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Abstract. The study of packed beds as heat regenerators under different thermal conditions is the main 
objective of the present work. A three equation model was used to study the thermal behavior of the 
system. For the thermal interaction between the fluid and the packed bed, two local thermal non-
equilibrium equations were used. The velocity field was calculated with the Darcy-Brinkman-
Forchheimer extended momentum equation. Steady and unsteady heating as well as radial porosity 
variation were considered in the model. The Finite Volume Method was employed to solve the above 
mentioned set of Partial Differential Equations (PDEs). Numerical results were compared with both 
our own experimental data and previous results reported by peers. Computational errors were typically 
in the range of 2 to 12%, depending on the conditions imposed to the model.  
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INTRODUCTION 

Packed Bed Heat Regenerators (PBHR) and Heat Exchangers (HES) are used to recover 
energy from combustion gases. Their implementation may reduce fuel burning rate levels up 
to 50% and, as a result, decrease the emission of pollutants. Among the advantages of using 
HES, we can mention their capability of handling gases at temperatures between 1000 to 
1300°C to increase the comburent temperature over 650°C. Consequently, an overall thermal 
efficiency of 30 to 40% can be obtained. However, HES are more susceptible to damage 
under abrasive or corrosive flow and their sizes are larger than those of PBHR for the same 
applications. Besides, PBHR can be used at temperatures as high as 1370°C, with an overall 
thermal efficiency from 75 to 95% (Baillargeon et al., 1998). These relative advantages have 
made PBHRs suitable for some industrial applications, despite the fact that they are in general 
more expensive than HES. 

The up-to-date designing tools for PBHR are not developed enough to find optimal 
configurations and operation conditions. Moreover, PBHR thermal optimization were faced 
by experimental (Nijemeisland, 2001; Mejía et al., 2004), analytical (Whitaker, 1972) and 
numerical approximations (Logtenberg and Dixon, 1998; Greyvenstein, 2002; Greyvenstein 
and van Antwerpen, 2005). Latter approximations have shown several advantages over the 
others ones, due to the possibility to probe any kind of configurations and operation 
conditions, without wasting time, energy resources and raw materials, with a higher precision 
compared with experimental results. Mathematical models used in numerical analysis, 
requires enough comprehension of the transport phenomena associated to PBHR. This permit 
a good estimation of PBHR behavior associated to several conditions.  

The aim of the present work is to show the implementation of the Finite Volume Method 
(FVM) for the numerical study of PBHR. Various operation conditions and physical 
configurations were studied. Validation of numerical results was made through comparison 
with our experimental data and previous results reported by peers. The steps to implement the 
FVM for the solution of PBHR governing equations are presented. Porosity variation in radial 
direction was into account in the mathematical model formulation. Steady and unsteady heat 
transfer conditions were considered in the numerical analysis. 

1 SIMULATION OF PACKED BEDS 

Many systems use packed beds to improve their operational conditions. Some examples 
includes chemical reactors, air compressors adsorbed dryers and heat regenerators. Numerical 
simulations of packed beds have been developed for the design and develop of this type of 
devices. Two kind of numerical approximations are used to study packed beds behavior: 
geometry model simulation of packed elements and porous media estimation. Among the first, 
both 2D and 3D models of packed elements are developed to estimate pressure, velocity, 
temperature and concentration fields in fluids inside packed beds (Logtenberg and Dixon, 
1998; Nijemeisland, 2001; Calis et al., 2001; Nieto et al., 2004). Besides, interaction between 
packed elements and heat and mass transport process has been estimated. Results from these 
simulations have shown that packed elements design most conduces to reduce fluid flow 
resistance and maximize heat transfer area.  

Commercial codes like Fluent, Ansys and CFX (Derkx and Dixon, 1996; Tobiś, 2000; 
Romkes et al. 2003; Landman and Greyvenstein, 2004) have been used to show its 
proficiency to describe characteristic transport phenomena of packed bed under almost any 
situation. High computational effort during preprocess (i.e. geometric model preparation, 
mesh grid design, boundary conditions implementation), and elevated solution times and 
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computational resources (i.e. high memory and processor load), are the principal drawbacks 
of commercial Computational Fluid Dynamics (CFD) simulations of packed beds. 

Approximation to packed beds behavior through porous media models improves the use of 
computational resources during numerical simulations. In porous media approximation 
packed elements geometry is not modeled. Last condition reduces excessive preprocessing 
and solution times. Instead of model the geometry, the packed elements’ fluid flow resistance 
is incorporated by porous distribution and sources terms associated with drag effects.  

The porous distribution describes empty space between packed elements. Porosity 
distribution has the property to influence velocity and temperature fields (Whitaker, 1972; 
Tobiś, 2000; du Toit, 2002). The porosity distribution is function of the size and shape of the 
elements inside the container. Several works were developed to find mathematical models for 
describing packed beds porosity distribution as function of size and shape of elements 
(Nandakumar, 1999; Alazmi and Vafai, 2000; Sahimi, 2000; du Toit, 2002; Jiang, 2002), but 
just a few of them had been applied extensively (Mueller, 1991). 

Mass, momentum and energy balances in PBHT conduce to partial differential equations 
based on control volume models. Sources terms like Forchheimer and Darcy (Nield and 
Bejan, 1999) are included into the momentum equation to consider inertial drag and draining 
through porous media effects, respectively. Viscous shear stress is considered by a diffusivity 
viscous term named Brinkman term.  

Heat transfer forced convection in PBHR would be studied by means of two different 
models: Local Thermal Equilibrium (LTE) and Local Thermal Non Equilibrium (LTNE) 
(Vafai, 2002). The first one accounts thermal equilibrium between packed elements and 
combustion gases (both gases and elements have the same temperature). This simplification 
produces an energy equation in terms of gases and elements temperature. LTNE conduces to 
one energy equations for gases and one for elements, since non equilibrium between both 
phases is accepted. PBHR currently used in industrial applications has high Darcy numbers 
(Mejía, 2004). High Darcy numbers implies the rejection of equilibrium between packed bed 
phases (gases and elements), assuming valid the LTNE model which conduces to two energy 
equation for predicting temperature fields. 

 
NOMENCLATURE  
A  area [m2] 
a  packed bed specific area [m-1] 
B  momentum source term 
c  specific heat at constant pressure [J/kg·K] 
Cf   Forchheimer coefficient 
d diameter [m] 
f  friction factor 
F  convective mass flux per unit area [kg/s] 
D  diffusion conductance [W/k] 
h  convective heat transfer coefficient [W/m2·K] 
k  thermal conductivity [W/mK] 
P pressure [Pa] 
T  temperature [K or °C] 
t  time [s] 
u  velocity component x direction [m/s] 
v  velocity component y direction [m/s] 
V  volume [m3] 

x  axial coordinate [m] 
y  transversal coordinate [m] 
b, c  porosity model coefficients 
n  normal vector to surface 
 
GREEK SYMBOLS 
α  thermal diffusivity [m2/s] 
ε  porosity or empty space fraction 
µ  dynamic viscosity [kg/m·s] 
ρ  density [kg/m3] 
 
SUBINDICES 
e,w,n,s  sides of integral control volume 
eff  referenced to effective property 
f  referenced to fluid phase 
fs  referenced to fluid-solid interaction 
fw  referenced to fluid-wall interaction 
p  referenced to solids or packed particles  
s  referenced to solid phase 
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2 MATHEMATICAL MODEL 

The governing equations for porous media include the continuity (1), momentum (2)-(3) 
and energy balance (6)-(7). Its solution conduces to prediction of velocity, pressure and 
temperature fields of gases and elements into packed bed regenerator. The continuity, 
momentum and energy equation in 2D cartesian coordinates are as follows (Nield and Bejan, 
1999; Vafai, 2002). 

  (1) 

  (2) 

  (3) 

The momentum balance equation is an extended formulation of Darcy-Brinkman-
Forchheimer (Mejía, 2004). The source terms effects as well porosity distribution are 
considered to enhance mathematical model capabilities for describing PBHRs physical 
behavior. Source terms Bx (4) and By (5), for both momentum equations are as shown below. 
The first term on the right side is related to Darcy effect (viscous shear) while the second one 
is the Forchheimer term (fluid´s inertia). 
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The energy equations for elements (6) and gases (7) are deduced through LTNE 
formulation, which as was mentioned above, is the correct consideration for packed beds that 
are usually present in industrial heat regenerators due to the presence of higher Darcy 
numbers. Because porosity ε, is a function of direction perpendicular to the flow (y direction), 
its effect is considered through its inclusion into the mathematical model as is shown. 
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3 MODEL CONDITIONS 

Well posed numerical problems need the definition of adequate boundary and initial conditions 
for fluid flow and heat transfer as well as property variation and mathematical and model 
simplifications. The fluid flow through the packed bed is defined laminar and incompressible. 
The first assumption is due to lower Reynolds numbers which indicate that viscous forces are 
higher than the inertial ones into the flow. The incompressibility of the gases is valid because 
the pressure gradient in the flow is small. 

3.1 Boundary and initial conditions 

Since time scale for heat transfer process is higher than that for momentum transport, time 
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dependent simulations are carry out just for energy equations. According to that, initial 
conditions must be defined for packed elements and fluids gases through all heat regenerator 
domains before the start of the warming up process. Neither heat transfer contact between 
packed elements nor conduction into them are considered. Moreover heat transfer by radiation 
between solids and gases is not included. 

Both boundary and initial conditions must be defined to have a well mathematical 
established problem (see Figure 1). Constant velocity and temperature are at the inlet 
boundary. Boundary walls are employed and no slip velocity conditions and constant 
temperature are defined on that. At the outlet boundary the flow is considered fully developed 
for temperature and velocity fields, so temperature and velocity gradients in normal direction 
to boundary direction are properly defined. Moreover the fluid flow gases are exposed to 
atmospheric condition and then atmospheric pressure is defined at the outside boundary. 
Finally, due to flow and heat transfer symmetry, a symmetry condition is considered at the 
core of packed bed, to reduce computation effort. 

 
Figure 1. System scheme simplification 

3.2 Porosity distribution model 

Despite constant properties conditions are considered for packed elements and gases, the 
porosity distribution in the direction perpendicular to the flow is included by means of 
equation (8) (Bey and Eigenberger, 1997), which introduces an absorbing sinusoidal type 
profile for the porosity distribution as is suggested for several authors (Giese et al., 1998; 
Nandakumar et al., 1999; Taylor et al., 2002). 

  
!"#

$�
 (8) 

Porosity distribution dominates fluid flow in packed beds. This variable is associated to 
packed elements shape and size. Porosity profiles present a maximum value near to the wall 
and converge to an average value next to packed core (Mueller, 1991). Higher velocities at the 
zone near the wall indicate the porosity profile effect on this area. Temperature and heat flux 
values are also associated to this geometrical distribution.   

4 FINITE VOLUME DISCRETIZATION 

The Finite Volume Method (FVM) is used to solve the PBHR governing equations model 
presented in the previous section. Volume integration of equations (1)-(7) is applied over 
mesh volumes presented in Figure 2. This process conduces to a set of linear equation for 
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each node in the mesh. In the present work the Conjugate Gradient Squared Method (CGSM) 
is applied to solve the system of linear equations obtained by the FVM application. The 
advantages of this method are associated with the precision of the physical balances (energy, 
mass and momentum) compared with other numerical methods.  

Pressure and velocity fields are coupled by means of Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) (Pantakar and Spalding, 1972). This means that a staggered grid 
(see Figure 2) is used to avoid underestimation of pressure contribution in momentum 
transport equations. The UPWIND discretization scheme is used for the momentum and 
energy convection term evaluation. This scheme has the advantage of predicting fluid flow 
direction, increasing the precision of the obtained numerical values (Versteeg and 
Malalasekera, 1995). The source terms in momentum (Darcy and Forchhaimmer effects (4)-
(5)) and energy equations (heat convection between solid and gases due to hfs (6)-(7)) are 
linearized according to Pantakar (1980) rules. Linearized terms are evaluated by an implicit 
method; this means that numerical results for velocity and temperature of last iteration are 
used to determine the current state of pressure, velocity and energy fields. 

A four order degree Runge-Kutta method is used for transient solutions (Chapra and Canale, 
2003). High order time steps (0,25 seconds) compared with other methods (semi-implicit, 
implicit, explicit, among others) were tested, but the Runge-Kutta application presented a 
better behavior during transient simulations. FVM implementation of the packed bed 
mathematical model is presented in the next sections. First, steady state equations are 
integrated by use of the SIMPLE method. Then, transient state integration is applied for the 
analysis of energy transport phenomena. 

4.1 Momentum equations discretization 

Momentum equation in x and y directions are integrated through respective volumes 
presented in Figure 2. In the x direction the integrated momentum equation is as follows: 
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And for y direction, the momentum equation is: 
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Figure 2. Finite volume meshes used for numerical integration of equations (1)-(7) 

 
Application of divergence theorem over integrated terms conduces to equation (11) for x 

direction and equation (12) for y direction, in which volume integrals are transformed into 
surface integrals: 
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The balances of convective and diffusion momentum transport in x direction through each 
face of the volume shown in Figure 2 are presented in (13) and (14): 

 ( ) ( )( ) ( ) ( ) ( ) ( )snweyx vuvuuuuudAvunuun ρερερερερερε −+−=⋅+⋅∫
rr  (13) 
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Similar expressions are obtained for the convective (15) and diffusion (16) momentum 
transported in y direction: 
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Since density and viscosity are considered constant all over fluid domain they step out the 
integrated terms and are evaluated at the center of the scalar volume in the mesh. Besides, 
porosity variates in y direction, so it is evaluated by a center diference scheme as follows. 
Convective mass flux per unit area F and diffusion condunctance D, are define to simplify 
linear equation system assambly. For each balance direction, previous variables are 
defined as follows. 

In x direction: 
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In y direction: 
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Finally, algebraic equations (19)-(20) for each node in mesh are assembled after 

introduction of terms (17) and (18) in equations (13)-(14) and (15)-(16), respectively. The set 
of algebraic linear equations is then solved to obtain numerical values of velocity and pressure 
fields. 

In x direction, the set of linear equations is as follows: 

  (19) 
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and, in y direction the set of equations is as follows: 

 ( ) ( )[ ] jIjIJIJInbnbjIjI bAPPuava ,,,1,,, +−+= −∑ εε  (20) 

where, for both (19) and (20): 
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4.2 Linearization of sources terms 

Source terms (4)-(7) and pressures are integrated over the scalar volume mesh in Figure 2. 
Source terms are linearized as follows, keeping in mind that coefficient terms in linear 
equations must be positives to satisfy the requirements for boundedness (Versteeg and 
Malalasekera, 1995): 
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where u* and v* means last iteration values. The pressure gradient in both momentum 
equations is integrated as is presented in (23), where pressure values are evaluated at scalar 
mesh nodes, as is expected due to staggered grid implementation. 
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4.3 Energy equations integration for steady state 

Steady state energy equations (6) and (7) are integrated over scalar volumes presented in 
Figure 2. Integration of energy equation for solids is as follows: 

 
 

(24) 

Applying the divergence theorem, the first volume integral term transforms into a surface one and 
then, Eq. (24) becomes: 
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The steady state energy equations for fluid phase, is also integrated over the scalar 
volume; the integrated equation is as follows: 

 

 
(27) 

Applying the divergence theorem to control volume integrals in Eq. (27), it becomes in: 

 

 

(28) 

Finally, integrated energy equation for fluid phase in packed bed is as follows: 

 

 

(29) 

5 RESULTS AND ANALYSIS 

Results from numerical simulations of PBHR are presented below. A first validation of 
results is made by reproduction of some literature reported results. Then an experimental 
validation is carried out by comparison with values obtained in a packed bank test device. 
Finally several packed bed configurations are evaluated; geometric and operational conditions 
selection are considered to analyze their effects over PBHR’s behavior. 

5.1 Validation of numerical results 

As first stage, numerical results obtained through finite volume solution for packed bed 
governing equations are compared with Duprat and López's (2001) work. Values of pressure 
loss and thermal efficiency are compared for different packed elements diameter, heat 
regenerators length and cycle time regeneration.  

These results are used to determine the adequate grid size and time step effect over 
numerical results. Results for different mesh densities are used for governing equations 
solution. Thermal efficiency and pressure loss values are compared for different meshes. It is 
obvious that an increase in mesh volumes conduces to a decrease in relative errors. With the 
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aim of improving the use of hardware resources, keeping the simulation time small and the 
accuracy of results high, a 60 by 60 volumes mesh is selected as the best one (see Figure 3). 
Results in Figure 4 are for 95% thermal efficiency and those in Figure 5 are for pressure loss 
through packed bed for different heat regenerator longitude and elements diameter. Both, 
thermal efficiency and pressure loss results present minimal discrepancy (less than 1% for 
thermal efficiency and 10% for pressure loss) with the values reported by peers (Duprat and 
López, 2001). 

The simulation time is in the 138 (steady state solutions) to 600 seconds range (transient 
state solutions) while the numerical error is 1,4 % for thermal efficiency and 17 % for 
pressure loss. The latter is considered as an acceptable error if it is compared with traditional 
results achieved by Ergun's equation which are over 50%.  

 
Figure 3. Analysis of solution mesh independence: � error ∆P, ◊ error η. 

 

Figure 4. Cycle regeneration time for 95 % thermal efficiency and = 30 kg/s. Packed bed of spheres: ◊ dp = 
1.5 mm, □ dp = 5 mm, � dp = 1.5 mm, � dp = 5 mm. (Duprat and López, 2001). 

Model validation was also carried out by comparison between numerical and experimental 
results. Temperatures measured in an experimental device designed for the study of PBHR 
(Agudelo et al, 2004) were compared with computed values at different locations along the 
PBHR length. Figure 6 show the numerical and experimental time temperature evolution at three 
longitudinal positions in the packed bed. Differences between numerical results and experimental 
values are associated to mathematical model simplification and used measurement devices. 
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Nevertheless, it can be concluded that acceptable results of PBHR under stable and unstable 
conditions are obtained. 

 
Figure 5. Pressure loss variation as function of packed bed length. = 30 kg/s. Packed bed of spheres: ◊ dp = 

1.5 mm, □ dp = 5 mm, � dp = 1.5 mm, � dp = 5 mm.  (Duprat and López, 2001). 
 

 
Figure 6. Packed elements time dependent temperature profiles. Spheres, dp =3/8”, D = 0.082 m, L = 0.25 m, u = 
1.66 m/s. Numerical simulation results:  x1 = 0.03 m,  x2 = 0.09 m,  x3 = 0.15 m. Experimental values: 

□ x1 = 0.03 m, ◊ x2 = 0.09 m,  x3 = 0.15 m. 

5.2 Numerical characterization of PBHR 

Since PBHR numerical model has been validated through experimental and literature 
comparison, it is possible to analyze PBHR behavior under different operational conditions. 
Packed bed diameter and length as well as material and diameter of packed elements have been 
changed to study their influences on PBHR behavior through thermal efficiency and pressures 
loss evaluation. In Figure 7 PBHR diameter effect over pressure loss is plotted. As packed bed 
regenerator diameter tends to increase the fluid velocity would be reduced as well the pressure 
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loss for the same element diameter and mass flow. 
On the other hand, PBHR length variation increases the thermal efficiency of systems due to 

the extra heat transfer area. Despite of that, a higher pressure loss is present in the PBHR and 
then, more extra work must be done to move the combustion gases through the packed bed. 
Results for different PBHR lengths are plotted in Figure 8 and Figure 9. Moreover, is possible 
to conclude from results that PBHR thermal inefficiency increase at higher cycle regeneration 
times.  

In contrast, a decrease in packed elements diameter conduces to higher heat transfer areas 
and higher thermal efficiencies, as well higher pressures loss and regeneration cycle times. 
Higher pressure losses are due to an increase in the contact fluid area which increases the drag 
force as well residence time for gases in the packed bed. The above mentioned effects are 
plotted in Figure 10 and Figure 11.  

PBHR use metallic and ceramic elements to recover waste energy. Metallic elements 
produce shorter regeneration cycles, and more variations into gases conditions which affect 
overall regeneration process. In contrast, less thermal diffusive materials like ceramics 
conduce to more stable regeneration cycles (see Figure 12) 

 

 
Figure 7. Pressure loss variation as function of packed bed diameter. Thermal efficiency 95 %. Velocity: 1.66 

m/s. 
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Figure 8. Regeneration cycle variation and pressure loss as length as function of PBHR length. Thermal 

efficiency 95 %. Velocity: 1.66 m/s. ◊ Regeneration cycle. □ Pressure loss. 

 
Figure 9. Thermal inefficiency as function of packed bed length and regeneration cycle. Velocity: 1.66 m/s. ◊ 

Regeneration cycle duration 10 seconds, □ Regeneration cycle time 60 seconds. 
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Figure 10. Regeneration cycle variation and pressure loss as function of elements diameter. Thermal efficiency 

95 %. Velocity: 1.66 m/s. Regeneration cycle ◊. Pressure loss □ 

 
Figure 11. Thermal efficiency as function of regeneration cycle duration and elements size.  dp = 6.35 mm; 

 dp = 9.525 mm;  dp = 12.7 mm;  dp = 15.875 mm 
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Figure 12. Thermal efficiency variation as function of packed bed material. Ceramic elements α = 12.07 x 10-

8 m2/s;  Aluminum elements α = 68.19 x 10-6 m2/s 
 

6 CONCLUSIONS 

In the present work the finite volume method was used to solve governing equation of 
PBHR. From the numerical simulation and its validation, it is possible conclude that: 
o Results obtained through finite volume application have shown agreement with 

experimental and literature results used for its validation. Besides, the study of steady and 
unsteady PBHR conditions was accurate enough to establish PBHR behavior under several 
conditions and configurations. 

o Moreover, finite volume solution of PBHR improves solution time and computational 
resources. Those results are important for design and optimization process because bring 
the opportunity of evaluating several operation conditions with appropriate computational 
resources and with sufficient predicted accuracy. 

o Porosity distribution is a geometric variable fundamental for the analysis of PBHR with 
porous media governing equation models. The consideration of porosity variation through 
the packed bed increase reliability of results achieved by numerical analysis. 

o Finally it is possible to conclude that heat and momentum transfer process has an inverse 
interaction, since as high thermal efficiencies are achieved due by increasing the heat 
transfer area higher work also must be compensate for higher pressure losses. 
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