣∣∣∣
x=s(t)

(13)

To contend with the singularity problem that arises when the interface becomes very close to
the grid node, the slope at the interface is calculated from the first two terms of the Taylor series
expansion (Verma et al., 2004):

∂T

∂x

∣∣∣∣
x=s(t)

=
Ti − Ti−2

2∆x
+ (1 + δ)

Ti−2 − 2Ti−1 + Ti

∆x
(14)

Merging equations (13) and (14). The interface velocity is given by

ds

dt
= − kl

ρL

(
Ti − Ti−2

2∆x
+ (1 + δ)

Ti−2 − 2Ti−1 + Ti

∆x

)
(15)

To summarize, the system of ordinary differential equation that describes the problem is
given by equations (10), (11) and (15).

5.1 EVENT LOCATION

However, as Eqs. (10) and (11) show, the model experiences structural changes in the def-
inition of the ordinary differential equation. To overcome these difficulties, the model was
implemented in MATLAB (MATLAB, 2004) and the event-function in the ODE solver was
activated. The event location strategy was taken from (Furenes and Lie, 2006). The changes
are examples of events, and two types exist. Time events are events which occur at a given
time, whereas state events are events which ocurr when the subsystem reaches some conditions.
Because most ODE solvers are founded on an hypothesis of smoothness in the continuous sub-
system, integration along discontinuities without event location may cause severe inefficiency,
simulation failures, or incorrect event sequences to be generated. The points we need to find
are given when event functions vanish, where y(t) is the state vector at a given time. Finding
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these points is called event location. Sometimes, the integration needs to terminate at the time
of the event, and possibly restart integrating the states with initial values and state definition
depending on the termination time. Most continuous simulation languages have capabilities of
locating events. If an ODE solver has the capability of locating events, the step size may be
adapted to hit the instants of time when the discontinuities occur. A specification of what kind
of events need to be located, and what the solver must do when an event occurs, and the only
additional program lines necessary. Numerical results have shown that ODEs with event loca-
tion has been solved accurately at a cost scarcely greater than when no events occur. During a
numerical integration step, it is important to ensure that the model is not allowed to switch form
one definition to another. Thus we need the capability of terminating the integration temporarily
each time the interface crosses a grid line. The syntax of the ODE solver in MATLAB is
[t,y]=solver(@odefun,tspan,y0)
Where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t. The solvers are based

on different recurrence algorithms and have different orders of accuracy, odefun is a function
that evaluates the right-hand side of the differential equation, tspan is a vector specifying the
time interval of integration, and y0 is the vector of initial conditions. The ODE solver returns a
column vector of time points (t), and a solution array (y) in which each arrow corresponds to the
solution at the time points in t. In some cases, the ODE solver performance can be improved by
overriding these defaults. This can be done by supplying the solvers with one or more property
values in an options structure. The available integration properties depend on the ODE solver
used. The argument is created with the odeset function named process_events, The
events property is created by
options=odeset(’Events’, @process_events)
The ODE solver that solves for the default case while also finding where the events functions

of (t, y) are zero, has the syntax
[t,y,te,ie]=solver(@solid_process, tspan,y0,options)
Where solid_process is the name of the ode function. If an events function is specified

and events are detected, the ODE solver returns three additional outputs. If an events function
is specified and events are detected, the ODE solver returns three additional outputs: a column
vector of times at which events occurred (te), solution values corresponding to these times
(ye), and the indices of the event that the solver detected (ie). For each events function it
must be specified whether the integration is to terminate at a zero and whether the direction of
the zero crossing matters.

6 RESULTS

Numerical calculations are sensitive to the choice of the number of node points, and the
value N = 51 was chosen after grid sensitivity study. The comparison between analytical and
numerical solution for interface liquid-solid position is showed in Fig. 3 for Stefan numbers,
St = 0.1, 1 and 10. The temperature field at certain fixed point are compared with the analytical
solution in Fig. 4 for St = 0.1 and Fig. 5 for St = 10. The results indicate that the method of
lines is able to accurately track the moving liquid-solid interface an temperature history.

7 CONCLUSIONS

A numerical study for the Stefan problem has been developed based on the method of lines.
For simplicity, the discretization equation was derived for uniform grid spacing. To validate
the present method, one-dimensional half space melting problem were computed. The present
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Figure 3: Dimensionless interfacial position as a function of dimensionless time for different Stefan numbers, St =
0.1, 1 and 10.
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Figure 4: Dimensionless Temperature as a function of dimensionless time for different x* position, St = 0.1.
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Figure 5: Dimensionless temperature as a function of dimensionless time for different x* position, St = 10.

method yields an oscillation-free solution, since the phase boundary is treated as a line rather
than a control volume. All numerical results obtained by the present method agree very well
with analytical solution across a wide range of Stefan numbers.
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